1
|
Belal F, Mabrouk M, Hammad S, Ahmed H, Barseem A. Recent Applications of Quantum Dots in Pharmaceutical Analysis. J Fluoresc 2024; 34:119-138. [PMID: 37222883 DOI: 10.1007/s10895-023-03276-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/16/2023] [Indexed: 05/25/2023]
Abstract
Nanotechnology has emerged as one of the most potential areas for pharmaceutical analysis. The need for nanomaterials in pharmaceutical analysis is comprehended in terms of economic challenges, health and safety concerns. Quantum dots (QDs)or colloidal semiconductor nanocrystals are new groups of fluorescent nanoparticles that bind nanotechnology to drug analysis. Because of their special physicochemical characteristics and small size, QDs are thought to be promising candidates for the electrical and luminescent probes development. They were originally developed as luminescent biological labels, but are now discovering new analytical chemistry applications, where their photo-luminescent properties are used in pharmaceutical, clinical analysis, food quality control and environmental monitoring. In this review, we discuss QDs regarding properties and advantages, advances in methods of synthesis and their recent applications in drug analysis in the recent last years.
Collapse
Affiliation(s)
- Fathalla Belal
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Mokhtar Mabrouk
- Department of pharmaceutical analytical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Sherin Hammad
- Department of pharmaceutical analytical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Hytham Ahmed
- Pharmaceutical Analysis Department, Faculty of Pharmacy, Menoufia University, Menoufia, Egypt
| | - Aya Barseem
- Pharmaceutical Analysis Department, Faculty of Pharmacy, Menoufia University, Menoufia, Egypt.
| |
Collapse
|
2
|
Lai K, Xu T, Ye Q, Xu P, Xie J, Yan D, Zhu S, Jiang T, Xiong W, Gu C. A hybrid SERS sensing platform constructed by porous carbon/Ag nanoparticles for efficient imatinib detection in bio-environment. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 300:122971. [PMID: 37295203 DOI: 10.1016/j.saa.2023.122971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/16/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023]
Abstract
Surface enhanced Raman scattering (SERS) is a rapid and non-destructive spectral detection technique, and has been widely implemented on trace-level molecule detection. In this work, a hybrid SERS substrate constructed by porous carbon film and silver nanoparticles (PCs/Ag NPs) was developed and then used for imatinib (IMT) detection in bio-environment. The PCs/Ag NPs was prepared by direct carbonizing the gelatin-AgNO3 film in the air atmosphere, and an enhancement factor (EF) of 106 was achieved with R6G as the Raman reporter. Hereafter, this SERS substrate was used as the label-free sensing platform to detect the IMT in the serum, and the experimental results indicate that the substrate is conducive to eliminating the interference from the complex biological molecules in the serum, and the characteristic Raman peaks belonging to IMT (10-4 M) are accurately resolved. Furthermore, the SERS substrate was used to trace the IMT in the whole blood, the trace of ultra-low concertation of IMT is rapidly discovered without any pretreatment. Thus, this work finally suggests that the proposed sensing platform provides a rapid and reliable method for IMT detection in the bio-environment and offers a potential for its application in therapeutic drug monitoring.
Collapse
Affiliation(s)
- Kui Lai
- The Research Institute of Advanced Technology, Ningbo University, Ningbo 315211, PR China
| | - Tao Xu
- Department of Pharmacy, Ningbo First Hospital, Ningbo University, Ningbo 315010, Zhejiang, PR China.
| | - Qinli Ye
- The Research Institute of Advanced Technology, Ningbo University, Ningbo 315211, PR China
| | - Ping Xu
- Department of Pharmacy, Ningbo First Hospital, Ningbo University, Ningbo 315010, Zhejiang, PR China
| | - Jianming Xie
- Gastrointestinal Surgery Clinic, Ningbo First Hospital, Ningbo University, Ningbo 315010, Zhejiang, PR China
| | - Denghui Yan
- Research Institute of Medical and Biological Engineering, Ningbo University, Ningbo 315211, Zhejiang, PR China
| | - Shanshan Zhu
- Research Institute of Medical and Biological Engineering, Ningbo University, Ningbo 315211, Zhejiang, PR China
| | - Tao Jiang
- The Research Institute of Advanced Technology, Ningbo University, Ningbo 315211, PR China
| | - Wei Xiong
- The Research Institute of Advanced Technology, Ningbo University, Ningbo 315211, PR China.
| | - Chenjie Gu
- The Research Institute of Advanced Technology, Ningbo University, Ningbo 315211, PR China.
| |
Collapse
|
3
|
Solea AB, Ward MD. A chemiluminescent lantern: a coordination cage catalysed oxidation of luminol followed by chemiluminescence resonance energy-transfer. Dalton Trans 2023; 52:4456-4461. [PMID: 36917490 PMCID: PMC10071490 DOI: 10.1039/d3dt00689a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
A molecule of luminol bound as guest inside a Co8 coordination cage host undergoes oxidation by H2O2 to generate chemiluminescence by a process in which the Co(II) ions in the cage superstructure activate the H2O2: accordingly the cage not only co-locates the reactants but also acts as a redox partner in the catalysis. The luminescence from oxidation of the cavity-bound luminol can transfer its excitation energy to surface-bound fluorescein molecules in an unusual example of Chemiluminescence Resonance Energy Transfer (CRET).
Collapse
Affiliation(s)
- Atena B Solea
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK.
| | - Michael D Ward
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK.
| |
Collapse
|
4
|
The effect of electrolytic aggregation of Au nanoparticles on optical characteristics of AgInS2/ZnS QDs modified with oligonucleotides. APPLIED NANOSCIENCE 2023. [DOI: 10.1007/s13204-023-02779-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
5
|
Gao J, Chen Z, Li X, Yang M, Lv J, Li H, Yuan Z. Chemiluminescence in Combination with Organic Photosensitizers: Beyond the Light Penetration Depth Limit of Photodynamic Therapy. Int J Mol Sci 2022; 23:ijms232012556. [PMID: 36293406 PMCID: PMC9604449 DOI: 10.3390/ijms232012556] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/05/2022] [Accepted: 10/18/2022] [Indexed: 12/01/2022] Open
Abstract
Photodynamic therapy (PDT) is a promising noninvasive medical technology that has been approved for the treatment of a variety of diseases, including bacterial and fungal infections, skin diseases, and several types of cancer. In recent decades, many photosensitizers have been developed and applied in PDT. However, PDT is still limited by light penetration depth, although many near-infrared photosensitizers have emerged. The chemiluminescence-mediated PDT (CL-PDT) system has recently received attention because it does not require an external light source to achieve targeted PDT. This review focuses on the rational design of organic CL-PDT systems. Specifically, PDT types, light wavelength, the chemiluminescence concept and principle, and the design of CL-PDT systems are introduced. Furthermore, chemiluminescent fraction examples, strategies for combining chemiluminescence with PDT, and current cellular and animal applications are highlighted. Finally, the current challenges and possible solutions to CL-PDT systems are discussed.
