1
|
Zamani R, Yamini Y. On-Chip Electromembrane Surrounded Solid Phase Microextraction for Determination of Tricyclic Antidepressants from Biological Fluids Using Poly(3,4-ethylenedioxythiophene)-Graphene Oxide Nanocomposite as a Fiber Coating. BIOSENSORS 2023; 13:bios13010139. [PMID: 36671973 PMCID: PMC9856149 DOI: 10.3390/bios13010139] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/28/2022] [Accepted: 01/11/2023] [Indexed: 06/10/2023]
Abstract
In the present study, on-chip electromembrane surrounded solid phase microextraction (EM-SPME) was employed in the determination of tricyclic antidepressants (TCAs), including amitriptyline, nortriptyline, imipramine, desipramine, maprotiline, and sertraline, from various biological fluids. In this regard, poly(3,4-ethylenedioxythiophene)-graphene oxide (PEDOT-GO) was electrodeposited on an SPME fiber as a conductive coating, then the fiber played the acceptor-electrode role during the extraction. Thus, the immigration of the analytes under the influence of an electric field and their absorption onto the fiber coating were accomplished simultaneously. Under the optimized conditions, the limits of detection for the target analytes were acquired in the range of 0.005-0.025 µg L-1 using gas chromatography-mass spectrometry. The linearity of the method was 0.010-500 µg L-1 for the imipramine and sertraline, 0.025-500 µg L-1 for the amitriptyline, nortriptyline, and desipramine, and 1.000-250 µg L-1 for the maprotiline (R2 ≥ 0.9984). Moreover, this method provided suitable precision and fiber-to-fiber reproducibility, with RSDs ≤ 8.4%. The applicability of the proposed setup was eventually investigated for extraction of the drugs from human bone marrow aspirate, urine, plasma, and well water samples, in which satisfactory relative recoveries, from 93-105%, were obtained.
Collapse
|
2
|
Kawai T. Recent Advances in Trace Bioanalysis by Capillary Electrophoresis. ANAL SCI 2021; 37:27-36. [PMID: 33041311 DOI: 10.2116/analsci.20sar12] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 09/29/2020] [Indexed: 07/25/2024]
Abstract
Recently, single cell analysis is becoming more and more important to elucidate cellular heterogeneity. Except for nucleic acid that can be amplified by PCR, the required technical level for single cell analysis is extremely high and the appropriate design of sample preparation and a sensitive analytical system is necessary. Capillary/microchip electrophoresis (CE/MCE) can separate biomolecules in nL-scale solution with high resolution, and it is highly compatible with trace samples like a single cell. Coupled with highly sensitive detectors such as laser-induced fluorescence and nano-electrospray ionization-mass spectrometry, zmol level analytes can be detected. For further enhancing sensitivity, online sample preconcentration techniques can be employed. By integrating these high-sensitive techniques, single cell analysis of metabolites, proteins, and lipids have been achieved. This review paper highlights successful research on CE/MCE-based trace bioanalysis in recent 10 years. Firstly, an overview of basic knowledge on CE/MCE including sensitivity enhancement techniques is provided. Applications to trace bioanalysis are then introduced with discussion on current issues and future prospects.
