1
|
Ding B, Zhao S, Zhang W, Lin Y, Xiong L. The Effect of Co-Culture with Different Pichia kluyveri and Saccharomyces cerevisiae on Volatile Compound and Characteristic Fingerprints of Mulberry Wine. Foods 2024; 13:422. [PMID: 38338556 PMCID: PMC10855979 DOI: 10.3390/foods13030422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/18/2024] [Accepted: 01/20/2024] [Indexed: 02/12/2024] Open
Abstract
In this study, changes in volatile compounds co-fermented by different Pichia kluyveri with Saccharomyces cerevisiae were analyzed using GC-IMS and compared with S. cerevisiae fermentation, to investigate the production of aroma in mulberry wine during the fermentation process. A total of 61 compounds were accurately identified, including 21 esters, 10 alcohols, 8 aldehydes, 6 ketones, and 19 other volatiles. Compared with the single strain fermentation (S. cerevisiae), the content of 2-methylpropyl acetate, allyl Isothiocyanate, ethyl crotonate, isobutyl propanoate, and butyl 2-methylbutanoate, co-fermentation groups (S. cerevisiae with different P. kluyveri) showed a significant decrease. Alcohols, aldehydes, ketones, and organic acid were lower in both the F(S-P1) and F(S-P2) groups than in the F(S) group throughout fermentation. The 2-methylpentanoic acid only was contained in the F(S) group. The co-fermentation with different P. kluyveri could also be well distinguished. The content of Benzaldehyde and 4-methylphenol in the F(S-P1) group was significantly lower than that in the F(S-P2) group. The PCA results revealed effective differentiation of mulberry wine fermented by different fermentation strains from GC-IMS. The result showed that P. kluyveri could establish a new flavor system for mulberry wine, which plays a crucial role in enhancing the flavor of fruit wine.
Collapse
Affiliation(s)
- Bo Ding
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; (B.D.); (S.Z.); (Y.L.); (L.X.)
| | - Shutian Zhao
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; (B.D.); (S.Z.); (Y.L.); (L.X.)
| | - Wenxue Zhang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; (B.D.); (S.Z.); (Y.L.); (L.X.)
- School of Liquor-Brewing Engineering, Sichuan University of Jinjiang College, Meishan 620860, China
| | - Ying Lin
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; (B.D.); (S.Z.); (Y.L.); (L.X.)
| | - Ling Xiong
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; (B.D.); (S.Z.); (Y.L.); (L.X.)
| |
Collapse
|
2
|
Li N, Huang G, Zhang Y, Zheng N, Zhao S, Wang J. Diversity of Volatile Compounds in Raw Milk with Different n-6 to n-3 Fatty Acid Ratio. Animals (Basel) 2022; 12:ani12030252. [PMID: 35158576 PMCID: PMC8833492 DOI: 10.3390/ani12030252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/05/2022] [Accepted: 01/17/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary In production, milk that is more beneficial to human health is obtained by adjusting the ratio of n-6 and n-3 fatty acids; however, the effect the regulation will have on the volatile substances in milk is unknown. In this study, gas chromatography–ion mobility spectrometry combined with principal component analysis was used to establish the fingerprint of volatile substances in raw milk to identify the types of volatile substances. The results show that a total of 34 target compounds were identified, and there were differences in the types and contents of volatile compounds among different treatment groups. The main reason for these differences is that lipid is degraded and aldehydes and ketones are produced in the adjusted-proportion group. Abstract Fatty acid profiles may affect the flavor of milk. The diversity of volatile compounds in raw milk with different ratios of n-6 to n-3 fatty acids (8:1, 4:1, and 3:1) was studied. Gas chromatography–ion mobility spectroscopy (GC–IMS) is a promising technology for the accurate characterization and detection of volatile organic compounds in agricultural products, but its application in milk is rare or even unavailable. In this experiment, GC–IMS fingerprints along with principal component analysis (PCA) were used to study the flavor fingerprints of fresh milk samples with different percentages. Thirty-four typical target compounds were identified in total. A diversity of flavor compounds in raw milk with different n-6/n-3 was observed. After reduction of the proportion, the concentrations of volatile compounds, such as hexanoic acid (dimer and monomer), ethyl acetate, and 2-methylpropanoic acid (dimer and monomer) decreased, while those of 4-methyl-2-pentanone, pentanal, and acetone increased. We carried out PCA according to the signal strength of the identified volatile compounds, and the examination showed that it could precisely make a distinction among the samples in a comparative space. In conclusion, the results show that the volatile compounds are different as the proportion is different. The volatile compounds in raw milk are mainly hexanoic acid, ethyl acetate, and 2-methylpropanoic acid. After adjustment of the ratio, the flavor substances of the medium-ratio (MR) group were mainly ketones, while those of the low-ratio (LR) group were aldehydes. Therefore, in production, reducing the impact on volatile substances while adjusting the proportion of n-6 and n-3 fatty acids to obtain functional dairy products should be taken into consideration.
Collapse
Affiliation(s)
- Ning Li
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (N.L.); (G.H.); (N.Z.); (S.Z.)
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Guoxin Huang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (N.L.); (G.H.); (N.Z.); (S.Z.)
