1
|
Veloz Martínez I, Ek JI, Ahn EC, Sustaita AO. Molecularly imprinted polymers via reversible addition-fragmentation chain-transfer synthesis in sensing and environmental applications. RSC Adv 2022; 12:9186-9201. [PMID: 35424874 PMCID: PMC8985154 DOI: 10.1039/d2ra00232a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/23/2022] [Indexed: 12/14/2022] Open
Abstract
Molecularly imprinted polymers (MIP) have shown their potential as artificial and selective receptors for environmental monitoring. These materials can be tailor-made to achieve a specific binding event with a template through a chosen mechanism. They are capable of emulating the recognition capacity of biological receptors with superior stability and versatility of integration in sensing platforms. Commonly, these polymers are produced by traditional free radical bulk polymerization (FRP) which may not be the most suitable for enhancing the intended properties due to the poor imprinting performance. To improve the imprinting technique and the polymer capabilities, controlled/living radical polymerization (CRP) has been used to overcome the main drawbacks of FRP. Combining CRP techniques such as RAFT (reversible addition-fragmentation chain transfer) with MIP has achieved higher selectivity, sensitivity, and sorption capacity of these polymers when implemented as the transductor element in sensors. The present work focuses on RAFT-MIP design and synthesis strategies to enhance the binding affinities and their implementation in environmental contaminant sensing applications.
Collapse
Affiliation(s)
- Irvin Veloz Martínez
- School of Engineering and Science, Tecnologico de Monterrey Av. Eugenio Garza Sada 2501 Monterrey N.L. 64849 Mexico
| | - Jackeline Iturbe Ek
- School of Engineering and Science, Tecnologico de Monterrey Av. Eugenio Garza Sada 2501 Monterrey N.L. 64849 Mexico
| | - Ethan C Ahn
- Department of Electrical and Computer Engineering, The University of Texas at San Antonio San Antonio TX 78249 USA
| | - Alan O Sustaita
- School of Engineering and Science, Tecnologico de Monterrey Av. Eugenio Garza Sada 2501 Monterrey N.L. 64849 Mexico
| |
Collapse
|
2
|
Modern and Dedicated Methods for Producing Molecularly Imprinted Polymer Layers in Sensing Applications. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12063080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Molecular imprinting (MI) is the most available and known method to produce artificial recognition sites, similar to antibodies, inside or at the surface of a polymeric material. For this reason, scholars all over the world have found MI appealing, thus developing, in this past period, various types of molecularly imprinted polymers (MIPs) that can be applied to a wide range of applications, including catalysis, separation sciences and monitoring/diagnostic devices for chemicals, biochemicals and pharmaceuticals. For instance, the advantages brought by the use of MIPs in the sensing and analytics field refer to higher selectivity, sensitivity and low detection limits, but also to higher chemical and thermal stability as well as reusability. In light of recent literature findings, this review presents both modern and dedicated methods applied to produce MIP layers that can be integrated with existent detection systems. In this respect, the following MI methods to produce sensing layers are presented and discussed: surface polymerization, electropolymerization, sol–gel derived techniques, phase inversionand deposition of electroactive pastes/inks that include MIP particles.
Collapse
|
3
|
Zidarič T, Finšgar M, Maver U, Maver T. Artificial Biomimetic Electrochemical Assemblies. BIOSENSORS 2022; 12:44. [PMID: 35049673 PMCID: PMC8773559 DOI: 10.3390/bios12010044] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 12/17/2022]
Abstract
Rapid, selective, and cost-effective detection and determination of clinically relevant biomolecule analytes for a better understanding of biological and physiological functions are becoming increasingly prominent. In this regard, biosensors represent a powerful tool to meet these requirements. Recent decades have seen biosensors gaining popularity due to their ability to design sensor platforms that are selective to determine target analytes. Naturally generated receptor units have a high affinity for their targets, which provides the selectivity of a device. However, such receptors are subject to instability under harsh environmental conditions and have consequently low durability. By applying principles of supramolecular chemistry, molecularly imprinted polymers (MIPs) can successfully replace natural receptors to circumvent these shortcomings. This review summarizes the recent achievements and analytical applications of electrosynthesized MIPs, in particular, for the detection of protein-based biomarkers. The scope of this review also includes the background behind electrochemical readouts and the origin of the gate effect in MIP-based biosensors.
Collapse
Affiliation(s)
- Tanja Zidarič
- Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, Taborska ulica 8, SI-2000 Maribor, Slovenia; (T.Z.); (U.M.)
| | - Matjaž Finšgar
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia;
| | - Uroš Maver
- Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, Taborska ulica 8, SI-2000 Maribor, Slovenia; (T.Z.); (U.M.)
- Department of Pharmacology, Faculty of Medicine, University of Maribor, Taborska ulica 8, SI-2000 Maribor, Slovenia
| | - Tina Maver
- Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, Taborska ulica 8, SI-2000 Maribor, Slovenia; (T.Z.); (U.M.)
