1
|
Li S, Xu N, Fang Q, Cheng X, Chen J, Liu P, Li L, Wang C, Liu W. Glehnia littoralis Fr. Schmidtex Miq.: A systematic review on ethnopharmacology, chemical composition, pharmacology and quality control. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116831. [PMID: 37369334 DOI: 10.1016/j.jep.2023.116831] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/03/2023] [Accepted: 06/20/2023] [Indexed: 06/29/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Glehnia littoralis Fr. Schmidtex Miq. is a well-known perennial herb that is used in traditional medicine in China, Japan and Korea. G. littoralis has the effects of treating the lungs with heat, nourishing yin and blood, and acting as an expectorant. Traditional Chinese medicine (TCM) prescriptions containing G. littoralis have various clinical applications, such as clearing heat, relieving coughs, treating hepatic fibrosis, resolving phlegm, and treating esophagitis. AIM OF THE REVIEW This paper aims to provide a comprehensive and productive review of G. littoralis, mainly including traditional application, ethnopharmacology, chemical composition, pharmacological activities, and quality control. MATERIALS AND METHODS Literature search was conducted through the Web of Science, ScienceDirect, Springer Link, PubMed, Baidu Scholar, CNKI, and WanFang DATA by using the keywords "Glehnia littoralis", "Radix Glehniae", "Bei Shashen", "Clinical application", "Chemical composition", "Quality control" and "pharmacological action". In addition, information was collected from relevant ancient books, reviews, and documents (1980-2022). RESULTS G. littoralis is a traditional Chinese herbal medicine with great clinical value and rich resources. More than 186 components, including coumarins, lignans, polyacetylenes, organic acids, flavonoids, and terpenoids, have been isolated and identified from G. littoralis. The pharmacological activities of more than half of these chemicals are yet unknown. Polyacetylenes and coumarins are the most important bioactive compounds responsible for pharmacological activities, such as antiproliferative, anti-oxidation, anti-inflammatory, antibacterial, antitussive, immune regulation and analgesic. In this study, the progress in chemical analysis of G. littoralis, including thin-layer chromatography (TLC), high-performance liquid chromatography (HPLC), gas chromatography-mass spectrometry (MS), and HPLC-MS, were summarized. CONCLUSION In this paper reviewed the previous literature regarding ethnopharmacological, phytochemical, pharmacological, and quality evaluation of the processing of G. littoralis was reviewed, providing potential reference information for future investigation and clinical applications. However, research on the relationship between chemical constituents and traditional uses of G. littoralis is lacking, and the comprehensive pharmacological effects and mechanisms of G. littoralis require further detailed exploration. In addition, an efficient method for chemical profiling is still unavailable to obtain potent bioactive markers for quality control. Perfect quality standards, which are also the basis for further drug development of G. littoralis, are urgently needed to ensure its quality and clinical application.
Collapse
Affiliation(s)
- Shiyang Li
- Institute of Chinese Materia Medical, The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Rood, Shanghai, 201203, China; Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Department of Pharmacy, The SATCM Third Grade Laboratory of Traditional Chinese Medicine Preparations, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai, 201203, China; College of Pharmacy, Xinjiang Medical University, 393 Xinyi Road, Urumqi, 830011, China
| | - Nan Xu
- Institute of Chinese Materia Medical, The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Rood, Shanghai, 201203, China; College of Pharmacy, Xinjiang Medical University, 393 Xinyi Road, Urumqi, 830011, China
| | - Qinqin Fang
- Institute of Chinese Materia Medical, The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Rood, Shanghai, 201203, China; Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Department of Pharmacy, The SATCM Third Grade Laboratory of Traditional Chinese Medicine Preparations, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai, 201203, China
| | - Xuemei Cheng
- Institute of Chinese Materia Medical, The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Rood, Shanghai, 201203, China
| | - Jiamei Chen
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Department of Pharmacy, The SATCM Third Grade Laboratory of Traditional Chinese Medicine Preparations, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai, 201203, China
| | - Ping Liu
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Department of Pharmacy, The SATCM Third Grade Laboratory of Traditional Chinese Medicine Preparations, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai, 201203, China
| | - Li Li
- College of Pharmacy, Xinjiang Medical University, 393 Xinyi Road, Urumqi, 830011, China
| | - Changhong Wang
- Institute of Chinese Materia Medical, The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Rood, Shanghai, 201203, China.
| | - Wei Liu
- Institute of Chinese Materia Medical, The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Rood, Shanghai, 201203, China; Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Department of Pharmacy, The SATCM Third Grade Laboratory of Traditional Chinese Medicine Preparations, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai, 201203, China.