Collapse
Affiliation(s)
- Jie Gao
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi 563000, China
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi 563000, China
- Guizhou International Scientific and Technological Cooperation Base for Medical Photo-Theranostics Technology and Innovative Drug Development, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi 563000, China
- Correspondence: (J.G.); (Z.Y.)
| | - Zhengjun Chen
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi 563000, China
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi 563000, China
- Guizhou International Scientific and Technological Cooperation Base for Medical Photo-Theranostics Technology and Innovative Drug Development, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi 563000, China
| | - Xinmin Li
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi 563000, China
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi 563000, China
- Guizhou International Scientific and Technological Cooperation Base for Medical Photo-Theranostics Technology and Innovative Drug Development, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi 563000, China
| | - Mingyan Yang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi 563000, China
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi 563000, China
- Guizhou International Scientific and Technological Cooperation Base for Medical Photo-Theranostics Technology and Innovative Drug Development, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi 563000, China
| | - Jiajia Lv
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi 563000, China
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi 563000, China
- Guizhou International Scientific and Technological Cooperation Base for Medical Photo-Theranostics Technology and Innovative Drug Development, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi 563000, China
| | - Hongyu Li
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi 563000, China
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi 563000, China
- Guizhou International Scientific and Technological Cooperation Base for Medical Photo-Theranostics Technology and Innovative Drug Development, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi 563000, China
| | - Zeli Yuan
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi 563000, China
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi 563000, China
- Guizhou International Scientific and Technological Cooperation Base for Medical Photo-Theranostics Technology and Innovative Drug Development, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi 563000, China
- Correspondence: (J.G.); (Z.Y.)
| |
Collapse
|
6
|
Detection of Alpha-Fetoprotein Using Aptamer-Based Sensors. BIOSENSORS 2022; 12:bios12100780. [PMID: 36290918 PMCID: PMC9599106 DOI: 10.3390/bios12100780] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/12/2022] [Accepted: 09/18/2022] [Indexed: 11/16/2022]
Abstract
Alpha-fetoprotein (AFP) is widely-known as the most commonly used protein biomarker for liver cancer diagnosis at the early stage. Therefore, developing the highly sensitive and reliable method of AFP detection is of essential demand for practical applications. Herein, two types of aptamer-based AFP detection methods, i.e., optical and electrochemical biosensors, are reviewed in detail. The optical biosensors include Raman spectroscopy, dual-polarization interferometry, resonance light-scattering, fluorescence, and chemiluminescence. The electrochemical biosensors include cyclic voltammetry, electrochemical impedance spectroscopy, and giant magnetic impedance. Looking into the future, methods for AFP detection that are high sensitivity, long-term stability, low cost, and operation convenience will continue to be developed.
Collapse
|
7
|
Han YD, Kim KR, Lee KW, Yoon HC. Retroreflection-based optical biosensing: From concept to applications. Biosens Bioelectron 2022; 207:114202. [DOI: 10.1016/j.bios.2022.114202] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 12/31/2022]
|
8
|
Ding J, Xu W, Tan J, Liu Z, Huang G, Wang S, He Z. Fluorescence Detection of Cancer Stem Cell Markers Using a Sensitive Nano-Aptamer Sensor. Front Chem 2022; 10:920123. [PMID: 35815217 PMCID: PMC9257163 DOI: 10.3389/fchem.2022.920123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
Antigen CD133 is a glycoprotein present on the surface of cancer stem cells (CSCs), which is a key molecule to regulate the fate of stem cells and a functional marker of stem cells. Herein, a novel fluorescence “turn-on” nano-aptamer sensor for quantifying CD133 was designed using hybridization between CD133-targeted aptamers and partially complementary paired RNA (ssRNA), which were modified on the surface of quantum dots (QDs) and gold nanoparticles (AuNPs), respectively. Owing to the hybridization of aptamers and ssRNA, the distance between QDs and AuNPs was shortened, which caused fluorescence resonance energy transfer (FRET) between them, and the florescence of QDs was quenched by AuNPs. When CD133 competitively replaced ssRNA and was bound to aptamers, AuNPs-ssRNA could be released, which led to a recovery of fluorescent signals of QDs. The increase in the relative value of fluorescence intensity was investigated to linearly correlate with the CD133 concentration in the range of 0–1.539 μM, and the detection limit was 6.99 nM. In confocal images of A549 cells, the CD133 aptamer sensor was further proved applicable in lung cancer cell samples with specificity, precision, and accuracy. Compared with complicated methods, this study provided a fresh approach to develop a highly sensitive and selective detection sensor for CSC markers.
Collapse
Affiliation(s)
- Jie Ding
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Key Laboratory for Epigenetics of Dongguan City, China-America Cancer Research Institute, Guangdong Medical University, Dongguan, China
- *Correspondence: Jie Ding, ; Shoushan Wang, ; Zhiwei He,
| | - Weiqiang Xu
- Key Laboratory for Epigenetics of Dongguan City, China-America Cancer Research Institute, Guangdong Medical University, Dongguan, China
| | - Jing Tan
- Key Laboratory for Epigenetics of Dongguan City, China-America Cancer Research Institute, Guangdong Medical University, Dongguan, China
| | - Zhifang Liu
- Key Laboratory for Epigenetics of Dongguan City, China-America Cancer Research Institute, Guangdong Medical University, Dongguan, China
| | - Guoliang Huang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Key Laboratory for Epigenetics of Dongguan City, China-America Cancer Research Institute, Guangdong Medical University, Dongguan, China
| | - Shoushan Wang
- Guangdong Engineering and Technology Research Center for Advanced Nanomaterials, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, China
- *Correspondence: Jie Ding, ; Shoushan Wang, ; Zhiwei He,
| | - Zhiwei He
- The First Dongguan Affiliated Hospital, School of Basic Medical Science, Guangdong Medical University, Dongguan, China
- *Correspondence: Jie Ding, ; Shoushan Wang, ; Zhiwei He,
| |
Collapse
|
9
|
Yang M, Zeng Z, Lam JWY, Fan J, Pu K, Tang BZ. State-of-the-art self-luminescence: a win–win situation. Chem Soc Rev 2022; 51:8815-8831. [DOI: 10.1039/d2cs00228k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The working principles, luminescent mechanisms, versatile integrated approaches and advantages, and future perspectives of AIE-assisted “enhanced” self-luminescence systems are reviewed.