- Department of Pharmacology, Faculty of Medicine, University of Maribor, Taborska ulica 8, SI-2000 Maribor, Slovenia
| |
Collapse
|
4
|
Progress in Application of Dual/Multi-Template Molecularly Imprinted Polymers. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2021. [DOI: 10.1016/s1872-2040(21)60118-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Musa AM, Kiely J, Luxton R, Honeychurch KC. Recent progress in screen-printed electrochemical sensors and biosensors for the detection of estrogens. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116254] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
6
|
Radi A, Ragaa Abd‐Ellatief M. Molecularly Imprinted Poly‐o‐phenylenediamine Electrochemical Sensor for Entacapone. ELECTROANAL 2021. [DOI: 10.1002/elan.202100022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Abd‐Elgawad Radi
- Department of Chemistry Faculty of Science Damietta University 34517 Damietta Egypt
| | | |
Collapse
|
7
|
Kazemifard N, Ensafi AA, Dehkordi ZS. A review of the incorporation of QDs and imprinting technology in optical sensors – imprinting methods and sensing responses. NEW J CHEM 2021. [DOI: 10.1039/d1nj01104a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This review aims to cover the simultaneous method of using molecularly imprinted technology and quantum dots (QDs) as well as its application in the field of optical sensors.
Collapse
Affiliation(s)
- Nafiseh Kazemifard
- Department of Chemistry
- Isfahan University of Technology
- Isfahan 84156-83111
- Iran
| | - Ali A. Ensafi
- Department of Chemistry
- Isfahan University of Technology
- Isfahan 84156-83111
- Iran
| | | |
Collapse
|
8
|
Flow-Through Macroporous Polymer Monoliths Containing Artificial Catalytic Centers Mimicking Chymotrypsin Active Site. Catalysts 2020. [DOI: 10.3390/catal10121395] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Synthetic catalysts that could compete with enzymes in term of the catalytic efficiency but surpass them in stability have a great potential for the practical application. In this work, we have developed a novel kind of organic catalysts based on flow-through macroporous polymer monoliths containing catalytic centers that mimic the catalytic site of natural enzyme chymotrypsin. It is known that chymotrypsin catalytic center consists of L-serine, L-histidine, and L-aspartic acid and has specificity to C-terminal residues of hydrophobic amino acids (L-phenylalanine, L-tyrosine, and L-tryptophan). In this paper, we have prepared the macroporous polymer monoliths bearing grafted polymer layer on their surface. The last one was synthesized via copolymerization of N-methacryloyl-L-serine, N-methacryloyl-L-histidine, and N-methacryloyl-L-aspartic acid. The spatial orientation of amino acids in the polymer layer, generated on the surface of monolithic framework, was achieved by coordinating amino acid-polymerizable derivatives with cobalt (II) ions without substrate-mimicking template and with its use. The conditions for the preparation of mimic materials were optimized to achieve a mechanically stable system. Catalytic properties of the developed systems were evaluated towards the hydrolysis of ester bond in a low molecular substrate and compared to the results of using chymotrypsin immobilized on the surface of a similar monolithic framework. The effect of flow rate increase and temperature elevation on the hydrolysis efficiency were evaluated for both mimic monolith and column with immobilized enzyme.
Collapse
|
9
|
SPR nanosensor based on molecularly imprinted polymer film with gold nanoparticles for sensitive detection of aflatoxin B1. Talanta 2020; 219:121219. [DOI: 10.1016/j.talanta.2020.121219] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/21/2020] [Accepted: 05/25/2020] [Indexed: 12/19/2022]
|
10
|
Nanomaterial-based molecularly imprinted polymers for pesticides detection: Recent trends and future prospects. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115943] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Fluorescent nanomaterials combined with molecular imprinting polymer: synthesis, analytical applications, and challenges. Mikrochim Acta 2020; 187:399. [PMID: 32572580 DOI: 10.1007/s00604-020-04353-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 05/22/2020] [Indexed: 12/20/2022]
Abstract
Fluorescent nanomaterials (FNMs) and molecular imprinted polymers (MIPs) have been widely used in analytical chemistry for determination. However, low selectivity of FNMs and low sensitivity of MIPs hinder their applications. Combining the merits of FNMs and MIPs, FNMs coated with MIPs (FNMs@MIPs) were proposed to solve those problems. Carbon dots, semiconductor quantum dots, noble metal nanoparticles, silica nanoparticles, and covalent-organic frameworks have been reported to be coated with MIPs. In order to overcome challenges for FNMs@MIPs, such as the lack of handy synthesis routes, incompatibility with aqueous solutions, heterogeneous size of particles, leakage of template molecules, the biocompatibility of FNMs@MIPs, and the inference between FNMs and MIPs, scientists proposed some solutions in recent years. We comprehensively review the newest advances of the FNMs@MIPs, and predict the direction of the future development. Graphical abstract.
Collapse
|
12
|
Yarman A, Scheller FW. How Reliable Is the Electrochemical Readout of MIP Sensors? SENSORS (BASEL, SWITZERLAND) 2020; 20:E2677. [PMID: 32397160 PMCID: PMC7248831 DOI: 10.3390/s20092677] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/01/2020] [Accepted: 05/06/2020] [Indexed: 01/15/2023]
Abstract
Electrochemical methods offer the simple characterization of the synthesis of molecularly imprinted polymers (MIPs) and the readouts of target binding. The binding of electroinactive analytes can be detected indirectly by their modulating effect on the diffusional permeability of a redox marker through thin MIP films. However, this process generates an overall signal, which may include nonspecific interactions with the nonimprinted surface and adsorption at the electrode surface in addition to (specific) binding to the cavities. Redox-active low-molecular-weight targets and metalloproteins enable a more specific direct quantification of their binding to MIPs by measuring the faradaic current. The in situ characterization of enzymes, MIP-based mimics of redox enzymes or enzyme-labeled targets, is based on the indication of an electroactive product. This approach allows the determination of both the activity of the bio(mimetic) catalyst and of the substrate concentration.