| |
Collapse
|
2
|
Vaishnavi A. Sarangdhar, Ramanlal N. Kachave. Overview of UHPLC-MS: an Effective and Sensitive Hyphenated Technique. JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1134/s1061934822110119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
3
|
Pauli I, Rezende CDO, Slafer BW, Dessoy MA, de Souza ML, Ferreira LLG, Adjanohun ALM, Ferreira RS, Magalhães LG, Krogh R, Michelan-Duarte S, Del Pintor RV, da Silva FBR, Cruz FC, Dias LC, Andricopulo AD. Multiparameter Optimization of Trypanocidal Cruzain Inhibitors With In Vivo Activity and Favorable Pharmacokinetics. Front Pharmacol 2022; 12:774069. [PMID: 35069198 PMCID: PMC8767159 DOI: 10.3389/fphar.2021.774069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/22/2021] [Indexed: 12/20/2022] Open
Abstract
Cruzain, the main cysteine protease of Trypanosoma cruzi, plays key roles in all stages of the parasite's life cycle, including nutrition acquisition, differentiation, evasion of the host immune system, and invasion of host cells. Thus, inhibition of this validated target may lead to the development of novel drugs for the treatment of Chagas disease. In this study, a multiparameter optimization (MPO) approach, molecular modeling, and structure-activity relationships (SARs) were employed for the identification of new benzimidazole derivatives as potent competitive inhibitors of cruzain with trypanocidal activity and suitable pharmacokinetics. Extensive pharmacokinetic studies enabled the identification of metabolically stable and permeable compounds with high selectivity indices. CYP3A4 was found to be involved in the main metabolic pathway, and the identification of metabolic soft spots provided insights into molecular optimization. Compound 28, which showed a promising trade-off between pharmacodynamics and pharmacokinetics, caused no acute toxicity and reduced parasite burden both in vitro and in vivo.
Collapse
Affiliation(s)
- Ivani Pauli
- Laboratório de Química Medicinal e Computacional, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, Brazil
| | - Celso de O Rezende
- Instituto de Química, Universidade Estadual de Campinas, Campinas, Brazil
| | - Brian W Slafer
- Instituto de Química, Universidade Estadual de Campinas, Campinas, Brazil
| | - Marco A Dessoy
- Instituto de Química, Universidade Estadual de Campinas, Campinas, Brazil
| | - Mariana L de Souza
- Laboratório de Química Medicinal e Computacional, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, Brazil
| | - Leonardo L G Ferreira
- Laboratório de Química Medicinal e Computacional, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, Brazil
| | - Abraham L M Adjanohun
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Rafaela S Ferreira
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Luma G Magalhães
- Laboratório de Química Medicinal e Computacional, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, Brazil
| | - Renata Krogh
- Laboratório de Química Medicinal e Computacional, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, Brazil
| | - Simone Michelan-Duarte
- Laboratório de Química Medicinal e Computacional, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, Brazil
| | | | | | - Fabio C Cruz
- Departamento de Farmacologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Luiz C Dias
- Instituto de Química, Universidade Estadual de Campinas, Campinas, Brazil
| | - Adriano D Andricopulo
- Laboratório de Química Medicinal e Computacional, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, Brazil
| |
Collapse
|
4
|
Svensson K, Södergren S, Hjort K. Thermally controlled microfluidic back pressure regulator. Sci Rep 2022; 12:569. [PMID: 35022424 PMCID: PMC8755753 DOI: 10.1038/s41598-021-04320-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 12/20/2021] [Indexed: 11/28/2022] Open
Abstract
By using the temperature dependence of viscosity, we introduce a novel type of microfluidic lab-on-a-chip back pressure regulator (BPR) that can be integrated into a micro-total-analysis-system. A BPR is an important component used to gain pressure control and maintain elevated pressures in e.g. chemical extractions, synthesis, and analyses. Such applications have been limited in microfluidics, since the back pressure regularly has been attained by passive restrictors or external large-scale BPRs. Herein, an active microfluidic BPR is presented, consisting of a glass chip with integrated thin-film heaters and thermal sensors. It has no moving parts but a fluid restrictor where the flow resistance is controlled by the change of viscosity with temperature. Performance was evaluated by regulating the upstream pressure of methanol or water using a PID controller. The developed BPR has the smallest reported dead volume of 3 nL and the thermal actuation has time constants of a few seconds. The pressure regulation were reproducible with a precision in the millibar range, limited by the pressure sensor. The time constant of the pressure changes was evaluated and its dependence of the total upstream volume and the compressibility of the liquids is introduced.
Collapse
Affiliation(s)
- Karolina Svensson
- Microsystems Technology Division, Centre of Natural Hazard and Disaster Science (CNDS), Uppsala University, Box 35, 751 03, Uppsala, Sweden.
| | - Simon Södergren
- Microsystems Technology Division, Centre of Natural Hazard and Disaster Science (CNDS), Uppsala University, Box 35, 751 03, Uppsala, Sweden
| | - Klas Hjort
- Microsystems Technology Division, Centre of Natural Hazard and Disaster Science (CNDS), Uppsala University, Box 35, 751 03, Uppsala, Sweden.