Collapse
Affiliation(s)
- Mingwang Yang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
| | - Ziling Zeng
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore
| | - Jacky W. Y. Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| |
Collapse
|
10
|
Xia WQ, Cui PL, Wang JP, Liu J. Synthesis of photoaffinity labeled activity-based protein profiling probe and production of natural TetR protein for immunoassay of tetracyclines in milk. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Jia BJ, Lin M, Wang JP, Wu NP. Synthesis of molecularly imprinted microspheres and development of a fluorescence method for detection of chloramphenicol in meat. LUMINESCENCE 2021; 36:1767-1774. [PMID: 34270836 DOI: 10.1002/bio.4121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/10/2021] [Accepted: 07/13/2021] [Indexed: 12/27/2022]
Abstract
In this study, nitrobenzene was used as dummy template to synthesize a type of specific molecularly imprinted microspheres for chloramphenicol, and 4-nitroaniline was coupled with three fluorophores to synthesize three fluorescent tracers. Then a competitive fluorescence method was developed on a conventional microplate for detection of chloramphenicol in chicken and pork samples. This method contained only one sample-loading step, so one assay was finished within 30 min. The IC50 was 1.8 ng/ml, and the limit of detection was 0.06 ng/g. The recoveries from chloramphenicol-fortified blank meat samples were in the range 67.5-96.2%. Furthermore, this method could be recycled three times. The detection results for some real meat samples were identical to that of a LC-MS/MS method. Therefore, this method could be used as a practical tool for routine screening for the residue of chloramphenicol in large number of meat samples.
Collapse
Affiliation(s)
- Bing Jie Jia
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei, China
| | - Min Lin
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei, China
| | - Jian Ping Wang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei, China
| | - Ning Peng Wu
- Henan Institute of Veterinary Drug and Feed Control, Zhengzhou, Henan, China
| |
Collapse
|
12
|
Lou J, Tang X, Zhang H, Guan W, Lu C. Chemiluminescence Resonance Energy Transfer Efficiency and Donor–Acceptor Distance: from Qualitative to Quantitative. Angew Chem Int Ed Engl 2021; 60:13029-13034. [DOI: 10.1002/anie.202102999] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/31/2021] [Indexed: 12/18/2022]
Affiliation(s)
- Jinhui Lou
- State Key Laboratory of Chemical Resource Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Xiaofang Tang
- State Key Laboratory of Chemical Resource Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Haoke Zhang
- MOE Key Laboratory of Macromolecules Synthesis of Functionalization Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Weijiang Guan
- State Key Laboratory of Chemical Resource Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Chao Lu
- State Key Laboratory of Chemical Resource Engineering Beijing University of Chemical Technology Beijing 100029 China
- Green Catalysis Center, and College of Chemistry Zhengzhou University Zhengzhou 450001 China
| |
Collapse
|
13
|
Lou J, Tang X, Zhang H, Guan W, Lu C. Chemiluminescence Resonance Energy Transfer Efficiency and Donor–Acceptor Distance: from Qualitative to Quantitative. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102999] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Jinhui Lou
- State Key Laboratory of Chemical Resource Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Xiaofang Tang
- State Key Laboratory of Chemical Resource Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Haoke Zhang
- MOE Key Laboratory of Macromolecules Synthesis of Functionalization Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Weijiang Guan
- State Key Laboratory of Chemical Resource Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Chao Lu
- State Key Laboratory of Chemical Resource Engineering Beijing University of Chemical Technology Beijing 100029 China
- Green Catalysis Center, and College of Chemistry Zhengzhou University Zhengzhou 450001 China
| |
Collapse
|
14
|
Wang Y, Ma J, Li H, Zhou J, Zhang H, Fu L. A sensitive immunosensor based on FRET between gold nanoparticles and InP/ZnS quantum dots for arginine kinase detection. Food Chem 2021; 354:129536. [PMID: 33756326 DOI: 10.1016/j.foodchem.2021.129536] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 02/28/2021] [Accepted: 03/03/2021] [Indexed: 11/18/2022]
Abstract
Arginine kinase (AK) is one of the most important allergens in shrimp products. Herein, a novel immunoassay for quantitation of AK was developed using the antibody modified gold nanoparticle (AuNP) and quantum dot (QD). When the first antibody modified AuNP (AuNP-Ab1) was bridged by AK with the secondary antibody modified QD (QD-Ab2), fluorescence resonance energy transfer (FRET) would occur between the AuNP and QD, which led to a decrease in fluorescent signals. The decrease in fluorescence intensity was found to correlate linearly with the log of AK concentration in the range of 1.0 × 10-6-1.0 × 10-3 mg/mL (R2 = 0.9909) and the detection limit was 0.11 ng/mL. The immunoassay was further proved to have encouraging specificity, precision and accuracy. Compared with existing methods, this study provided a promising approach to develop a highly sensitive and selective detection method for AK in shrimp related food samples.
Collapse
Affiliation(s)
- Yanbo Wang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Junjie Ma
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Huan Li
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Jinru Zhou
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Hong Zhang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Linglin Fu
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
| |
Collapse
|
15
|
Li M, Huang X, Ren J. Multicolor Chemiluminescent Resonance Energy-Transfer System for In Vivo High-Contrast and Targeted Imaging. Anal Chem 2021; 93:3042-3051. [PMID: 33502862 DOI: 10.1021/acs.analchem.0c05200] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chemiluminescence (CL) resonance energy transfer (CRET) has received great attention due to its fascinating applications in in vivo imaging and photodynamic therapy. Here, we report a highly efficient CRET polymer dot (CRET-Pdots)-based system using catalytic CL reagents as energy donors and fluorescent polymers and dyes as energy acceptors. CRET-Pdots consist of Fe(III) deuteroporphyrin IX (CL catalyst), fluorescent polymers, and dyes. The CL intensity and duration are markedly enhanced by using ultrasensitive catalytic CL reaction of luminol analogue-H2O2, and the CL emission wavelength can be adjusted by one-step/two-step energy-transfer strategies. CRET-Pdots show intensive multicolor CL (about 3000× enhanced), an adjustable emission wavelength (470-720 nm), long CL duration (over 8 h), and a high CRET efficiency (50%). CRET-Pdots possess excellent biocompatibility, sensitive response to reactive oxygen species (ROS), and ultrahigh catalytic activity. They are successfully used for high-contrast real-time ROS imaging and in vivo tumor-targeted imaging with an excellent signal-to-noise ratio (over 90).