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yangdong Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (N.L.); (G.H.); (N.Z.); (S.Z.)
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Correspondence: (Y.Z.); (J.W.); Tel.: +86-01062816069 (Y.Z.); +86-01062816069 (J.W.)
| | - Nan Zheng
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (N.L.); (G.H.); (N.Z.); (S.Z.)
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shengguo Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (N.L.); (G.H.); (N.Z.); (S.Z.)
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jiaqi Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (N.L.); (G.H.); (N.Z.); (S.Z.)
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Correspondence: (Y.Z.); (J.W.); Tel.: +86-01062816069 (Y.Z.); +86-01062816069 (J.W.)
| |
Collapse
|
3
|
Identification of changes in volatile compounds in sea cucumber Apostichopus japonicus during seasonings soaking using HS-GC-IMS. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112695] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
4
|
Yang Y, Wang B, Fu Y, Shi YG, Chen FL, Guan HN, Liu LL, Zhang CY, Zhu PY, Liu Y, Zhang N. HS-GC-IMS with PCA to analyze volatile flavor compounds across different production stages of fermented soybean whey tofu. Food Chem 2021; 346:128880. [PMID: 33418415 DOI: 10.1016/j.foodchem.2020.128880] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 10/20/2020] [Accepted: 12/13/2020] [Indexed: 11/25/2022]
Abstract
The variations in flavor substances across the different stages of fermented soybean whey tofu (FSWT) production were analyzed by headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS) combined with principal component analysis (PCA). The results revealed 24 representative flavor compounds in the samples across all production stages. After heating, the signal intensity of hexanal, 1-octen-3-ol, heptanal, and (E)-2-hexenol, which are unpleasant flavor substances found in raw soymilk, weakened, whereas those of some aroma substances increased. Furthermore, fermented flavor compounds, namely, 2-heptanone, 2-pentylfuran, pentanal, and 2,3-butanedione, were produced after the addition of fermented soybean whey as a coagulant. A PCA based on the signal intensity of the detected volatile compounds revealed effective differentiation of samples from different stages into comparatively independent spaces. These results showed that the flavor fingerprints of the samples from different stages of FSWT production can be successfully built using HS-GC-IMS and PCA based on the detected volatile compounds.
Collapse
Affiliation(s)
- Yang Yang
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Bing Wang
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Yu Fu
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Yan-Guo Shi
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Feng-Lian Chen
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Hua-Nan Guan
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Lin-Lin Liu
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Chun-Yan Zhang
- Shandong Hanon Scientific Instruments Co., Ltd, Shandong 251500, China
| | - Peng-Yu Zhu
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Ying Liu
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Na Zhang
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China.
| |
Collapse
|
5
|
Development of a flavor fingerprint by HS-GC–IMS with PCA for volatile compounds of Tricholoma matsutake Singer. Food Chem 2019; 290:32-39. [DOI: 10.1016/j.foodchem.2019.03.124] [Citation(s) in RCA: 151] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/24/2019] [Accepted: 03/24/2019] [Indexed: 12/17/2022]
|
6
|
Sghaier L, Vial J, Sassiat P, Thiebaut D, Watiez M, Breton S, Rutledge DN, Cordella CB. An overview of recent developments in volatile compounds analysis from edible oils: Technique-oriented perspectives. EUR J LIPID SCI TECH 2016. [DOI: 10.1002/ejlt.201500508] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Lilia Sghaier
- R&D Center; Lesieur; Coudekerque-Branche France
- Department of Analytical, Bioanalytical Sciences and Miniaturization (LSABM), Institute of Chemistry, Biology and Innovation (CBI) - ESPCI ParisTech, CNRS UMR 8231; PSL Research University; Paris Cedex 05 France
- UMR1145 GENIAL; AgroParisTech; Paris France
| | - Jérôme Vial
- Department of Analytical, Bioanalytical Sciences and Miniaturization (LSABM), Institute of Chemistry, Biology and Innovation (CBI) - ESPCI ParisTech, CNRS UMR 8231; PSL Research University; Paris Cedex 05 France
| | - Patrick Sassiat
- Department of Analytical, Bioanalytical Sciences and Miniaturization (LSABM), Institute of Chemistry, Biology and Innovation (CBI) - ESPCI ParisTech, CNRS UMR 8231; PSL Research University; Paris Cedex 05 France
| | - Didier Thiebaut
- Department of Analytical, Bioanalytical Sciences and Miniaturization (LSABM), Institute of Chemistry, Biology and Innovation (CBI) - ESPCI ParisTech, CNRS UMR 8231; PSL Research University; Paris Cedex 05 France
| | | | | | | | | |
Collapse
|
7
|
Garrido-Delgado R, Dobao-Prieto MDM, Arce L, Valcárcel M. Determination of volatile compounds by GC-IMS to assign the quality of virgin olive oil. Food Chem 2015; 187:572-9. [PMID: 25977065 DOI: 10.1016/j.foodchem.2015.04.082] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 04/09/2015] [Accepted: 04/18/2015] [Indexed: 01/29/2023]
Abstract
The characterisation of different olive oil categories (extra virgin, virgin and lampante) using Ion Mobility Spectrometry (IMS) was improved by replacing the multicapillary column (MCC) with a capillary column (CC). The data obtained with MCC-IMS and CC-IMS were evaluated, studying both the global and the specific information obtained after the analysis of the volatile fraction of olive oils. A better differentiation of the oil categories was obtained employing CC vs MCC, since the classification percentage obtained with the CC-IMS was 92% as opposed to 87% obtained with MCC-IMS; although in productivity analytical terms, MCC offer a faster analysis than GC. The specific information obtained was also used to build a database, with a view to facilitating the characterization of specific attributes of olive oils. A total of 26 volatile metabolites (aldehydes, ketones, alcohols and esters) were identified. Finally, as revealed by an ANOVA test, some volatiles differed markedly in content among the different categories of oil. The data obtained confirms the potential of IMS as a reliable analytical screening technique, which can be used to assign the correct category to an olive oil sample.