| |
Collapse
|
5
|
Hernandez‐Jerez AF, Adriaanse P, Aldrich A, Berny P, Coja T, Duquesne S, Focks A, Marinovich M, Millet M, Pelkonen O, Pieper S, Tiktak A, Topping CJ, Widenfalk A, Wilks M, Wolterink G, Gundert‐Remy U, Louisse J, Rudaz S, Testai E, Lostia A, Dorne J, Parra Morte JM. Scientific Opinion of the Scientific Panel on Plant Protection Products and their Residues (PPR Panel) on testing and interpretation of comparative in vitro metabolism studies. EFSA J 2021; 19:e06970. [PMID: 34987623 PMCID: PMC8696562 DOI: 10.2903/j.efsa.2021.6970] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
EFSA asked the Panel on Plant Protection Products and their residues to deliver a Scientific Opinion on testing and interpretation of comparative in vitro metabolism studies for both new active substances and existing ones. The main aim of comparative in vitro metabolism studies of pesticide active substances is to evaluate whether all significant metabolites formed in the human in vitro test system, as a surrogate of the in vivo situation, are also present at comparable level in animal species tested in toxicological studies and, therefore, if their potential toxicity has been appropriately covered by animal studies. The studies may also help to decide which animal model, with regard to a particular compound, is the most relevant for humans. In the experimental strategy, primary hepatocytes in suspension or culture are recommended since hepatocytes are considered the most representative in vitro system for prediction of in vivo metabolites. The experimental design of 3 × 3 × 3 (concentrations, time points, technical replicates, on pooled hepatocytes) will maximise the chance to identify unique (UHM) and disproportionate (DHM) human metabolites. When DHM and UHM are being assessed, test item-related radioactivity recovery and metabolite profile are the most important parameters. Subsequently, structural characterisation of the assigned metabolites is performed with appropriate analytical techniques. In toxicological assessment of metabolites, the uncertainty factor approach is the first alternative to testing option, followed by new approach methodologies (QSAR, read-across, in vitro methods), and only if these fail, in vivo animal toxicity studies may be performed. Knowledge of in vitro metabolites in human and animal hepatocytes would enable toxicological evaluation of all metabolites of concern, and, furthermore, add useful pieces of information for detection and evaluation of metabolites in different matrices (crops, livestock, environment), improve biomonitoring efforts via better toxicokinetic understanding, and ultimately, develop regulatory schemes employing physiologically based or physiology-mimicking in silico and/or in vitro test systems to anticipate the exposure of humans to potentially hazardous substances in plant protection products.
Collapse
|
6
|
Pantaleão SQ, Fernandes PO, Gonçalves JE, Maltarollo VG, Honorio KM. Recent Advances in the Prediction of Pharmacokinetics Properties in Drug Design Studies: A Review. ChemMedChem 2021; 17:e202100542. [PMID: 34655454 DOI: 10.1002/cmdc.202100542] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/07/2021] [Indexed: 12/11/2022]
Abstract
This review presents the main aspects related to pharmacokinetic properties, which are essential for the efficacy and safety of drugs. This topic is very important because the analysis of pharmacokinetic aspects in the initial design stages of drug candidates can increase the chances of success for the entire process. In this scenario, experimental and in silico techniques have been widely used. Due to the difficulties encountered with the use of some experimental tests to determine pharmacokinetic properties, several in silico tools have been developed and have shown promising results. Therefore, in this review, we address the main free tools/servers that have been used in this area, as well as some cases of application. Finally, we present some studies that employ a multidisciplinary approach with synergy between in silico, in vitro, and in vivo techniques to assess ADME properties of bioactive substances, achieving successful results in drug discovery and design.
Collapse
Affiliation(s)
- Simone Q Pantaleão
- Centro de Ciências Naturais e Humanas, Institution Universidade Federal do ABC, 09210-580, Santo André, SP, Brazil
| | - Philipe O Fernandes
- Departamento de Produtos Farmacêuticos, Universidade Federal de Minas Gerais, 31270-901, Pampulha, MG, Brazil
| | - José Eduardo Gonçalves
- Departamento de Produtos Farmacêuticos, Universidade Federal de Minas Gerais, 31270-901, Pampulha, MG, Brazil
| | - Vinícius G Maltarollo
- Departamento de Produtos Farmacêuticos, Universidade Federal de Minas Gerais, 31270-901, Pampulha, MG, Brazil
| | - Kathia Maria Honorio
- Centro de Ciências Naturais e Humanas, Institution Universidade Federal do ABC, 09210-580, Santo André, SP, Brazil.,Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, 03828-000, São Paulo, SP, Brazil
| |
Collapse
|
7
|
Long S, Furlani IL, de Oliveira JM, Resende DISP, Silva AMS, Gales L, Pereira JA, Kijjoa A, Cass QB, Oliveira RV, Sousa E, Pinto MMM. Determination of the Absolute Configuration of Bioactive Indole-Containing Pyrazino[2,1- b]quinazoline-3,6-diones and Study of Their In Vitro Metabolic Profile. Molecules 2021; 26:5070. [PMID: 34443658 PMCID: PMC8398919 DOI: 10.3390/molecules26165070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 12/02/2022] Open
Abstract
In recent decades, fungi-derived naturally occurring quinazolines have emerged as potential drug candidates. Nevertheless, most studies are conducted for bioactivity assays, and little is known about their absorption, distribution, metabolism, and elimination (ADME) properties. To perform metabolic studies, the synthesis of the naturally occurring quinazolinone, fiscalin B (1), and its chloro derivative, 4-((1H-indol-3-yl)methyl)-8,10-dichloro-1-isobutyl-1,2-dihydro-6H-pyrazino[2,1-b]quinazoline-3,6(4H)-dione (2), disclosed as an antibacterial agent, was performed in a gram scale using a microwave-assisted polycondensation reaction with 22% and 17% yields, respectively. The structure of the non-natural (+)-fiscalin B was established, for the first time, by X-ray crystallography as (1R,4S)-1, and the absolute configuration of the naturally occurring fiscalin B (-)-1 was confirmed by comparison of its calculated and experimental electronic circular dichroism (ECD) spectra as (1S,4R)-1. in vitro metabolic studies were monitored for this class of natural products for the first time by ultra-high-performance liquid chromatography (UHPLC) coupled with high-resolution mass spectrometry (HRMS). The metabolic characteristics of 1 and 2 in human liver microsomes indicated hydration and hydroxylation mass changes introduced to the parent drugs.