Collapse
Affiliation(s)
- Mengdi Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Xiangyi Huang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Jicun Ren
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| |
Collapse
|
16
|
Antibody engineering-driven controllable chemiluminescence resonance energy transfer for immunoassay with tunable dynamic range. Anal Chim Acta 2021; 1152:338231. [PMID: 33648650 DOI: 10.1016/j.aca.2021.338231] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/10/2020] [Accepted: 01/15/2021] [Indexed: 11/22/2022]
Abstract
The donor-acceptor distance is a critical factor for the occurrence of chemiluminescent resonance energy transfer (CRET). We herein evaluate the donor-acceptor distance and transfer efficiency of CRET immunoassays of a series of donors which contain different sized antibody fragments, intact monoclonal antibody (IgG), antigen binding fragment (Fab), and single chain fragment antibody (scFv). Core/multishell quantum dots were used as the acceptor in three CRET systems. IgG is the maximum antibody fragment, leading to the longest donor-acceptor distance and the lowest transfer efficiency. Donors with Fab and scFv show significantly decreased distance and increased transfer efficiency. These results suggest an inverse correlation between donor size and transfer efficiency and can be used to provide guidance for the construction of controllable CRET. By combining the controllable CRET with immunoassay, we further develop a tunable sulfamethazine analytical system. Three different sized donors based CRET immunoassay show a markedly different sensitivity and dynamic range. Such adjustable detection provides greater flexibility for contaminant detection in different foodstuffs with different residue limits. This work not only illustrates the effect of donor-acceptor distance on regulating the energy transfer efficiency of CRET system, but also provides a guideline for the construction of a tunable immunoassay.
Collapse
|
17
|
A sensitive chemiluminescence sensor for glutathione detection based on Au supported carbon nitride catalyst. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105435] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
18
|
Jeon J, You DG, Um W, Lee J, Kim CH, Shin S, Kwon S, Park JH. Chemiluminescence resonance energy transfer-based nanoparticles for quantum yield-enhanced cancer phototheranostics. SCIENCE ADVANCES 2020; 6:eaaz8400. [PMID: 32637587 PMCID: PMC7314564 DOI: 10.1126/sciadv.aaz8400] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 03/06/2020] [Indexed: 05/22/2023]
Abstract
Chemiluminescence (CL) has recently gained attention for CL resonance energy transfer (CRET)-mediated photodynamic therapy of cancer. However, the short duration of the CL signal and low quantum yield of the photosensitizer have limited its translational applications. Here, we report CRET-based nanoparticles (CRET-NPs) to achieve quantum yield-enhanced cancer phototheranostics by reinterpreting the hidden nature of CRET. Owing to reactive oxygen species (ROS)-responsive CO2 generation, CRET-NPs were capable of generating a strong and long-lasting photoacoustic signal in the tumor tissue via thermal expansion-induced vaporization. In addition, the CRET phenomenon of the NPs enhanced ROS quantum yield of photosensitizer through both electron transfer for an oxygen-independent type I photochemical reaction and self-illumination for an oxygen-dependent type II photochemical reaction. Consequently, owing to their high ROS quantum yield, CRET-NPs effectively inhibited tumor growth with complete tumor growth inhibition in 60% of cases, even with a single treatment.
Collapse
Affiliation(s)
- Jueun Jeon
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Dong Gil You
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Wooram Um
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Republic of Korea
| | - Jeongjin Lee
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Republic of Korea
| | - Chan Ho Kim
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Sol Shin
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Republic of Korea
| | - Seunglee Kwon
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Jae Hyung Park
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| |
Collapse
|
19
|
|
20
|
Advances in oligonucleotide-based detection coupled with fluorescence resonance energy transfer. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2019.115756] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
21
|
Yan Y, Wang XY, Hai X, Song W, Ding C, Cao J, Bi S. Chemiluminescence resonance energy transfer: From mechanisms to analytical applications. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2019.115755] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
22
|
Chen J, Qiu H, Zhao S. Fabrication of chemiluminescence resonance energy transfer platform based on nanomaterial and its application in optical sensing, biological imaging and photodynamic therapy. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2019.115747] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
23
|
|
24
|
Delafresnaye L, Bloesser FR, Kockler KB, Schmitt CW, Irshadeen IM, Barner‐Kowollik C. All Eyes on Visible‐Light Peroxyoxalate Chemiluminescence Read‐Out Systems. Chemistry 2019; 26:114-127. [DOI: 10.1002/chem.201904054] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 09/24/2019] [Indexed: 12/25/2022]
Affiliation(s)
- Laura Delafresnaye
- School of Chemistry, Physics and Mechanical Engineering Queensland University of Technology (QUT) 2 George Street QLD 4000 Brisbane Australia
| | - Fabian R. Bloesser
- School of Chemistry, Physics and Mechanical Engineering Queensland University of Technology (QUT) 2 George Street QLD 4000 Brisbane Australia
| | - Katrin B. Kockler
- School of Chemistry, Physics and Mechanical Engineering Queensland University of Technology (QUT) 2 George Street QLD 4000 Brisbane Australia
| | - Christian W. Schmitt
- School of Chemistry, Physics and Mechanical Engineering Queensland University of Technology (QUT) 2 George Street QLD 4000 Brisbane Australia
| | - Ishrath M. Irshadeen
- School of Chemistry, Physics and Mechanical Engineering Queensland University of Technology (QUT) 2 George Street QLD 4000 Brisbane Australia
| | - Christopher Barner‐Kowollik
- School of Chemistry, Physics and Mechanical Engineering Queensland University of Technology (QUT) 2 George Street QLD 4000 Brisbane Australia
- Macromolecular Architectures Institut für Technische Chemie und Polymerchemie Karlsruhe Institute of Technology (KIT) Engesserstr. 18 76131 Karlsruhe Germany
| |
Collapse
|
25
|