Collapse
Affiliation(s)
- Aysu Yarman
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam, Germany
| | - Frieder W. Scheller
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam, Germany
| |
Collapse
|
13
|
Kazemifard N, Ensafi AA, Saberi Z. Development of Optical Sensors Based on Quantum Dots Using Molecularly Imprinted Polymers for Determination of Prilocaine. Methods Mol Biol 2020; 2135:275-283. [PMID: 32246342 DOI: 10.1007/978-1-0716-0463-2_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Optical sensors are analytical tools that able to provide analyte information. There are several ways to design optical sensors. This chapter presents an interesting optical sensor to detect prilocaine, a medicine, using quantum dots (QDs) combined with molecularly imprinted polymers (QDs@MIPs). This sensor simultaneously takes advantage of QDs and molecular imprinting technology, which enables the optical device to measure prilocaine with high selectivity and sensitivity. To prepare the optical sensor, CdTe QDs were used as fluorescent probes, and an imprinted silica polymer, as the recognition system, has been constructed on the QDs via sol-gel process to increase sensor selectivity.
Collapse
Affiliation(s)
- Nafiseh Kazemifard
- Department of Chemistry, Isfahan University of Technology, Isfahan, Iran
| | - Ali A Ensafi
- Department of Chemistry, Isfahan University of Technology, Isfahan, Iran.
| | - Zeinab Saberi
- Department of Chemistry, Isfahan University of Technology, Isfahan, Iran
| |
Collapse
|
14
|
Kazemifard N, Ensafi AA, Rezaei B. Green synthesized carbon dots embedded in silica molecularly imprinted polymers, characterization and application as a rapid and selective fluorimetric sensor for determination of thiabendazole in juices. Food Chem 2019; 310:125812. [PMID: 31734008 DOI: 10.1016/j.foodchem.2019.125812] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 07/09/2019] [Accepted: 10/25/2019] [Indexed: 12/26/2022]
Abstract
An eco-friendly method was used to synthesize carbon dots (CDs) from Rosemary leaves, as a carbon source. The as-synthesized CDs was applied as a fluorophore in an optical sensor after modification with molecularly imprinted polymers (MIPs) for determination of thiabendazole (TBZ). For this purpose, a silica shell using tetraethoxysilane (TEOS), as a Si source, was stabilized on the surface of CDs via reverse microemulsion technique. Following, MIPs were synthesized in the presence of TBZ as a template, using 3-aminopropyl triethoxysilane and TEOS as a functional monomer and a crosslinker, respectively. After optimization of the experimental parameters, a linear dynamic range of 0.03-1.73 μg/mL TBZ with a detection limit as 8 ng/mL were obtained for the suggested method. Finally, the proposed sensor was successfully applied for the determination of TBZ in apple, orange, and tomato juices. This sensor is a simple, rapid, selective, and non-expensive method for TBZ measurement.
Collapse
Affiliation(s)
- Nafiseh Kazemifard
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Ali A Ensafi
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Behzad Rezaei
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| |
Collapse
|
15
|
Lahcen AA, García-Guzmán JJ, Palacios-Santander JM, Cubillana-Aguilera L, Amine A. Fast route for the synthesis of decorated nanostructured magnetic molecularly imprinted polymers using an ultrasound probe. ULTRASONICS SONOCHEMISTRY 2019; 53:226-236. [PMID: 30686595 DOI: 10.1016/j.ultsonch.2019.01.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 01/03/2019] [Accepted: 01/08/2019] [Indexed: 05/26/2023]
Abstract
In this paper, we report for the first time a novel, simple and fast method for the synthesis of magnetic molecularly imprinted polymers (Mag-MIPs) based on high-energy ultrasound probe. Sulfamethoxazole (SMX) was used as template molecule, methacrylic acid as functional monomer, ethylene glycole dimethacrylate as crosslinking agent and magnetic nanoparticles (NPs) as the supporting core. The effects of time (5, 7.5 and 10 min) and the applied amplitude (20, 30, 40, 50 and 60%) using the ultrasound probe for the synthesis of Mag-MIPs were studied and optimized. By applying the proposed synthesis method, the US-magMIPs synthesis time was satisfactorily reduced from several hours to a few minutes (7.5 min) in a simple way. For comparison purposes, the Mag-MIP and the non imprinted polymer (MagNIP) were also synthesized employing an ultrasound bath assisted approach (2 h, 65 °C). Magnetic NPs and US-magMIPs synthesized by both ways were investigated by means of several characterization techniques such as Fourier Transform Infrared (FT-IR) spectroscopy, Scanning/Transmission electron microscopy (SEM and STEM modes), X-Ray Diffraction (XRD), Vibrating Sample Magnetometer (VSM) and Dynamic Light Scattering (DLS). The results obtained confirms clearly the formation of magnetic NPs and their successful decoration by the imprinted polymer in both synthesis ways. The sulfonamide binding efficiency of US-magMIPs synthesized by the ultrasound probe and ultrasound bath were investigated according to the adsorption isotherm. The obtained results showed that the US-magMIP synthesized with the probe has more binding capacity compared to the one synthesized with US bath. The adsorption time was studied and both synthesized US-magMIPs reached the maximum adsorption capacity toward SMX after 1 h and the US-magMIP probe tends to have more easiness to bind SMX in less time. The selectivity studies of the synthesized US-magMIPs based on probe and bath showed a high affinity for SMX compared to its structural analogues such as sulfadiazine, sulfamerazine and sulfacetamide.