Collapse
Affiliation(s)
- Solida Long
- LQOF-Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (S.L.); (D.I.S.P.R.); (M.M.M.P.)
- Department of Bioegineering, Faculty of Engineering, Royal University of Phnom Penh, Russian Federation Blevd, Phnom Penh 12156, Cambodia
| | - Izadora L. Furlani
- SEPARARE–Núcleo de Pesquisa em Cromatografia, Departamento de Química, Universidade Federal de São Carlos, Rodovia Washington Luiz, km 235, São Carlos 13565-905, Brazil; (I.L.F.); (J.M.d.O.); (Q.B.C.)
| | - Juliana M. de Oliveira
- SEPARARE–Núcleo de Pesquisa em Cromatografia, Departamento de Química, Universidade Federal de São Carlos, Rodovia Washington Luiz, km 235, São Carlos 13565-905, Brazil; (I.L.F.); (J.M.d.O.); (Q.B.C.)
| | - Diana I. S. P. Resende
- LQOF-Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (S.L.); (D.I.S.P.R.); (M.M.M.P.)
- CIIMAR-Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos S/N, Matosinhos, 4450-208 Porto, Portugal;
| | - Artur M. S. Silva
- LAQV-REQUIMTE-Departamento de Química, Universidade de Aveiro, 3810-193 Aveiro, Portugal;
| | - Luís Gales
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal; (L.G.); (J.A.P.)
- i3S-IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4050-313 Porto, Portugal
| | - José A. Pereira
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal; (L.G.); (J.A.P.)
| | - Anake Kijjoa
- CIIMAR-Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos S/N, Matosinhos, 4450-208 Porto, Portugal;
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal; (L.G.); (J.A.P.)
| | - Quezia B. Cass
- SEPARARE–Núcleo de Pesquisa em Cromatografia, Departamento de Química, Universidade Federal de São Carlos, Rodovia Washington Luiz, km 235, São Carlos 13565-905, Brazil; (I.L.F.); (J.M.d.O.); (Q.B.C.)
| | - Regina V. Oliveira
- SEPARARE–Núcleo de Pesquisa em Cromatografia, Departamento de Química, Universidade Federal de São Carlos, Rodovia Washington Luiz, km 235, São Carlos 13565-905, Brazil; (I.L.F.); (J.M.d.O.); (Q.B.C.)
| | - Emília Sousa
- LQOF-Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (S.L.); (D.I.S.P.R.); (M.M.M.P.)
- CIIMAR-Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos S/N, Matosinhos, 4450-208 Porto, Portugal;
| | - Madalena M. M. Pinto
- LQOF-Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (S.L.); (D.I.S.P.R.); (M.M.M.P.)
- CIIMAR-Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos S/N, Matosinhos, 4450-208 Porto, Portugal;
| |
Collapse
|
8
|
Basiliere S, Kerrigan S. CYP450-Mediated Metabolism of Mitragynine and Investigation of Metabolites in Human Urine. J Anal Toxicol 2020; 44:301-313. [DOI: 10.1093/jat/bkz108] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/05/2019] [Accepted: 10/08/2019] [Indexed: 12/13/2022] Open
Abstract
Abstract
Mitragyna speciosa (Kratom) has emerged as a recreational drug and a substance of medicinal intrigue. Although the drug was initially used recreationally for its sedating and euphoric effects, more recently its use has been associated with the non-medically supervised treatment of opioid abstinence syndrome. Mitragynine is the principal pharmacologically active alkaloid in kratom. Although metabolites of mitragynine have been identified, the cytochrome P450 (CYP450) enzymes responsible for its biotransformation are still under investigation. The goal of this study was to contribute further knowledge regarding CYP450 activity as it relates to mitragynine. Recombinant cytochrome P450 enzymes (rCYPs) were used to investigate the isoforms involved in its metabolism. Biotransformational products were identified using liquid chromatography-quadrupole/time of flight-mass spectrometry. Four rCYP enzymes (2C18, 2C19, 2D6 and 3A4) were found to contribute to the metabolism of mitragynine. 7-Hydroxymitragynine (which has an affinity for the mu-opioid receptor >10-folds that of morphine) was produced exclusively by 3A4. 9-O-demethylmitragynine, the most abundant metabolite in vitro (and the most prevalent metabolite in urine among kratom users) was produced by 2C19, 3A4 and 2D6. 16-Carboxymitragynine was produced by rCYPs 2D6, 2C19 and 2C18. 2C19 was solely responsible for the formation of 9-O-demethyl-16-carboxymitragynine. In vitro rCYP studies were compared with phase I metabolites in urine from cases involving mitragynine.