Ellis GA, Klein WP, Lasarte-Aragonés G, Thakur M, Walper SA, Medintz IL. Artificial Multienzyme Scaffolds: Pursuing in Vitro Substrate Channeling with an Overview of Current Progress. ACS Catal 2019. [DOI: 10.1021/acscatal.9b02413] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Gregory A. Ellis
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - William P. Klein
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- National Research Council, Washington, D.C. 20001, United States
| | - Guillermo Lasarte-Aragonés
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- College of Science, George Mason University, Fairfax, Virginia 22030, United States
| | - Meghna Thakur
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- College of Science, George Mason University, Fairfax, Virginia 22030, United States
| | - Scott A. Walper
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Igor L. Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| |
Collapse
|
26
|
A graphene-based chemiluminescence resonance energy transfer immunoassay for detection of phenothiazines in pig urine. Microchem J 2019. [DOI: 10.1016/j.microc.2019.03.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
27
|
Song H, Su Y, Zhang L, Lv Y. Quantum dots‐based chemiluminescence probes: an overview. LUMINESCENCE 2019; 34:530-543. [DOI: 10.1002/bio.3633] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/16/2019] [Accepted: 03/19/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Hongjie Song
- College of ChemistrySichuan University Chengdu Sichuan China
| | - Yingying Su
- Analytical & Testing CenterSichuan University Chengdu Sichuan China
| | - Lichun Zhang
- College of ChemistrySichuan University Chengdu Sichuan China
| | - Yi Lv
- College of ChemistrySichuan University Chengdu Sichuan China
- Analytical & Testing CenterSichuan University Chengdu Sichuan China
| |
Collapse
|
28
|
Highly chemiluminescent TiO 2/tetra(4-carboxyphenyl)porphyrin/N-(4-aminobutyl)-N-ethylisoluminol nanoluminophores for detection of heart disease biomarker copeptin based on chemiluminescence resonance energy transfer. Anal Bioanal Chem 2019; 411:4175-4183. [PMID: 31020367 DOI: 10.1007/s00216-019-01821-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/19/2019] [Accepted: 03/29/2019] [Indexed: 10/26/2022]
Abstract
In this work, the chemiluminescence (CL) property of 5,10,15,20-tetrakis(4-carboxyphenyl)-porphyrin- and N-(4-aminobutyl)-N-ethylisoluminol-functionalized TiO2 nanoparticles (TiO2-TCPP-ABEI nanoluminophores) was studied for the first time. It was found that TiO2-TCPP-ABEI nanoluminophores exhibited excellent CL activity in the presence of H2O2. The CL mechanism has been proposed due to the reaction of ABEI with H2O2 and catalytic effect of TiO2 and TCPP. Furthermore, trisodium citrate-stabilized gold nanoparticles were observed to effectively quench the CL of TiO2-TCPP-ABEI due to CL resonance energy transfer (CRET). On this basis, a sensitive and selective CRET-based immunoassay was developed for the determination of copeptin by using TiO2-TCPP-ABEI nanoluminophores as both CL nanointerface and energy donor, and using cit-AuNPs as an effective energy receptor. The immunoassay exhibited a wide dynamic range from 5 × 10-12 to 1 × 10-9 g mL-1 with a low detection limit of 1.54 × 10-12 g mL-1, which was superior to previously reported CL-based immunoassays. It was successfully applied for the determination of copeptin in serum samples, which would provide a good practical perspective on the clinical diagnosis. This strategy may also be used for the detection of other antigens if corresponding antibodies are available. Graphical abstract.
Collapse
|
29
|
Detection of chloramphenicol in meat with a chemiluminescence resonance energy transfer platform based on molecularly imprinted graphene. Anal Chim Acta 2019; 1063:136-143. [PMID: 30967177 DOI: 10.1016/j.aca.2019.02.044] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/30/2018] [Accepted: 02/19/2019] [Indexed: 12/23/2022]
Abstract
In this study, a novel composite was synthesized by polymerizing the dummy-template molecularly imprinted microspheres on the surface of magnetic graphene. This composite was used as recognition reagent and energy acceptor to develop a platform for determination of chloramphenicol according to the principle of chemiluminescence resonance energy transfer. The light signal was induced with luminolH2O24-(imidazole-1-yl)phenol system, and the chemiluminescence intensity was positively correlated with the analyte concentration. The limit of detection for chloramphenicol in meat sample was 2.0 pg/g, and the recoveries from the standard fortified blank meat sample were in the range of 69.5%-97.3%. Furthermore, one single assay could be finished within 10 min, and the magnetic composite could be reused for at least thirty times. Therefore, this platform could be used as a rapid, simple, sensitive, accurate and recyclable tool for screening the residue of chloramphenicol in meat.
Collapse
|
30
|
Can Luminol Be a Fluorophore? J Fluoresc 2019; 29:343-346. [DOI: 10.1007/s10895-019-02362-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 03/10/2019] [Indexed: 10/27/2022]
|
31
|
An fluorescent aptasensor for sensitive detection of tumor marker based on the FRET of a sandwich structured QDs-AFP-AuNPs. Talanta 2019; 197:444-450. [PMID: 30771960 DOI: 10.1016/j.talanta.2019.01.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 12/22/2018] [Accepted: 01/02/2019] [Indexed: 12/13/2022]
Abstract
The detection of alpha-fetoprotein (AFP) is of great importance for hepatocellular carcinoma (HCC) diagnosis, but it needs to be further improved because of poor sensitivity and complicated operating steps. In this paper, a simple and sensitive homogeneous apatasensor for AFP has been developed based on Förster resonance energy transfer (FRET) where the AFP aptamer labeled luminescent CdTe quantum dots (QDs) as a donor and anti-AFP antibody functional gold nanoparticles (AuNPs) as an acceptor. In the presence of AFP, the bio-affinity between aptamer, target, and antibody made the QDs and AuNPs close enough, thus the fluorescence of CdTe QDs quenched though the FRET between QD and AuNP. The fluorescent aptasensor for AFP showed a concentration-dependent decrease of fluorescence intensity in the low nanomolar range and a detecting linear range of 0.5-45 ng mL-1, with a detection limit of 400 pg mL-1. Moreover, this homogeneous aptasensor is simple and reliable, and obtained satisfying results for the detection of AFP in human serum samples. With more and more aptamers for biomarkers have been selected gradually, this approach could be easily extended to detection of a wide range of biomarkers. The proposed aptasensor has great potential for carcinoma screening in point-of-care testing and even in field use.