Collapse
Affiliation(s)
- Abdellatif Ait Lahcen
- Institute of Research on Electron Microscopy and Materials (IMEYMAT), Department of Analytical Chemistry, Faculty of Sciences, Campus de Excelencia Internacional del Mar (CEIMAR), University of Cadiz, Campus Universitario de Puerto Real, Polígono del Río San Pedro S/N, Puerto Real, Cádiz 11510, Spain; Laboratoire Génie des Procédés & Environnement, Faculté des Sciences et Techniques, Hassan II University of Casablanca, B.P. 146. Mohammedia, Morocco
| | - Juan José García-Guzmán
- Institute of Research on Electron Microscopy and Materials (IMEYMAT), Department of Analytical Chemistry, Faculty of Sciences, Campus de Excelencia Internacional del Mar (CEIMAR), University of Cadiz, Campus Universitario de Puerto Real, Polígono del Río San Pedro S/N, Puerto Real, Cádiz 11510, Spain
| | - Jose Maria Palacios-Santander
- Institute of Research on Electron Microscopy and Materials (IMEYMAT), Department of Analytical Chemistry, Faculty of Sciences, Campus de Excelencia Internacional del Mar (CEIMAR), University of Cadiz, Campus Universitario de Puerto Real, Polígono del Río San Pedro S/N, Puerto Real, Cádiz 11510, Spain.
| | - Laura Cubillana-Aguilera
- Institute of Research on Electron Microscopy and Materials (IMEYMAT), Department of Analytical Chemistry, Faculty of Sciences, Campus de Excelencia Internacional del Mar (CEIMAR), University of Cadiz, Campus Universitario de Puerto Real, Polígono del Río San Pedro S/N, Puerto Real, Cádiz 11510, Spain
| | - Aziz Amine
- Laboratoire Génie des Procédés & Environnement, Faculté des Sciences et Techniques, Hassan II University of Casablanca, B.P. 146. Mohammedia, Morocco.
| |
Collapse
|
16
|
Abbasi S, Haeri SA, Sajjadifar S. Bio-dispersive liquid liquid microextraction based on nano rhamnolipid aggregates combined with molecularly imprinted-solid phase extraction for selective determination of paracetamol in human urine samples followed by HPLC. Microchem J 2019. [DOI: 10.1016/j.microc.2018.12.065] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
17
|
Marć M, Wieczorek PP. Introduction to MIP synthesis, characteristics and analytical application. COMPREHENSIVE ANALYTICAL CHEMISTRY 2019. [DOI: 10.1016/bs.coac.2019.05.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
18
|
Florea A, Feier B, Cristea C. In situ analysis based on molecularly imprinted polymer electrochemical sensors. COMPREHENSIVE ANALYTICAL CHEMISTRY 2019. [DOI: 10.1016/bs.coac.2019.05.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
19
|
Gui R, Jin H, Guo H, Wang Z. Recent advances and future prospects in molecularly imprinted polymers-based electrochemical biosensors. Biosens Bioelectron 2018; 100:56-70. [DOI: 10.1016/j.bios.2017.08.058] [Citation(s) in RCA: 262] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 08/08/2017] [Accepted: 08/27/2017] [Indexed: 01/13/2023]
|
20
|
|
21
|
Liu JM, Wei SY, Liu HL, Fang GZ, Wang S. Preparation and Evaluation of Core⁻Shell Magnetic Molecularly Imprinted Polymers for Solid-Phase Extraction and Determination of Sterigmatocystin in Food. Polymers (Basel) 2017; 9:E546. [PMID: 30965842 PMCID: PMC6418914 DOI: 10.3390/polym9100546] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 10/17/2017] [Accepted: 10/17/2017] [Indexed: 02/07/2023] Open
Abstract
Magnetic molecularly imprinted polymers (MMIPs), combination of outstanding magnetism with specific selective binding capability for target molecules, have proven to be attractive in separation science and bio-applications. Herein, we proposed the core⁻shell magnetic molecularly imprinted polymers for food analysis, employing the Fe₃O₄ particles prepared by co-precipitation protocol as the magnetic core and MMIP film onto the silica layer as the recognition and adsorption of target analytes. The obtained MMIPs materials have been fully characterized by scanning electron microscope (SEM), Fourier transform infrared spectrometer (FT-IR), vibrating sample magnetometer (VSM), and re-binding experiments. Under the optimal conditions, the fabricated Fe₃O₄@MIPs demonstrated fast adsorption equilibrium, a highly improved imprinting capacity, and excellent specificity to target sterigmatocystin (ST), which have been successfully applied as highly efficient solid-phase extraction materials followed by high-performance liquid chromatography (HPLC) analysis. The MMIP-based solid phase extraction (SPE) method gave linear response in the range of 0.05⁻5.0 mg·L-1 with a detection limit of 9.1 µg·L-1. Finally, the proposed method was used for the selective isolation and enrichment of ST in food samples with recoveries in the range 80.6⁻88.7% and the relative standard deviation (RSD) <5.6%.