Collapse
Affiliation(s)
- Stephanie Basiliere
- Department of Forensic Science, Sam Houston State University, Box 2525, 1003 Bowers Blvd, Huntsville, TX 77341, USA
| | - Sarah Kerrigan
- Department of Forensic Science, Sam Houston State University, Box 2525, 1003 Bowers Blvd, Huntsville, TX 77341, USA
| |
Collapse
|
9
|
Xu L, Li X, Wang X, Song A, Han F. A feasible strategy based on isotopic fine structures to enhance the reliability of metabolite identification by Fourier transform ion cyclotron resonance mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34:e8560. [PMID: 31429146 DOI: 10.1002/rcm.8560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/12/2019] [Accepted: 08/13/2019] [Indexed: 06/10/2023]
Abstract
RATIONALE In the process of the identification of unknown metabolites, the most important thing is to determine their real chemical formulae according to the accurate masses which are determined by high-resolution mass spectrometry. However, high mass accuracy alone is not enough to exclude false candidates. Use of isotopic fine structures (IFSs) derived from Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) as a single further constraint could decisively determine the molecular formulae for unknown metabolites. METHODS Gastrodin, an active constituent from Gastrodia elata Bl., which can penetrate through the blood-brain barrier and rapidly decompose to p-hydroxybenzyl alcohol in the brain, was selected as a model drug. The accurate masses, possible chemical formulae and IFSs of its metabolites in rat plasma were acquired using FT-ICR MS. RESULTS Besides gastrodin, a total of eight metabolites including two phase I and six phase II metabolites were detected. Their chemical formulae were decisively determined by IFSs. Furthermore, their chemical structures were identified by comparing their fragment ions with those of gastrodin. Results indicated the metabolic pathways of gastrodin in rats including deglycosylation, oxidation, glucuronidation, sulfate conjugation and glycine conjugation. CONCLUSIONS It is demonstrated that IFSs are effective in unambiguous determination of chemical formulae of metabolites. It could be used as a feasible strategy to enhance the reliability of metabolite identification in drug metabolism studies.
Collapse
Affiliation(s)
- Lu Xu
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Xintong Li
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Xue Wang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Aihua Song
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Fei Han
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| |
Collapse
|
10
|
Derivatization for liquid chromatography-electrospray ionization-mass spectrometry analysis of small-molecular weight compounds. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.07.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
11
|
Saurina J, Sentellas S. Liquid chromatography coupled to mass spectrometry for metabolite profiling in the field of drug discovery. Expert Opin Drug Discov 2019; 14:469-483. [DOI: 10.1080/17460441.2019.1582638] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Javier Saurina
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Barcelona, Spain
| | - Sonia Sentellas
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Barcelona, Spain
| |
Collapse
|
12
|
Challenges of probe cocktail approach for human drug-drug interaction assays. Bioanalysis 2018; 10:1969-1972. [PMID: 30301378 DOI: 10.4155/bio-2018-0247] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
13
|
In vitro metabolism of desomorphine. Forensic Sci Int 2018; 289:140-149. [DOI: 10.1016/j.forsciint.2018.05.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 05/09/2018] [Accepted: 05/10/2018] [Indexed: 12/19/2022]
|
14
|
Caspar AT, Meyer MR, Westphal F, Weber AA, Maurer HH. Nano liquid chromatography-high-resolution mass spectrometry for the identification of metabolites of the two new psychoactive substances N-(ortho-methoxybenzyl)-3,4-dimethoxyamphetamine and N-(ortho-methoxybenzyl)-4-methylmethamphetamine. Talanta 2018; 188:111-123. [PMID: 30029353 DOI: 10.1016/j.talanta.2018.05.064] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/15/2018] [Accepted: 05/19/2018] [Indexed: 01/28/2023]
Abstract