Collapse
Affiliation(s)
- Rocío Garrido-Delgado
- Department of Analytical Chemistry, Faculty of Sciences, University of Cordoba, Andalusian Institute of Fine Chemistry and Nanochemistry, International Agrifood Campus of Excellence (ceiA3), Annex C3 Building, Campus of Rabanales, E-14071 Córdoba, Spain
| | - María del Mar Dobao-Prieto
- Department of Analytical Chemistry, Faculty of Sciences, University of Cordoba, Andalusian Institute of Fine Chemistry and Nanochemistry, International Agrifood Campus of Excellence (ceiA3), Annex C3 Building, Campus of Rabanales, E-14071 Córdoba, Spain
| | - Lourdes Arce
- Department of Analytical Chemistry, Faculty of Sciences, University of Cordoba, Andalusian Institute of Fine Chemistry and Nanochemistry, International Agrifood Campus of Excellence (ceiA3), Annex C3 Building, Campus of Rabanales, E-14071 Córdoba, Spain
| | - Miguel Valcárcel
- Department of Analytical Chemistry, Faculty of Sciences, University of Cordoba, Andalusian Institute of Fine Chemistry and Nanochemistry, International Agrifood Campus of Excellence (ceiA3), Annex C3 Building, Campus of Rabanales, E-14071 Córdoba, Spain.
| |
Collapse
|
8
|
Silcock P, Alothman M, Zardin E, Heenan S, Siefarth C, Bremer P, Beauchamp J. Microbially induced changes in the volatile constituents of fresh chilled pasteurised milk during storage. Food Packag Shelf Life 2014. [DOI: 10.1016/j.fpsl.2014.08.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
9
|
Ruiz-Samblás C, Tres A, Koot A, van Ruth SM, González-Casado A, Cuadros-Rodríguez L. Proton transfer reaction-mass spectrometry volatile organic compound fingerprinting for monovarietal extra virgin olive oil identification. Food Chem 2012. [DOI: 10.1016/j.foodchem.2012.02.135] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
del Pulgar JS, Soukoulis C, Biasioli F, Cappellin L, García C, Gasperi F, Granitto P, Märk TD, Piasentier E, Schuhfried E. Rapid characterization of dry cured ham produced following different PDOs by proton transfer reaction time of flight mass spectrometry (PTR-ToF-MS). Talanta 2011; 85:386-93. [DOI: 10.1016/j.talanta.2011.03.077] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 03/13/2011] [Accepted: 03/28/2011] [Indexed: 11/25/2022]
|
11
|
Biasioli F, Gasperi F, Yeretzian C, Märk TD. PTR-MS monitoring of VOCs and BVOCs in food science and technology. Trends Analyt Chem 2011. [DOI: 10.1016/j.trac.2011.03.009] [Citation(s) in RCA: 150] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Ghasemi-Varnamkhasti M, Mohtasebi SS, Siadat M. Biomimetic-based odor and taste sensing systems to food quality and safety characterization: An overview on basic principles and recent achievements. J FOOD ENG 2010. [DOI: 10.1016/j.jfoodeng.2010.04.032] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
13
|
Escuder-Gilabert L, Peris M. Review: highlights in recent applications of electronic tongues in food analysis. Anal Chim Acta 2010; 665:15-25. [PMID: 20381685 DOI: 10.1016/j.aca.2010.03.017] [Citation(s) in RCA: 226] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 02/19/2010] [Accepted: 03/08/2010] [Indexed: 11/27/2022]
Abstract
This paper examines the main features of modern electronic tongues (e-tongues) and their most important applications in food analysis in this new century. The components of an e-tongue (automatic sampler, array of chemical sensors, and data processing system) are described. Applications commented include process monitoring, freshness evaluation and shelf-life investigation, authenticity assessment, foodstuff recognition, quantitative analysis, and other quality control studies. Finally, some interesting remarks concerning the strengths and weaknesses of e-tongues in food analysis are also mentioned.
Collapse
Affiliation(s)
- Laura Escuder-Gilabert
- Departamento de Química Analítica, Universitat de València, C/Vicente Andrés Estellés s/n, E-46100 Burjasot, Valencia, Spain
| | | |
Collapse
|
14
|
|