Collapse
Affiliation(s)
- Jing-Min Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
- Research Center of Food Science and Human Health, School of Medicine, Nankai University, Tianjin 300071, China.
| | - Shu-Yuan Wei
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Hui-Lin Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Guo-Zhen Fang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Shuo Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
- Research Center of Food Science and Human Health, School of Medicine, Nankai University, Tianjin 300071, China.
| |
Collapse
|
22
|
Yáñez-Sedeño P, Campuzano S, Pingarrón JM. Electrochemical sensors based on magnetic molecularly imprinted polymers: A review. Anal Chim Acta 2017; 960:1-17. [PMID: 28193351 DOI: 10.1016/j.aca.2017.01.003] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 12/30/2016] [Accepted: 01/02/2017] [Indexed: 12/20/2022]
Abstract
Participation of magnetic component in molecularly imprinted polymers (MIPs) has facilitated enormously the incorporation of these polymeric materials on electrode surfaces allowing the design of electrochemical sensors with very attractive analytical characteristics in terms of simplicity, reproducibility, low fabrication cost, high sensitivity and selectivity and rapid assay time. The magnetically susceptible resultant MIPs (MMIPs) allowed a simple and fast elution of the template molecules from MMIPs, are easily and faster collected without filtration, centrifugation or other complex operations and are also faster assembled and removed from the electrode surface by simply using an external magnetic field. A wide range of different (nano)materials such as gold nanoparticles (AuNPs), graphene oxide, single-walled and multi-walled carbon nanotubes (SWCNTs and MWCNTs) as well as different electrode modifiers (ionic liquids (ILs) and surfactants/dispersants) have been incorporated into the MMIPs to improve the analytical performance of the resulting electrochemical sensors which have demonstrated great promise for determination of relevant analytes in environmental, food and clinical analyses.
Collapse
Affiliation(s)
- Paloma Yáñez-Sedeño
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040, Madrid, Spain.
| | - Susana Campuzano
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040, Madrid, Spain.
| | - José M Pingarrón
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040, Madrid, Spain.
| |
Collapse
|
23
|
Cowen T, Karim K, Piletsky S. Computational approaches in the design of synthetic receptors – A review. Anal Chim Acta 2016; 936:62-74. [DOI: 10.1016/j.aca.2016.07.027] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/13/2016] [Accepted: 07/15/2016] [Indexed: 01/02/2023]
|
24
|
Karpov VM, Spektor DV, Beklemishev MK. Determination of ceftriaxone by the fluorescence quenching of quantum dots using binding with polyethyleneimine. JOURNAL OF ANALYTICAL CHEMISTRY 2016. [DOI: 10.1134/s1061934816050051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Sharma PS, Wojnarowicz A, Sosnowska M, Benincori T, Noworyta K, D’Souza F, Kutner W. Potentiometric chemosensor for neopterin, a cancer biomarker, using an electrochemically synthesized molecularly imprinted polymer as the recognition unit. Biosens Bioelectron 2016; 77:565-72. [DOI: 10.1016/j.bios.2015.10.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 09/15/2015] [Accepted: 10/05/2015] [Indexed: 11/30/2022]
|
26
|
Zahedi P, Ziaee M, Abdouss M, Farazin A, Mizaikoff B. Biomacromolecule template-based molecularly imprinted polymers with an emphasis on their synthesis strategies: a review. POLYM ADVAN TECHNOL 2016. [DOI: 10.1002/pat.3754] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Payam Zahedi
- Nano-Biopolymers Research Laboratory, School of Chemical Engineering, College of Engineering; University of Tehran; PO Box 11155-4563 Tehran Iran
| | - Morteza Ziaee
- Nano-Biopolymers Research Laboratory, School of Chemical Engineering, College of Engineering; University of Tehran; PO Box 11155-4563 Tehran Iran
| | - Majid Abdouss
- Department of Chemistry; Amirkabir University of Technology (Tehran Polytechnic); Tehran Iran
| | - Alireza Farazin
- Department of Chemistry, Faculty of Science; University of Tehran; Tehran Iran
| | - Boris Mizaikoff
- Institute of Analytical and Bioanalytical Chemistry; University of Ulm; 89081 Ulm Germany
| |
Collapse
|
27
|
Zarezade V, Behbahani M, Omidi F, Abandansari HS, Hesam G. A new magnetic tailor made polymer for separation and trace determination of cadmium ions by flame atomic absorption spectrophotometry. RSC Adv 2016. [DOI: 10.1039/c6ra23688j] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Magnetic ion imprinted polymers have been prepared and applied for the selective extraction and trace monitoring of cadmium ions in food samples.