Among the emerging new psychoactive substances (NPS), compounds carrying an N-ortho-methoxybenzyl substituent, the so-called NBOMes, represented a highly potent group of new hallucinogens. Recently, 3,4-dimethoxyamphetamine (3,4-DMA)-NBOMe and 4-methylmethamphetamine (4-MMA)-NBOMe occurred, but no data on their pharmacokinetics were available. According to other NBOMes, they are expected to be extensively metabolized. For detection and identification of their phase I and II metabolites, nano liquid chromatography coupled to high resolution tandem mass spectrometry (nanoLC-HRMS/MS) was used. Rat urine was prepared by simple dilution and incubation mixtures with pooled human liver S9 fraction by precipitation. Furthermore, the results concerning detectability using the new nanoLC approach were compared to those obtained by conventional ultra-high performance LC (UHPLC). In addition, the detectability of the compounds by standard urine screening approaches (SUSAs) routinely used by the authors with UHPLC-HRMS/MS, LC-MSn, and GC-MS was tested. Both NBOMes were extensively metabolized mainly by O-demethylation and conjugation with glucuronic acid (3,4-DMA-NBOMe) or oxidation of the tolyl group to the corresponding carboxylic acid (4-MMA-NBOMe). The developed nanoLC-HRMS/MS approach was successfully applied for identification of 38 3,4-DMA-NBOMe metabolites and 33 4-MMA-NBOMe metabolites confirming its detection power. Furthermore, the solvent saving nanoLC system showed comparable results to the UHPLC-HRMS/MS approach. In addition, an intake of an estimated low common user's dose of the compounds was detectable by all SUSAs only via their metabolites. Suggested targets for urine screening procedures were O-demethyl- and O,O-bis-demethyl-3,4-DMA-NBOMe and their glucuronides and carboxy-4-MMA-NBOMe and its glucuronide and N-demethyl-carboxy-4-MMA-NBOMe.
Collapse
Affiliation(s)
- Achim T Caspar
- Department of Experimental and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University, Homburg, Germany
| | - Markus R Meyer
- Department of Experimental and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University, Homburg, Germany
| | - Folker Westphal
- State Bureau of Criminal Investigation Schleswig-Holstein, Section Narcotics/Toxicology, Kiel, Germany
| | - Armin A Weber
- Department of Experimental and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University, Homburg, Germany
| | - Hans H Maurer
- Department of Experimental and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University, Homburg, Germany.
| |
Collapse
|
15
|
Jacquot Y, Spaggiari D, Schappler J, Lesniewska E, Rudaz S, Leclercq G. ERE-dependent transcription and cell proliferation: Independency of these two processes mediated by the introduction of a sulfone function into the weak estrogen estrothiazine. Eur J Pharm Sci 2017; 109:169-181. [PMID: 28754571 DOI: 10.1016/j.ejps.2017.07.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 07/18/2017] [Accepted: 07/24/2017] [Indexed: 02/07/2023]
Abstract
The synthetic coumestrol derivative 6,12-dihydro-3-methoxy-1-benzopyrano[3,4-b][1,4]benzothiazin-6-one (estrothiazine, ESTZ) has been identified as a weak estrogen receptor α (ERα) ligand unable to compete with tritiated estradiol. The biological activity of this compound, supported by a methoxy group in position 3, seems mainly to result from its capacity to activate ERα dimerization without any participation of coactivators. In support of this view and referring to conventional estrogens, an ESTZ metabolism study conducted with hepatic human microsomes failed to provide any argument in favour of an estrogenic activity dependent on a metabolic conversion of the compound into hydroxylated metabolites with strong receptor activation ability. Interestingly, we failed to detect any oxidation of the sulfur atom of the compound. In the light of pharmacological literature data concerning sulfonylation, we assessed ERα-mediated activities generated by two sulfonylated ESTZ derivatives in which the methoxy group that plays a key role in its mechanism of action was maintained or removed. Sulfonylated ESTZ, even in its demethoxylated form, induced ERE-mediated transcriptions in MCF-7 breast cancer cells, without affecting the ERα turnover rate. In contrast to ESTZ, this compound failed to enhance the proliferation of ERα-positive breast cancer cells, suggesting that its sulfone function confers upon the receptor a capacity to elicit some of the known characteristics associated with estrogenic responses. Moreover, we demonstrated that this sulfone may contribute to ERα dimerization without any requirement of the methoxy group. Nevertheless, it seems to cooperate with this group, as reflected by a weak ability of the sulfonylated form of ESTZ to compete with tritiated estradiol for ERα-binding. Assessment of the docking of this compound within the ligand-binding domain of the receptor by molecular dynamics provided an explanation for this observation since the sulfone is engulfed in a small hydrophobic pocket involving the residues Leu-346, Leu-349, Ala-350 and Leu-384, also known to recruit coactivators. This work not only reports the sulfone functional group as a pharmacophore for estrogenic activity, but also opens new perspectives for the development of estrogenic molecules with therapeutic purpose and devoid of proliferative side effects.