Collapse
|
32
|
Sonu VK, Mitra S. Quenching of Luminol Fluorescence at Nano-Bio Interface: Towards the Development of an Efficient Energy Transfer System. J Fluoresc 2018; 29:165-176. [PMID: 30519975 DOI: 10.1007/s10895-018-2324-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 11/05/2018] [Indexed: 10/27/2022]
Abstract
Surface modified colloidal gold (Au) and silver (Ag) nanoparticles (NPs) were used as efficient quenchers of luminol (LH2) fluorescence either in homogeneous aqueous medium or its noncovalent assembly with bovine serum albumin (BSA). The mechanism as well as the extent of fluorescence quenching was found to be strongly dependent on the nature of the nanoparticles. While simple static type fluorescence quenching mechanism was perceived with AuNP, a more complex protocol involving quenching sphere model was envisaged for AgNP quenching. Nevertheless, the magnitude of Stern-Volmer (SV) quenching constant (KSV ~ 108-1010 M-1) was calculated to be ca. 104 times more for surface quoted NPs in comparison with BSA-NP bioconjugates system. On the other hand, a highly efficient (E ≈ 95%) energy transfer (ET) process was predicted for LH2 captured in the hydrophobic assembly with BSA in presence of AgNP as an acceptor. The ET efficiency is critically dependent on the concentration of BSA and nicely correlated with the extent of NP surface coverage. However, fluorescence quenching on AuNP surface is relatively less responsive towards protein concentration, primarily due to the difference in surface activity as well as the mode of interaction of the protein with NPs. Graphical Abstract Energy transfer from excited luminol to metal nanoparticles is strongly modulated in presence of serum albumins.
Collapse
Affiliation(s)
- Vikash Kumar Sonu
- Centre for Advanced Studies, Department of Chemistry, North-Eastern Hill University, Shillong, 793022, India
| | - Sivaprasad Mitra
- Centre for Advanced Studies, Department of Chemistry, North-Eastern Hill University, Shillong, 793022, India.
| |
Collapse
|
33
|
Pang C, Han S, Li Y, Zhang J. Graphene quantum dot‐enhanced chemiluminescence through energy and electron transfer for the sensitive detection of tyrosine. J CHIN CHEM SOC-TAIP 2018. [DOI: 10.1002/jccs.201800141] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Chunhua Pang
- Department of ChemistryModern College of Humanities and Sciences of Shanxi Normal University Linfen Shanxi P. R. China
- School of Life ScienceShanxi Normal University Linfen Shanxi P. R. China
- Collaborative Innovation Center for Shanxi Advanced Permanent Magnetic Materials and TechnologyShanxi Normal University Linfen Shanxi P. R. China
| | - Suqin Han
- Department of ChemistryModern College of Humanities and Sciences of Shanxi Normal University Linfen Shanxi P. R. China
- School of Chemistry and Material ScienceShanxi Normal University Linfen Shanxi P. R. China
| | - Yue Li
- School of Chemistry and Material ScienceShanxi Normal University Linfen Shanxi P. R. China
| | - Junmei Zhang
- School of Chemistry and Material ScienceShanxi Normal University Linfen Shanxi P. R. China
| |
Collapse
|
34
|
Lin Y, Dai Y, Sun Y, Ding C, Sun W, Zhu X, Liu H, Luo C. A turn-on chemiluminescence biosensor for selective and sensitive detection of adenosine based on HKUST-1 and QDs-luminol-aptamer conjugates. Talanta 2018; 182:116-124. [PMID: 29501130 DOI: 10.1016/j.talanta.2018.01.065] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 01/24/2018] [Accepted: 01/29/2018] [Indexed: 10/18/2022]
Abstract
In this work, HKUST-1 and QDs-luminol-aptamer conjugates were prepared. The QDs-luminol-aptamer conjugates can be adsorbed by graphene oxide through π-π conjugation. When the adenosine was added, the QDs-luminol-aptamer conjugates were released from magnetic graphene oxide (MGO), the chemiluminescent switch was turned on. It was reported that HKUST-1 can catalyze the chemiluminescence reaction of luminol-H2O2 system in an alkaline medium, and improve the chemiluminescence resonance energy transfer (CRET) between chemiluminescence and QDs indirectly. Thus, the adenosine can be detected sensitively. Based on this phenomenon, the excellent platform for detection of adenosine was established. Under the optimized conditions, the linear detection range for adenosine was 1.0 × 10-12-2.2 × 10-10 mol/L with a detection limit of 2.1 × 10-13 mol/L. The proposed method was successfully used for adenosine detection in biological samples.
Collapse
Affiliation(s)
- Yanna Lin
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Yuxue Dai
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Yuanling Sun
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Chaofan Ding
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Weiyan Sun
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Xiaodong Zhu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Hao Liu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Chuannan Luo
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China.
| |
Collapse
|
35
|
Liu Y, Han S. A chemiluminescence resonance energy transfer for the determination of indolyl acetic acid using luminescent nitrogen-doped carbon dots as acceptors. NEW J CHEM 2018. [DOI: 10.1039/c7nj04215a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A CRET method was fabricated for the determination of IAA using Ce(iv)–Na2SO3 as the donor and N-CDs as the acceptor.
Collapse
Affiliation(s)
- Yan Liu
- School of Chemistry and Material Science
- Shanxi Normal University
- Linfen 041004
- P. R. China
| | - Suqin Han
- School of Chemistry and Material Science
- Shanxi Normal University
- Linfen 041004
- P. R. China
| |
Collapse
|
36
|
Tiwari A, Dhoble SJ. Recent advances and developments on integrating nanotechnology with chemiluminescence assays. Talanta 2017; 180:1-11. [PMID: 29332786 DOI: 10.1016/j.talanta.2017.12.031] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 12/10/2017] [Accepted: 12/11/2017] [Indexed: 11/30/2022]
Abstract
Chemiluminescence (CL) techniques are extensively utilized for detection of analytes due to their high sensitivity, rapidity and selectivity. With the advent of nanotechnology and incorporation of the nanoparticles in the CL system has revolutionized the assays due to their unique optical and mechanical properties. Several CL-based reactions have been developed where these nanoparticle based CL sensors have evolved as excellent prospects for sensing in various analytical applications. This review article addresses the nanoparticles based CL detection system that are recently developed, the mechanisms has been summarized and the role of luminophors have been discussed. This article critically analyzes the optimal conditions for the CL detection along with quantitative assessment of the analytes. We have included the use of semiconductor nanoparticles, metal nanoparticles, graphene based nanostructures, mesoporous nanospheres, layered double hydroxides, clays for CL detection. The scope and application of these nanoscale material based CL system in various branches of science and technology including chemistry, biomedical applications, pharmaceutics, food, environmental and toxicological applications has been critically summarized.