Collapse
Affiliation(s)
| | - Mohammad Behbahani
- Research Center for Environmental Determinants of Health (RCEDH)
- Kermanshah University of Medical Sciences
- Kermanshah
- Iran
| | - Fariborz Omidi
- Department of Occupational Health Engineering
- School of Public Health
- Tehran University of Medical Sciences
- Tehran
- Iran
| | - Hamid Sadeghi Abandansari
- Department of Stem Cells and Developmental Biology
- Cell Science Research Center
- Royan Institute
- Tehran
- Iran
| | - Ghasem Hesam
- Department of Occupational Health Engineering
- School of Public Health
- Shahroud University of Medical Sciences
- Shahroud
- Iran
| |
Collapse
|
28
|
Korposh S, Chianella I, Guerreiro A, Caygill S, Piletsky S, James SW, Tatam RP. Selective vancomycin detection using optical fibre long period gratings functionalised with molecularly imprinted polymer nanoparticles. Analyst 2015; 139:2229-36. [PMID: 24634909 DOI: 10.1039/c3an02126b] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
An optical fibre long period grating (LPG) sensor modified with molecularly imprinted polymer nanoparticles (nanoMIPs) for the specific detection of antibiotics is presented. The operation of the sensor is based on the measurement of changes in refractive index induced by the interaction of nanoMIPs deposited onto the cladding of the LPG with free vancomycin (VA). The binding of nanoMIPs to vancomycin was characterised by a binding constant of 4.3 ± 0.1 × 10(-8) M. The lowest concentration of analyte measured by the fibre sensor was 10 nM. In addition, the sensor exhibited selectivity, as much smaller responses were obtained for high concentrations (∼700 μM) of other commonly prescribed antibiotics such as amoxicillin, bleomycin and gentamicin. In addition, the response of the sensor was characterised in a complex matrix, porcine plasma, spiked with 10 μM of VA.
Collapse
Affiliation(s)
- Sergiy Korposh
- Department of Engineering Photonics, School of Engineering, Cranfield University, Cranfield, Bedfordshire MK43 0AL, UK.
| | | | | | | | | | | | | |
Collapse
|
29
|
Zhang X, Yang S, Zhao W, Liu B, Sun L, Luo A. Surface Molecular Imprinting on Manganese-Doped Zinc Sulfide Quantum Dots for Fluorescence Detection of Bisphenol A in Water. ANAL LETT 2015. [DOI: 10.1080/00032719.2015.1010121] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
30
|
Çorman ME, Armutcu C, Özkara S, Uzun L, Denizli A. Molecularly imprinted cryogel cartridges for the specific filtration and rapid separation of interferon alpha. RSC Adv 2015. [DOI: 10.1039/c5ra07307c] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Molecularly imprinted cryogel-based specific filtration cartridges for highly selective, repeatable and fast interferon α-2b separation even if under competitive conditions.
Collapse
Affiliation(s)
- Mehmet Emin Çorman
- Sinop University
- Department of Bioengineering
- Sinop
- Turkey
- Hacettepe University
| | - Canan Armutcu
- Hacettepe University
- Department of Chemistry
- Biochemistry Division
- Ankara
- Turkey
| | - Serpil Özkara
- Anadolu University
- Department of Chemistry
- Biochemistry Division
- Eskişehir
- Turkey
| | - Lokman Uzun
- Hacettepe University
- Department of Chemistry
- Biochemistry Division
- Ankara
- Turkey
| | - Adil Denizli
- Hacettepe University
- Department of Chemistry
- Biochemistry Division
- Ankara
- Turkey
| |
Collapse
|
31
|
Dai H, Xiao D, He H, Li H, Yuan D, Zhang C. Synthesis and analytical applications of molecularly imprinted polymers on the surface of carbon nanotubes: a review. Mikrochim Acta 2014. [DOI: 10.1007/s00604-014-1376-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
32
|
Abstract
In this work, A molecularly imprinted polymers (MIPs) electrochemical sensor based on chitosan (CS) and nickel electrode was constructed, finally used in glucose measurement. The MIPs sensor was prepared through electrodepositing glucose–CS composited film on the electrochemical treated nickel then removing glucose from the film via water elution. The morphology and electrochemical properties of the sensor were characterized via scanning electron microscope (SEM) , cyclic voltammetry (CV), respectively. Amperometric responses of the CS (MIP)-NiO electrode toward glucose was well-proportional to the concentration of the range from 10 μM to 200 μM. The developed sensor obtained the specific recognition to glucose against coexisting interferences such as oxalic acid, uric acid and ascorbic acid.