Collapse
Affiliation(s)
- Yves Jacquot
- Sorbonne University - UPMC Univ Paris 06, Ecole Normale Supérieure, PSL Research University, Département de Chimie, CNRS UMR 7203 LBM, 4 Place Jussieu, 75005 Paris, France.
| | - Dany Spaggiari
- Section des Sciences Pharmaceutiques (EPGL), University of Geneva, University of Lausanne, rue Michel Servet 1, 1211 Geneva 4, Switzerland
| | - Julie Schappler
- Section des Sciences Pharmaceutiques (EPGL), University of Geneva, University of Lausanne, rue Michel Servet 1, 1211 Geneva 4, Switzerland
| | - Eric Lesniewska
- ICB, CNRS UMR 6303, University de Bourgogne Franche-Comté, 9, avenue Savary, 21078 Dijon, France
| | - Serge Rudaz
- Section des Sciences Pharmaceutiques (EPGL), University of Geneva, University of Lausanne, rue Michel Servet 1, 1211 Geneva 4, Switzerland
| | - Guy Leclercq
- Laboratory J.C. Heuson de Cancérologie Mammaire, Institut Jules Bordet, 1, rue Héger Bordet, Brussels 1000, Belgium.
| |
Collapse
|
16
|
Andra SS, Austin C, Patel D, Dolios G, Awawda M, Arora M. Trends in the application of high-resolution mass spectrometry for human biomonitoring: An analytical primer to studying the environmental chemical space of the human exposome. ENVIRONMENT INTERNATIONAL 2017; 100:32-61. [PMID: 28062070 PMCID: PMC5322482 DOI: 10.1016/j.envint.2016.11.026] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 11/23/2016] [Accepted: 11/27/2016] [Indexed: 05/05/2023]
Abstract
Global profiling of xenobiotics in human matrices in an untargeted mode is gaining attention for studying the environmental chemical space of the human exposome. Defined as the study of a comprehensive inclusion of environmental influences and associated biological responses, human exposome science is currently evolving out of the metabolomics science. In analogy to the latter, the development and applications of high resolution mass spectrometry (HRMS) has shown potential and promise to greatly expand our ability to capture the broad spectrum of environmental chemicals in exposome studies. HRMS can perform both untargeted and targeted analysis because of its capability of full- and/or tandem-mass spectrum acquisition at high mass accuracy with good sensitivity. The collected data from target, suspect and non-target screening can be used not only for the identification of environmental chemical contaminants in human matrices prospectively but also retrospectively. This review covers recent trends and advances in this field. We focus on advances and applications of HRMS in human biomonitoring studies, and data acquisition and mining. The acquired insights provide stepping stones to improve understanding of the human exposome by applying HRMS, and the challenges and prospects for future research.
Collapse
Affiliation(s)
- Syam S Andra
- Exposure Biology, Senator Frank R. Lautenberg Environmental Health Sciences Laboratory, Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Christine Austin
- Exposure Biology, Senator Frank R. Lautenberg Environmental Health Sciences Laboratory, Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Dhavalkumar Patel
- Exposure Biology, Senator Frank R. Lautenberg Environmental Health Sciences Laboratory, Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Georgia Dolios
- Exposure Biology, Senator Frank R. Lautenberg Environmental Health Sciences Laboratory, Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mahmoud Awawda
- Exposure Biology, Senator Frank R. Lautenberg Environmental Health Sciences Laboratory, Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Manish Arora
- Exposure Biology, Senator Frank R. Lautenberg Environmental Health Sciences Laboratory, Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
17
|
Saurina J, Sentellas S. Strategies for metabolite profiling based on liquid chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1044-1045:103-111. [DOI: 10.1016/j.jchromb.2017.01.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 12/17/2016] [Accepted: 01/08/2017] [Indexed: 02/06/2023]
|
18
|
Spaggiari D, Daali Y, Rudaz S. An extensive cocktail approach for rapid risk assessment of in vitro CYP450 direct reversible inhibition by xenobiotic exposure. Toxicol Appl Pharmacol 2016; 302:41-51. [DOI: 10.1016/j.taap.2016.04.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 04/15/2016] [Accepted: 04/16/2016] [Indexed: 11/25/2022]
|
19
|
Meyer MR, Bergstrand MP, Helander A, Beck O. Identification of main human urinary metabolites of the designer nitrobenzodiazepines clonazolam, meclonazepam, and nifoxipam by nano-liquid chromatography-high-resolution mass spectrometry for drug testing purposes. Anal Bioanal Chem 2016; 408:3571-91. [DOI: 10.1007/s00216-016-9439-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 02/16/2016] [Accepted: 02/19/2016] [Indexed: 10/22/2022]
|
20
|
Marcsisin SR, Reichard G, Pybus BS. Primaquine pharmacology in the context of CYP 2D6 pharmacogenomics: Current state of the art. Pharmacol Ther 2016; 161:1-10. [PMID: 27016470 DOI: 10.1016/j.pharmthera.2016.03.011] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Primaquine is the only antimalarial drug available to clinicians for the treatment of relapsing forms of malaria. Primaquine development and usage dates back to the 1940s and has been administered to millions of individuals to treat and eliminate malaria infections. Primaquine therapy is not without disadvantages, however, as it can cause life threatening hemolysis in humans with glucose-6-phosphate dehydrogenase (G6PD) deficiency. In addition, the efficacy of primaquine against relapsing malaria was recently linked to CYP 2D6 mediated activation to an active metabolite, the structure of which has escaped definitive identification for over 75years. CYP 2D6 is highly polymorphic among various human populations adding further complexity to a comprehensive understanding of primaquine pharmacology. This review aims to discuss primaquine pharmacology in the context of state of the art understanding of CYP 2D6 mediated 8-aminoquinoline metabolic activation, and shed light on the current knowledge gaps of 8-aminoquinoline mechanistic understanding against relapsing malaria.