Collapse
Affiliation(s)
- Takayuki Kawai
- RIKEN Center for Biosystems Dynamics Research
- Graduate School of Frontier Biosciences, Osaka University
| |
Collapse
|
3
|
|
4
|
Recent advances in biological sample preparation methods coupled with chromatography, spectrometry and electrochemistry analysis techniques. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.02.005] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
5
|
Sun Y, Yuan J, Pang J, Li X, Wang S, Zhou Y, Xu F, Li PCH, Jiang S, Chen H. Millifluidic chip with a modular design used as a sample pretreatment cartridge for flour and flour food products. Talanta 2017; 179:719-725. [PMID: 29310299 DOI: 10.1016/j.talanta.2017.12.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 11/28/2017] [Accepted: 12/02/2017] [Indexed: 01/05/2023]
Abstract
The integration of sample pretreatment remains one of the hurdles towards a rapid, automated micro total analytical system (µ-TAS) for real samples. In this paper, a modular design, which was used for sample preparation, has been developed as the polydimethylsiloxane (PDMS) millifluidic chips with channels at a millimeter level. Multiple functional units, including extraction, filtration, mixing and solid phase extraction (SPE), for sample pretreatment were integrated in one chip. In this chip, each functional unit was connected by pump tubings and one-way valves in series to form a fully automated system. Based on the modular design, multiple functional units have been combined in different sequences according to practical needs. In addition, the proposed system has characteristics of miniaturization, portability, and real-time application. Herein, spiked benzoyl peroxide (BPO) in flour samples was used as a model compound to study the system's performances. With a portable integrated Raman spectrometer for detection, the detection limit of BPO was 0.017gkg-1, with a linear relationship from 0.025 to 0.5gkg-1. This modular design was demonstrated to be effective and it can be expanded for pretreatment of other food samples.
Collapse
Affiliation(s)
- Yue Sun
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Laboratory of State Administration of TCM for Digital Quality Evaluation of Chinese Materia Medica, Guangzhou 510006, China; Engineering and Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, Guangzhou 510006, China.
| | - Junchun Yuan
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
| | - Jinling Pang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Laboratory of State Administration of TCM for Digital Quality Evaluation of Chinese Materia Medica, Guangzhou 510006, China; Engineering and Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, Guangzhou 510006, China
| | - Xiaonan Li
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Laboratory of State Administration of TCM for Digital Quality Evaluation of Chinese Materia Medica, Guangzhou 510006, China; Engineering and Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, Guangzhou 510006, China
| | - Shumei Wang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Laboratory of State Administration of TCM for Digital Quality Evaluation of Chinese Materia Medica, Guangzhou 510006, China; Engineering and Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, Guangzhou 510006, China
| | - Yongliang Zhou
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Fang Xu
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada V5A1S6
| | - Paul C H Li
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada V5A1S6
| | - Shusen Jiang
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
| | - Hong Chen
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
6
|
Integration of laminar flow extraction and capillary electrophoretic separation in one microfluidic chip for detection of plant alkaloids in blood samples. Anal Chim Acta 2017; 985:121-128. [DOI: 10.1016/j.aca.2017.05.036] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 05/10/2017] [Accepted: 05/30/2017] [Indexed: 12/21/2022]
|
7
|
Solid supports for extraction and preconcentration of proteins and peptides in microfluidic devices: A review. Anal Chim Acta 2016; 955:1-26. [PMID: 28088276 DOI: 10.1016/j.aca.2016.12.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 12/02/2016] [Accepted: 12/07/2016] [Indexed: 01/08/2023]
Abstract
Determination of proteins and peptides is among the main challenges of today's bioanalytical chemistry. The application of microchip technology in this field is an exhaustively developed concept that aims to create integrated and fully automated analytical devices able to quantify or detect one or several proteins from a complex matrix. Selective extraction and preconcentration of targeted proteins and peptides especially from biological fluids is of the highest importance for a successful realization of these microsystems. Incorporation of solid structures or supports is a convenient solution employed to face these demands. This review presents a critical view on the latest achievements in sample processing techniques for protein determination using solid supports in microfluidics. The study covers the period from 2006 to 2015 and focuses mainly on the strategies based on microbeads, monolithic materials and membranes. Less common approaches are also briefly discussed. The reviewed literature suggests future trends which are discussed in the concluding remarks.