Collapse
Affiliation(s)
- Ashish Tiwari
- Department of Chemistry, Naveen Government College, Pamgarh 495554, India.
| | - S J Dhoble
- Department of Physics, RTM Nagpur University, Nagpur 440033, India
| |
Collapse
|
37
|
Song H, Zhang L, Su Y, Lv Y. Recent Advances in Graphitic Carbon Nitride-Based Chemiluminescence, Cataluminescence and Electrochemiluminescence. JOURNAL OF ANALYSIS AND TESTING 2017. [DOI: 10.1007/s41664-017-0024-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
38
|
Han S, Fan Z, Chen X, Wu Y, Wang J. Determination of dihydralazine based on chemiluminescence resonance energy transfer of hollow carbon nanodots. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 183:103-108. [PMID: 28441537 DOI: 10.1016/j.saa.2017.04.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/20/2017] [Accepted: 04/12/2017] [Indexed: 06/07/2023]
Abstract
The famous weak chemiluminescence (CL) system of potassium permanganate and sodium bisulfite (KMnO4-HSO3-) was enhanced by the hollow fluorescent carbon nanodots (HCNs). The investigation of mechanism revealed that the enhanced CL was induced by the excited-state HCNs (HCNs⁎), which could be produced from the electron-transfer annihilation of positively charged HCNs (HCNs+) and negatively charged HCNs (HCNs-) as well as by CL resonance energy transfer (CRET) from excited SO2 (SO2⁎)/1O2 to HCNs. The dihydralazine sulfate (DHZS) had a diminishing effect on the CL of HCNs-KMnO4-HSO3- system due to the competitive consumption of O2-. Under the optimal conditions, the reduced CL signal with the concentration of DHZS was linear in the range of 1.0×10-7-7.0×10-5mol/L with a detection limit of 3.0×10-8mol/L. The relative standard deviation for seven repeated determination of 5.0×10-6mol/L DHZS was 2.1%. The established method was applied to the determination of DHZS in pharmaceutical preparations, human urine and plasma samples with good precision and accuracy.
Collapse
Affiliation(s)
- Suqin Han
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, Shanxi Normal University, Linfen 041004, Shanxi, China; School of Chemical and Material Science, Shanxi Normal University, Linfen 041004, Shanxi, China.
| | - Zheyan Fan
- School of Chemical and Material Science, Shanxi Normal University, Linfen 041004, Shanxi, China
| | - Xiaoxia Chen
- School of Chemical and Material Science, Shanxi Normal University, Linfen 041004, Shanxi, China
| | - Yunfang Wu
- School of Chemical and Material Science, Shanxi Normal University, Linfen 041004, Shanxi, China
| | - Jianbo Wang
- School of Chemical and Material Science, Shanxi Normal University, Linfen 041004, Shanxi, China.
| |
Collapse
|
39
|
Wang J, Han S, Fan Z, Chen Y, Zhang L, Jiang F. Carbon Dots-catalyzed Chemiluminescence for the Determination of Trace Isonaphthol. J CHIN CHEM SOC-TAIP 2017. [DOI: 10.1002/jccs.201600883] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jianbo Wang
- Editorial Department of Journal; Shanxi Normal University; Linfen 041004 Shanxi P. R. China
| | - Suqin Han
- School of Chemistry and Material Science; Shanxi Normal University; Linfen 041004 Shanxi P. R. China
| | - Zheyan Fan
- School of Chemistry and Material Science; Shanxi Normal University; Linfen 041004 Shanxi P. R. China
| | - Yingying Chen
- School of Chemistry and Material Science; Shanxi Normal University; Linfen 041004 Shanxi P. R. China
| | - Lifu Zhang
- Modern Arts and Sciences; Shanxi Normal University; Linfen 041000 Shanxi P. R. China
| | - Fengying Jiang
- Modern Arts and Sciences; Shanxi Normal University; Linfen 041000 Shanxi P. R. China
| |
Collapse
|
40
|
Shah SNA, Lin JM. Recent advances in chemiluminescence based on carbonaceous dots. Adv Colloid Interface Sci 2017; 241:24-36. [PMID: 28139217 DOI: 10.1016/j.cis.2017.01.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 12/07/2016] [Accepted: 01/18/2017] [Indexed: 12/14/2022]
Abstract
Herein, a broad overview concerning the most recent progress of carbon dots (CDs) in chemiluminescence (CL) as well as the mechanisms and applications are presented. CDs have excellent optical and electronic properties and are very important advancement in the fast growing domain of nanotechnology. CDs enhance the ultraweak CL of different systems. The mechanisms and applications of these enhanced CL reactions are discussed. It is worthy to note that CDs participate in CL reactions as catalysts, energy acceptors or are directly involved in redox reactions with radicals in CL systems. Sometimes, these processes taking place simultaneously to enhance CL intensity. In this report, recent advances in CD based CL are comprehensively summarized and their applications in detection of various reagents and biological molecules are reviewed. The challenges and future prospects of this field are also discussed.
Collapse
|
41
|
Su Y, Deng D, Zhang L, Song H, Lv Y. Strategies in liquid-phase chemiluminescence and their applications in bioassay. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.07.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
42
|
Ma M, Wen K, Beier RC, Eremin SA, Li C, Zhang S, Shen J, Wang Z. Chemiluminescence Resonance Energy Transfer Competitive Immunoassay Employing Hapten-Functionalized Quantum Dots for the Detection of Sulfamethazine. ACS APPLIED MATERIALS & INTERFACES 2016; 8:17745-17750. [PMID: 27362827 DOI: 10.1021/acsami.6b04171] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We describe a new strategy for using chemiluminescence resonance energy transfer (CRET) by employing hapten-functionalized quantum dots (QDs) in a competitive immunoassay for detection of sulfamethazine (SMZ). Core/multishell QDs were synthesized and modified with phospholipid-PEG. The modified QDs were functionalized with the hapten 4-(4-aminophenyl-sulfonamido)butanoic acid. The CRET-based immunoassay exhibited a limit of detection for SMZ of 9 pg mL(-1), which is >4 orders of magnitude better than a homogeneous fluorescence polarization immunoassay and is 2 orders of magnitude better than a heterogeneous enzyme-linked immunosorbent assay. This strategy represents a simple, reliable, and universal approach for detection of chemical contaminants.