Collapse
Affiliation(s)
- Sean R Marcsisin
- Military Malaria Research Program, Experimental Therapeutics Branch, Walter Reed Army Institute of Research, 503 Robert Grant Ave, Silver Spring, MD 20910, USA.
| | - Gregory Reichard
- Military Malaria Research Program, Experimental Therapeutics Branch, Walter Reed Army Institute of Research, 503 Robert Grant Ave, Silver Spring, MD 20910, USA
| | - Brandon S Pybus
- Department of Pathology, Dwight D. Eisenhower Army Medical Center, FT. Gordon, GA 30905, USA
| |
Collapse
|
21
|
Metabolic profile of 2-(2-hydroxypropanamido) benzoic acid in rats by ultra high performance liquid chromatography combined with Fourier transform ion cyclotron resonance mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2015; 993-994:60-8. [DOI: 10.1016/j.jchromb.2015.04.039] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 04/19/2015] [Accepted: 04/25/2015] [Indexed: 11/23/2022]
|
22
|
Lai FY, Erratico C, Kinyua J, Mueller JF, Covaci A, van Nuijs ALN. Liquid chromatography-quadrupole time-of-flight mass spectrometry for screening in vitro drug metabolites in humans: investigation on seven phenethylamine-based designer drugs. J Pharm Biomed Anal 2015; 114:355-75. [PMID: 26112925 DOI: 10.1016/j.jpba.2015.06.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 06/04/2015] [Accepted: 06/10/2015] [Indexed: 01/22/2023]
Abstract
Phenethylamine-based designer drugs are prevalent within the new psychoactive substance market. Characterisation of their metabolites is important in order to identify suitable biomarkers which can be used for better monitoring their consumption. Careful design of in vitro metabolism experiments using subcellular liver fractions will assist in obtaining reliable outcomes for such purposes. The objective of this study was to stepwise investigate the in vitro human metabolism of seven phenethylamine-based designer drugs using individual families of enzymes. This included para-methoxyamphetamine, para-methoxymethamphetamine, 4-methylthioamphetamine, N-methyl-benzodioxolylbutanamine, benzodioxolylbutanamine, 5-(2-aminopropyl) benzofuran and 6-(2-aminopropyl) benzofuran. Identification and structural elucidation of the metabolites was performed using liquid chromatography-quadrupole-time-of-flight mass spectrometry. The targeted drugs were mainly metabolised by cytochrome P450 enzymes via O-dealkylation as the major pathway, followed by N-dealkylation, oxidation of unsubstituted C atoms and deamination (to a small extent). These drugs were largely free from Phase II metabolism. Only a limited number of metabolites were found which was consistent with the existing literature for other phenethylamine-based drugs. Also, the metabolism of most of the targeted drugs progressed at slow rate. The reproducibility of the identified metabolites was assessed through examining formation patterns using different incubation times, substrate and enzyme concentrations. Completion of the work has led to a set of metabolites which are representative for specific detection of these drugs in intoxicated individuals and also for meaningful evaluation of their use in communities by wastewater-based drug epidemiology.
Collapse
Affiliation(s)
- Foon Yin Lai
- The University of Queensland, The National Research Centre for Environmental Toxicology, 39 Kessels Road, Coopers Plains, QLD 4108, Australia.
| | - Claudio Erratico
- Toxicological Center, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Juliet Kinyua
- Toxicological Center, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Jochen F Mueller
- The University of Queensland, The National Research Centre for Environmental Toxicology, 39 Kessels Road, Coopers Plains, QLD 4108, Australia
| | - Adrian Covaci
- Toxicological Center, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium.
| | | |
Collapse
|
23
|
Inhibition screening method of microsomal UGTs using the cocktail approach. Eur J Pharm Sci 2015; 71:35-45. [DOI: 10.1016/j.ejps.2015.02.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 02/01/2015] [Accepted: 02/02/2015] [Indexed: 02/06/2023]
|
24
|
Spaggiari D, Mehl F, Desfontaine V, Grand-Guillaume Perrenoud A, Fekete S, Rudaz S, Guillarme D. Comparison of liquid chromatography and supercritical fluid chromatography coupled to compact single quadrupole mass spectrometer for targeted in vitro metabolism assay. J Chromatogr A 2014; 1371:244-56. [DOI: 10.1016/j.chroma.2014.10.055] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 10/06/2014] [Accepted: 10/19/2014] [Indexed: 12/19/2022]
|