Collapse
|
33
|
Fatoni A, Numnuam A, Kanatharana P, Limbut W, Thavarungkul P. A novel molecularly imprinted chitosan–acrylamide, graphene, ferrocene composite cryogel biosensor used to detect microalbumin. Analyst 2014; 139:6160-7. [DOI: 10.1039/c4an01000k] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
34
|
Radi AE, El-Naggar AE, Nassef HM. Molecularly imprinted polymer based electrochemical sensor for the determination of the anthelmintic drug oxfendazole. J Electroanal Chem (Lausanne) 2014. [DOI: 10.1016/j.jelechem.2014.07.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Kadhirvel P, Azenha M, Schillinger E, Halhalli MR, Silva AF, Sellergren B. Recognitive nano-thin-film composite beads for the enantiomeric resolution of the metastatic breast cancer drug aminoglutethimide. J Chromatogr A 2014; 1358:93-101. [DOI: 10.1016/j.chroma.2014.06.076] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 06/03/2014] [Accepted: 06/24/2014] [Indexed: 12/01/2022]
|
36
|
Zia AI, Mukhopadhyay SC, Yu PL, Al-Bahadly IH, Gooneratne CP, Kosel JR. Rapid and molecular selective electrochemical sensing of phthalates in aqueous solution. Biosens Bioelectron 2014; 67:342-9. [PMID: 25218198 DOI: 10.1016/j.bios.2014.08.050] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Revised: 08/11/2014] [Accepted: 08/14/2014] [Indexed: 10/24/2022]
Abstract
Reported research work presents real time non-invasive detection of phthalates in spiked aqueous samples by employing electrochemical impedance spectroscopy (EIS) technique incorporating a novel interdigital capacitive sensor with multiple sensing thin film gold micro-electrodes fabricated on native silicon dioxide layer grown on semiconducting single crystal silicon wafer. The sensing surface was functionalized by a self-assembled monolayer of 3-aminopropyltrietoxysilane (APTES) with embedded molecular imprinted polymer (MIP) to introduce selectivity for the di(2-ethylhexyl) phthalate (DEHP) molecule. Various concentrations (1-100 ppm) of DEHP in deionized MilliQ water were tested using the functionalized sensing surface to capture the analyte. Frequency response analyzer (FRA) algorithm was used to obtain impedance spectra so as to determine sample conductance and capacitance for evaluation of phthalate concentration in the sample solution. Spectrum analysis algorithm interpreted the experimentally obtained impedance spectra by applying complex nonlinear least square (CNLS) curve fitting in order to obtain electrochemical equivalent circuit and corresponding circuit parameters describing the kinetics of the electrochemical cell. Principal component analysis was applied to deduce the effects of surface immobilized molecular imprinted polymer layer on the evaluated circuit parameters and its electrical response. The results obtained by the testing system were validated using commercially available high performance liquid chromatography diode array detector system.
Collapse
Affiliation(s)
- Asif I Zia
- School of Engineering and Advanced Technology, Massey University, Palmerston North, New Zealand; Department of Physics, COMSATS Institute of Information Technology, Islamabad, Pakistan.
| | | | - Pak-Lam Yu
- School of Engineering and Advanced Technology, Massey University, Palmerston North, New Zealand
| | - I H Al-Bahadly
- School of Engineering and Advanced Technology, Massey University, Palmerston North, New Zealand
| | - Chinthaka P Gooneratne
- Sensing, Magnetism and Microsystems Group, King Abdullah University of Science and Technology, Saudi Arabia
| | - J Rgen Kosel
- Sensing, Magnetism and Microsystems Group, King Abdullah University of Science and Technology, Saudi Arabia
| |
Collapse
|
37
|
Behbahani M, Bagheri S, Amini MM, Sadeghi Abandansari H, Reza Moazami H, Bagheri A. Application of a magnetic molecularly imprinted polymer for the selective extraction and trace detection of lamotrigine in urine and plasma samples. J Sep Sci 2014; 37:1610-6. [DOI: 10.1002/jssc.201400188] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 03/23/2014] [Accepted: 03/23/2014] [Indexed: 11/10/2022]
Affiliation(s)
- Mohammad Behbahani
- Department of Chemistry; Faculty of Science, Shahid Beheshti University; Tehran Iran
| | - Saman Bagheri
- Department of Chemistry; Islamic Azad University, North-Tehran Branch; Tehran Iran
| | - Mostafa M. Amini
- Department of Chemistry; Faculty of Science, Shahid Beheshti University; Tehran Iran
| | | | - Hamid Reza Moazami
- Department of Chemistry; Faculty of Science, Shahid Beheshti University; Tehran Iran
| | - Akbar Bagheri
- Department of Chemistry; Faculty of Science, Shahid Beheshti University; Tehran Iran
| |
Collapse
|
38
|
Santos GPD, Silva BFD, Garrido SS, Mascini M, Yamanaka H. Design, synthesis and characterization of a hexapeptide bio-inspired by acetylcholinesterase and its interaction with pesticide dichlorvos. Analyst 2014; 139:273-9. [DOI: 10.1039/c3an01498c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
39
|
Bali Prasad B, Jauhari D, Prasad Tiwari M. A dual-template imprinted polymer-modified carbon ceramic electrode for ultra trace simultaneous analysis of ascorbic acid and dopamine. Biosens Bioelectron 2013; 50:19-27. [DOI: 10.1016/j.bios.2013.05.062] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 05/30/2013] [Accepted: 05/31/2013] [Indexed: 11/16/2022]
|
40
|
|
41
|
Poma A, Guerreiro A, Whitcombe MJ, Piletska EV, Turner APF, Piletsky SA. Solid-Phase Synthesis of Molecularly Imprinted Polymer Nanoparticles with a Reusable Template - "Plastic Antibodies". ADVANCED FUNCTIONAL MATERIALS 2013; 23:2821-2827. [PMID: 26869870 PMCID: PMC4746745 DOI: 10.1002/adfm.201202397] [Citation(s) in RCA: 246] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Molecularly Imprinted Polymers (MIPs) are generic alternatives to antibodies in sensors, diagnostics and separations. To displace biomolecules without radical changes in infrastructure in device manufacture, MIPs should share their characteristics (solubility, size, specificity and affinity, localized binding domain) whilst maintaining the advantages of MIPs (low-cost, short development time and high stability) hence the interest in MIP nanoparticles. Herein we report a reusable solid-phase template approach (fully compatible with automation) for the synthesis of MIP nanoparticles and their precise manufacture using a prototype automated UV photochemical reactor. Batches of nanoparticles (30-400 nm) with narrow size distributions imprinted with: melamine (d = 60 nm, Kd = 6.3 × 10-8 m), vancomycin (d = 250 nm, Kd = 3.4 × 10-9 m), a peptide (d = 350 nm, Kd = 4.8 × 10-8 m) and proteins have been produced. Our instrument uses a column packed with glass beads, bearing the template. Process parameters are under computer control, requiring minimal manual intervention. For the first time we demonstrate the reliable re-use of molecular templates in the synthesis of MIPs (≥ 30 batches of nanoMIPs without loss of performance). NanoMIPs are produced template-free and the solid-phase acts both as template and affinity separation medium.