Collapse
|
8
|
Soltani Z, Navimipour NJ. Customer relationship management mechanisms: A systematic review of the state of the art literature and recommendations for future research. COMPUTERS IN HUMAN BEHAVIOR 2016. [DOI: 10.1016/j.chb.2016.03.008] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Knob R, Sahore V, Sonker M, Woolley AT. Advances in monoliths and related porous materials for microfluidics. BIOMICROFLUIDICS 2016; 10:032901. [PMID: 27190564 PMCID: PMC4859832 DOI: 10.1063/1.4948507] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 04/20/2016] [Indexed: 05/06/2023]
Abstract
In recent years, the use of monolithic porous polymers has seen significant growth. These materials present a highly useful support for various analytical and biochemical applications. Since their introduction, various approaches have been introduced to produce monoliths in a broad range of materials. Simple preparation has enabled their easy implementation in microchannels, extending the range of applications where microfluidics can be successfully utilized. This review summarizes progress regarding monoliths and related porous materials in the field of microfluidics between 2010 and 2015. Recent developments in monolith preparation, solid-phase extraction, separations, and catalysis are critically discussed. Finally, a brief overview of the use of these porous materials for analysis of subcellular and larger structures is given.
Collapse
Affiliation(s)
- Radim Knob
- Department of Chemistry and Biochemistry, Brigham Young University , Provo, Utah 84602, USA
| | - Vishal Sahore
- Department of Chemistry and Biochemistry, Brigham Young University , Provo, Utah 84602, USA
| | - Mukul Sonker
- Department of Chemistry and Biochemistry, Brigham Young University , Provo, Utah 84602, USA
| | - Adam T Woolley
- Department of Chemistry and Biochemistry, Brigham Young University , Provo, Utah 84602, USA
| |
Collapse
|
10
|
Kašička V. Recent developments in capillary and microchip electroseparations of peptides (2013-middle 2015). Electrophoresis 2015; 37:162-88. [DOI: 10.1002/elps.201500329] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Revised: 08/25/2015] [Accepted: 08/25/2015] [Indexed: 12/16/2022]
Affiliation(s)
- Václav Kašička
- Institute of Organic Chemistry and Biochemistry, v.v.i; The Czech Academy of Sciences; Prague Czech Republic
| |
Collapse
|
11
|
Ríos Á, Zougagh M. Modern qualitative analysis by miniaturized and microfluidic systems. Trends Analyt Chem 2015. [DOI: 10.1016/j.trac.2015.04.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
12
|
Chen Q, Zhang L, Chen G. Far infrared-assisted embossing and bonding of poly(methyl methacrylate) microfluidic chips. RSC Adv 2014. [DOI: 10.1039/c4ra09909e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
|
13
|
Lim HS, Kim JYH, Kwak HS, Sim SJ. Integrated Microfluidic Platform for Multiple Processes from Microalgal Culture to Lipid Extraction. Anal Chem 2014; 86:8585-92. [DOI: 10.1021/ac502324c] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Hyun Seok Lim
- Department
of Chemical and
Biological Engineering, Korea University, Seoul, 136-713, Republic of Korea
| | - Jaoon Y. H. Kim
- Department
of Chemical and
Biological Engineering, Korea University, Seoul, 136-713, Republic of Korea
| | - Ho Seok Kwak
- Department
of Chemical and
Biological Engineering, Korea University, Seoul, 136-713, Republic of Korea
| | - Sang Jun Sim
- Department
of Chemical and
Biological Engineering, Korea University, Seoul, 136-713, Republic of Korea
| |
Collapse
|
14
|
Biological sample preparation: attempts on productivity increasing in bioanalysis. Bioanalysis 2014; 6:1691-710. [DOI: 10.4155/bio.14.118] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Sample preparation is an important step of any biomedical analysis. Development and validation of fast, reproducible and reliable sample preparation methods would be very helpful in increasing productivity. Except for a few direct injection methods, almost all biological samples should at least be diluted before any analysis. Sometimes dilution is not possible because of the low concentration of the target analyte in the sample, and alternative pretreatments, such as filtration, precipitation and sample clean up using different extraction methods, are needed. This review focuses on the recent achievements in the pretreatment of biological samples and investigates them in six categories (i.e., dilution, filtration/dialysis, precipitation, extraction [solid-phase extraction, liquid–liquid extraction], novel techniques [turbulent flow chromatography, immunoaffinity method, electromembrane extraction] and combined methods). Each category will be discussed according to its productivity rate and suitability for routine analysis, and the discussed methods will be compared according to the mentioned indices.