Collapse
Affiliation(s)
- Mingfang Ma
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University , No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Kai Wen
- Beijing Laboratory for Food Quality and Safety and Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety , No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Ross C Beier
- Food and Feed Safety Research Unit, Southern Plains Agricultural Research Center, Agricultural Research Service , United States Department of Agriculture, 2881 F&B Road, College Station, Texas 77845, United States
| | - Sergei A Eremin
- Faculty of Chemistry, M. V. Lomonosov Moscow State University , Leninsky Gory, Moscow 119992, Russia
| | - Chenglong Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University , No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Suxia Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University , No. 2 Yuanmingyuan West Road, Beijing 100193, China
- Beijing Laboratory for Food Quality and Safety and Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety , No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Jianzhong Shen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University , No. 2 Yuanmingyuan West Road, Beijing 100193, China
- Beijing Laboratory for Food Quality and Safety and Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety , No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Zhanhui Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University , No. 2 Yuanmingyuan West Road, Beijing 100193, China
- Beijing Laboratory for Food Quality and Safety and Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety , No. 2 Yuanmingyuan West Road, Beijing 100193, China
| |
Collapse
|
43
|
Hildebrandt N, Spillmann CM, Algar WR, Pons T, Stewart MH, Oh E, Susumu K, Díaz SA, Delehanty JB, Medintz IL. Energy Transfer with Semiconductor Quantum Dot Bioconjugates: A Versatile Platform for Biosensing, Energy Harvesting, and Other Developing Applications. Chem Rev 2016; 117:536-711. [DOI: 10.1021/acs.chemrev.6b00030] [Citation(s) in RCA: 457] [Impact Index Per Article: 57.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Niko Hildebrandt
- NanoBioPhotonics
Institut d’Electronique Fondamentale (I2BC), Université Paris-Saclay, Université Paris-Sud, CNRS, 91400 Orsay, France
| | | | - W. Russ Algar
- Department
of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Thomas Pons
- LPEM;
ESPCI Paris, PSL Research University; CNRS; Sorbonne Universités, UPMC, F-75005 Paris, France
| | | | - Eunkeu Oh
- Sotera Defense Solutions, Inc., Columbia, Maryland 21046, United States
| | - Kimihiro Susumu
- Sotera Defense Solutions, Inc., Columbia, Maryland 21046, United States
| | - Sebastian A. Díaz
- American Society for Engineering Education, Washington, DC 20036, United States
| | | | | |
Collapse
|
44
|
Xu S, Li X, Li C, Li J, Zhang X, Wu P, Hou X. In Situ Generation and Consumption of H2O2 by Bienzyme-Quantum Dots Bioconjugates for Improved Chemiluminescence Resonance Energy Transfer. Anal Chem 2016; 88:6418-24. [PMID: 27223815 DOI: 10.1021/acs.analchem.6b01000] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Exploration of quantum dots (QDs) as energy acceptors revolutionizes the current chemiluminescence resonance energy transfer (CRET), since QDs possess large Stokes shifts and high luminescence efficiency. However, the strong and high concentration of oxidant (typically H2O2) needed for luminol chemiluminescence (CL) reaction could cause oxidative quenching to QDs, thereby decreasing the CRET performance. Here we proposed the use of bienzyme-QDs bioconjugate as the energy acceptor for improved CRET sensing. Two enzymes, one for H2O2 generation (oxidase) and another for H2O2 consumption (horseradish peroxidase, HRP), were bioconjugated onto the surface of QDs. The bienzyme allowed fast in situ cascaded H2O2 generation and consumption, thus alleviating fluorescence quenching of QDs. The nanosized QDs accommodate the two enzymes in a nanometric range, and the CL reaction was confined on the surface of QDs accordingly, thereby amplifying the CL reaction rate and improving CRET efficiency. As a result, CRET efficiency of 30-38% was obtained; the highest CRET efficiency by far was obtained using QDs as the energy acceptor. The proposed CRET system could be explored for ultrasensitive sensing of various oxidase substrates (here exemplified with cholesterol, glucose, and benzylamine), allowing for quantitative measurement of a spectrum of metabolites with high sensitivity and specificity. Limits of detection (LOD, 3σ) for cholesterol, glucose, and benzylamine were found to be 0.8, 3.4, and 10 nM, respectively. Furthermore, multiparametric blood analysis (glucose and cholesterol) is demonstrated.
Collapse
Affiliation(s)
- Shuxia Xu
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology , Chengdu 610059, China
| | - Xianming Li
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology , Chengdu 610059, China
| | - Chaobi Li
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology , Chengdu 610059, China
| | - Jialin Li
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology , Chengdu 610059, China
| | - Xinfeng Zhang
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology , Chengdu 610059, China
| | - Peng Wu
- Analytical & Testing Center, Sichuan University , 29 Wangjiang Road, Chengdu 610064, China
| | - Xiandeng Hou
- Analytical & Testing Center, Sichuan University , 29 Wangjiang Road, Chengdu 610064, China
| |
Collapse
|
45
|
Iranifam M. Analytical applications of chemiluminescence systems assisted by carbon nanostructures. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2015.08.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
46
|
Graphene materials-based chemiluminescence for sensing. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2016. [DOI: 10.1016/j.jphotochemrev.2016.04.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
47
|
Recent developments in Förster resonance energy transfer (FRET) diagnostics using quantum dots. Anal Bioanal Chem 2016; 408:4475-83. [DOI: 10.1007/s00216-016-9434-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/14/2016] [Accepted: 02/18/2016] [Indexed: 12/21/2022]
|
48
|
Zhang Y, Liu J, Liu T, Li H, Xue Q, Li R, Wang L, Yue Q, Wang S. Label-free, sensitivity detection of fibrillar fibrin using gold nanoparticle-based chemiluminescence system. Biosens Bioelectron 2016; 77:111-5. [DOI: 10.1016/j.bios.2015.09.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 09/06/2015] [Accepted: 09/11/2015] [Indexed: 12/22/2022]
|
49
|
Ng SM, Koneswaran M, Narayanaswamy R. A review on fluorescent inorganic nanoparticles for optical sensing applications. RSC Adv 2016. [DOI: 10.1039/c5ra24987b] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Fluorescent inorganic nanoparticles are immerging novel materials that can be adopted for a large number of optical bioassays and chemical sensing probes.
Collapse
Affiliation(s)
- Sing Muk Ng
- Faculty of Engineering, Computing and Science
- Swinburne University of Technology Sarawak Campus
- Kuching
- Malaysia
| | | | - Ramaier Narayanaswamy
- School of Chemical Engineering & Analytical Science
- The University of Manchester
- Manchester M13 9PL
- UK
| |
Collapse
|
50
|
Homogeneous immunoassay for the cancer marker alpha-fetoprotein using single wavelength excitation fluorescence cross-correlation spectroscopy and CdSe/ZnS quantum dots and fluorescent dyes as labels. Mikrochim Acta 2015. [DOI: 10.1007/s00604-015-1694-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|