Collapse
Affiliation(s)
- Alessandro Poma
- Cranfield Health, Vincent Building, Cranfield University, Cranfield, Bedfordshire, MK43 0AL (UK)
| | - Antonio Guerreiro
- Cranfield Health, Vincent Building, Cranfield University, Cranfield, Bedfordshire, MK43 0AL (UK)
| | - Michael J Whitcombe
- Cranfield Health, Vincent Building, Cranfield University, Cranfield, Bedfordshire, MK43 0AL (UK)
| | - Elena V Piletska
- Cranfield Health, Vincent Building, Cranfield University, Cranfield, Bedfordshire, MK43 0AL (UK)
| | - Anthony P F Turner
- Cranfield Health, Vincent Building, Cranfield University, Cranfield, Bedfordshire, MK43 0AL (UK)
| | - Sergey A Piletsky
- Cranfield Health, Vincent Building, Cranfield University, Cranfield, Bedfordshire, MK43 0AL (UK)
| |
Collapse
|
42
|
Self-assembly and imprinting of macrocyclic molecules in layer-by-layered TiO2 ultrathin films. Anal Chim Acta 2013; 779:72-81. [DOI: 10.1016/j.aca.2013.04.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 02/28/2013] [Accepted: 04/07/2013] [Indexed: 11/19/2022]
|
43
|
Alvarez-Lorenzo C, González-Chomón C, Concheiro A. Molecularly Imprinted Hydrogels for Affinity-controlled and Stimuli-responsive Drug Delivery. SMART MATERIALS FOR DRUG DELIVERY 2013. [DOI: 10.1039/9781849734318-00228] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The performance of smart or intelligent hydrogels as drug-delivery systems (DDSs) can be notably improved if the network is endowed with high-affinity receptors for the therapeutic molecule. Conventional molecular imprinting technology aims to create tailored binding pockets (artificial receptors) in the structure of rigid polymers by means of a template polymerization, in which the target molecules themselves induce a specific arrangement of the functional monomers during polymer synthesis. Adaptation of this technology to hydrogel synthesis implicates the optimization of the imprinting pocket to be able to recover the high-affinity conformation when distorted by swelling or after the action of a stimulus. This chapter analyzes the implementation of the molecular imprinting technology to the synthesis of both non-responsive and responsive loosely cross-linked hydrogels, and provides recent examples of the suitability of the imprinted networks to attain affinity-controlled, activation-controlled or stimuli-triggered drug and protein release.
Collapse
Affiliation(s)
- C. Alvarez-Lorenzo
- Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia Universidad de Santiago de Compostela Spain
| | - C. González-Chomón
- Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia Universidad de Santiago de Compostela Spain
| | - A. Concheiro
- Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia Universidad de Santiago de Compostela Spain
| |
Collapse
|
44
|
Highly sensitive protein molecularly imprinted electro-chemical sensor based on gold microdendrites electrode and prussian blue mediatedamplification. Biosens Bioelectron 2013; 42:612-7. [DOI: 10.1016/j.bios.2012.10.069] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 10/15/2012] [Accepted: 10/21/2012] [Indexed: 11/23/2022]
|
45
|
Mehdinia A, Baradaran Kayyal T, Jabbari A, Aziz-Zanjani MO, Ziaei E. Magnetic molecularly imprinted nanoparticles based on grafting polymerization for selective detection of 4-nitrophenol in aqueous samples. J Chromatogr A 2013; 1283:82-8. [DOI: 10.1016/j.chroma.2013.01.093] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Revised: 01/17/2013] [Accepted: 01/22/2013] [Indexed: 10/27/2022]
|
46
|
Facile synthesis of magnetic molecularly imprinted polymers for caffeine via ultrasound-assisted precipitation polymerization. Polym Bull (Berl) 2012. [DOI: 10.1007/s00289-012-0836-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|