Collapse
|
15
|
Kloke A, Fiebach AR, Zhang S, Drechsel L, Niekrawietz S, Hoehl MM, Kneusel R, Panthel K, Steigert J, von Stetten F, Zengerle R, Paust N. The LabTube - a novel microfluidic platform for assay automation in laboratory centrifuges. LAB ON A CHIP 2014; 14:1527-1537. [PMID: 24590165 DOI: 10.1039/c3lc51261d] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Assay automation is the key for successful transformation of modern biotechnology into routine workflows. Yet, it requires considerable investment in processing devices and auxiliary infrastructure, which is not cost-efficient for laboratories with low or medium sample throughput or point-of-care testing. To close this gap, we present the LabTube platform, which is based on assay specific disposable cartridges for processing in laboratory centrifuges. LabTube cartridges comprise interfaces for sample loading and downstream applications and fluidic unit operations for release of prestored reagents, mixing, and solid phase extraction. Process control is achieved by a centrifugally-actuated ballpen mechanism. To demonstrate the workflow and functionality of the LabTube platform, we show two LabTube automated sample preparation assays from laboratory routines: DNA extractions from whole blood and purification of His-tagged proteins. Equal DNA and protein yields were observed compared to manual reference runs, while LabTube automation could significantly reduce the hands-on-time to one minute per extraction.
Collapse
Affiliation(s)
- A Kloke
- HSG-IMIT - Institut für Mikro- und Informationstechnik, Georges-Köhler-Allee 103, 79110 Freiburg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Li L, Xu L, Huang J, You T. On-line focusing of 5-hydroxy-tryptamine type 3 receptor antagonists via the combination of field-enhanced sample injection and dynamic pH junction in capillary electrophoresis with amperometric detection. J Chromatogr A 2014; 1331:117-22. [DOI: 10.1016/j.chroma.2014.01.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 01/10/2014] [Accepted: 01/11/2014] [Indexed: 10/25/2022]
|
17
|
Danč L, Bodor R, Troška P, Horčičiak M, Masár M. Determination of metabolic organic acids in cerebrospinal fluid by microchip electrophoresis. Electrophoresis 2014; 35:2146-54. [PMID: 24431209 DOI: 10.1002/elps.201300455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Revised: 11/11/2013] [Accepted: 12/24/2013] [Indexed: 11/10/2022]
Abstract
A new MCE method for the determination of oxalic, citric, glycolic, lactic, and 2- and 3-hydroxybutyric acids, indicators of some metabolic and neurological diseases, in cerebrospinal fluid (CSF) was developed. MCE separations were performed on a PMMA microchip with coupled channels at lower pH (5.5) to prevent proteins interference. A double charged counter-ion, BIS-TRIS propane, was very effective in resolving the studied organic acids. The limits of detection (S/N = 3) ranging from 0.1 to 1.6 μM were obtained with the aid of contact conductivity detector implemented directly on the microchip. RSDs for migration time and peak area of organic acids in artificial and CSF samples were <0.8 and <9.7%, respectively. Recoveries of organic acids in untreated CSF samples on the microchip varied from 91 to 104%. Elimination of chloride interference, a major anionic constituent of CSF, has been reached by two approaches: (i) the use of coupled channels microchip in a column switching mode when approximately 97-99% of chloride was removed electrophoretically in the first separation channel and (ii) the implementation of micro-SPE with silver-form resin prior to the MCE analysis, which selectively removed chloride from undeproteinized CSF samples.
Collapse
Affiliation(s)
- Ladislav Danč
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovak Republic
| | | | | | | | | |
Collapse
|
18
|
Campos CDM, Park JK, Neužil P, da Silva JAF, Manz A. Membrane-free electroextraction using an aqueous two-phase system. RSC Adv 2014. [DOI: 10.1039/c4ra09246e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
We present a method of continuous electroextraction of amino acids using aqueous two phase system in a microchip. The separations occur due to differences in electrophoretic mobility and solvent affinity. The results suggest the possibility of high levels of purification by controlling the electric field across the liquid barrier.
Collapse
Affiliation(s)
- C. D. M. Campos
- KIST-Europe
- 66123 Saarbrücken, Germany
- Chemistry Institute
- State University of Campinas
- Campinas, Brazil
| | | | - P. Neužil
- KIST-Europe
- 66123 Saarbrücken, Germany
| | - J. A. F. da Silva
- Chemistry Institute
- State University of Campinas
- Campinas, Brazil
- Instituto Nacional de Ciência e Tecnologia em Bioanalítica
- INCTBio
| | - A. Manz
- KIST-Europe
- 66123 Saarbrücken, Germany
| |
Collapse
|
19
|
Recent developments and future trends in solid phase microextraction techniques towards green analytical chemistry. J Chromatogr A 2013; 1321:1-13. [DOI: 10.1016/j.chroma.2013.10.030] [Citation(s) in RCA: 202] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 09/19/2013] [Accepted: 10/09/2013] [Indexed: 01/17/2023]
|
20
|
Lin SL, Lin TY, Fuh MR. Microfluidic chip-based liquid chromatography coupled to mass spectrometry for determination of small molecules in bioanalytical applications: An update. Electrophoresis 2013; 35:1275-84. [DOI: 10.1002/elps.201300415] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 10/07/2013] [Accepted: 10/08/2013] [Indexed: 12/22/2022]
Affiliation(s)
- Shu-Ling Lin
- Department of Chemistry; Soochow University; Taipei Taiwan
| | | | - Ming-Ren Fuh
- Department of Chemistry; Soochow University; Taipei Taiwan
| |
Collapse
|
21
|
Kašička V. Recent developments in capillary and microchip electroseparations of peptides (2011-2013). Electrophoresis 2013; 35:69-95. [PMID: 24255019 DOI: 10.1002/elps.201300331] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 09/10/2013] [Accepted: 09/10/2013] [Indexed: 01/15/2023]
Abstract
The review presents a comprehensive survey of recent developments and applications of capillary and microchip electroseparation methods (zone electrophoresis, ITP, IEF, affinity electrophoresis, EKC, and electrochromatography) for analysis, isolation, purification, and physicochemical and biochemical characterization of peptides. Advances in the investigation of electromigration properties of peptides, in the methodology of their analysis, including sample preseparation, preconcentration and derivatization, adsorption suppression and EOF control, as well as in detection of peptides, are presented. New developments in particular CE and CEC modes are reported and several types of their applications to peptide analysis are described: conventional qualitative and quantitative analysis, determination in complex (bio)matrices, monitoring of chemical and enzymatical reactions and physical changes, amino acid, sequence and chiral analysis, and peptide mapping of proteins. Some micropreparative peptide separations are shown and capabilities of CE and CEC techniques to provide relevant physicochemical characteristics of peptides are demonstrated.
Collapse
Affiliation(s)
- Václav Kašička
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| |
Collapse
|
22
|
Recent developments in microfluidic chip-based separation devices coupled to MS for bioanalysis. Bioanalysis 2013; 5:2567-80. [DOI: 10.4155/bio.13.196] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
In recent years, the development of microfluidic chip separation devices coupled to MS has dramatically increased for high-throughput bioanalysis. In this review, advances in different types of microfluidic chip separation devices, such as electrophoresis- and LC-based microchips, as well as 2D design of microfluidic chip-based separation devices will be discussed. In addition, the utilization of chip-based separation devices coupled to MS for analyzing peptides/proteins, glycans, drug metabolites and biomarkers for various bioanalytical applications will be evaluated.
Collapse
|