1
|
Niehaves E, Karst U. Mimicking the reactivity of drug metabolites: Biomolecule conjugation of an electrochemically-generated, reactive oxidation product of the antibiotic minocycline. J Pharm Biomed Anal 2025; 257:116710. [PMID: 39879820 DOI: 10.1016/j.jpba.2025.116710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/07/2025] [Accepted: 01/25/2025] [Indexed: 01/31/2025]
Abstract
Minocycline is an antibiotic of the tetracycline family which is widely used to treat a range of medical conditions. Although it has been in use for more than 50 years, little information is available on its metabolism in the human body. In this study, we simulate the biotransformation of minocycline by means of electrochemistry coupled to mass spectrometry. This analytical technique has already been used successfully in several cases to imitate enzyme-catalyzed reactions. Using this approach, we could show the generation of multiple electrochemical oxidation products which were characterized by tandem mass spectrometry. A N-dealkylated product was found to correspond to a literature-known in vivo metabolite. Two further oxidation products were detected, one of which exhibiting a reactive quinone moiety formed through electrochemical oxidation. The reactivity of this transformation product was assessed by conjugation reactions with glutathione, human hemoglobin and human serum albumin as model biomolecules. For all three peptides, conjugation reactions took place within minutes, corresponding to the number of free cysteine residues in the respective molecule, which are particularly susceptible to electrophiles like quinones. For glutathione, serum albumin and α-hemoglobin, a single conjugation of the reactive transformation product took place, whereas a twofold conjugation was detected for β-hemoglobin. This project showcases the capability of the purely instrumental approach to simulate the metabolism of xenobiotics without an interfering matrix to screen for reactive transformation products and to assess the reactivity of these products with regard to biomolecules.
Collapse
Affiliation(s)
- Erik Niehaves
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 48, Münster 48149, Germany
| | - Uwe Karst
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 48, Münster 48149, Germany.
| |
Collapse
|
2
|
Göldner V, Karst U. Benfluorex metabolism complemented by electrochemistry-mass spectrometry. J Pharm Biomed Anal 2023; 235:115626. [PMID: 37542830 DOI: 10.1016/j.jpba.2023.115626] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/07/2023]
Abstract
The hypolipidemic and hypoglycemic drug benfluorex was widely applied to treat type 2 diabetes mellitus and metabolic syndrome in overweight patients since 1976. However, benfluorex was connected to multiple cases of valvular heart disease and pulmonary arterial hypertension later on. Similar adverse drug reactions were previously found to be associated to the structurally related drug fenfluramine, which was attributed to the formation of its N-deethylated metabolite norfenfluramine. Even though norfenfluramine was known to be a common metabolite of fenfluramine and benfluorex, only fenfluramine was withdrawn from European and United States markets in 1997 while benfluorex remained available until 2009. In this work, the metabolism of benfluorex is simulated by an online hyphenation of electrochemistry and mass spectrometry and the observed transformation products are further characterized using liquid chromatography and high-resolution tandem mass spectrometry. Using this approach, norfenfluramine is found to be the main electrochemical transformation product of benfluorex. Considering the knowledge about norfenfluramine toxicity, rapid metabolite screening using electrochemistry hyphenated to mass spectrometry could have been used to predict the potential of benfluorex for adverse drug reactions early on, showcasing the value of electrochemical metabolism mimicry for rapid drug safety evaluation.
Collapse
Affiliation(s)
- Valentin Göldner
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 48, 48149 Münster, Germany; International Graduate School for Battery Chemistry, Characterization, Analysis, Recycling and Application (BACCARA), University of Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Uwe Karst
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 48, 48149 Münster, Germany; International Graduate School for Battery Chemistry, Characterization, Analysis, Recycling and Application (BACCARA), University of Münster, Corrensstraße 40, 48149 Münster, Germany.
| |
Collapse
|
3
|
Göldner V, Ulke J, Kirchner B, Skalka D, Schmalz M, Heuckeroth S, Karst U. Electrochemistry-mass spectrometry bridging the gap between suspect and target screening of valsartan transformation products in wastewater treatment plant effluent. WATER RESEARCH 2023; 244:120525. [PMID: 37669607 DOI: 10.1016/j.watres.2023.120525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/06/2023] [Accepted: 08/23/2023] [Indexed: 09/07/2023]
Abstract
Degradation of xenobiotics in wastewater treatment plants may lead to the formation of transformation products with higher persistence or increased (eco-)toxic potential compared to the parent compounds. Accordingly, the identification of transformation products from wastewater treatment plant effluents has gained increasing attention. Here, we show the potential of electrochemistry hyphenated to liquid chromatography and mass spectrometry for the prediction of oxidative degradation in wastewater treatment plants using the antihypertensive drug valsartan as a model compound. This approach identifies seven electrochemical transformation products of valsartan, which are used to conduct a suspect screening in effluent of the main wastewater treatment plant in the city of Münster in Germany. Apart from the parent compound valsartan, an electrochemically predicted transformation product, the N-dealkylated ETP336, is detected in wastewater treatment plant effluent. Subsequently, a targeted liquid chromatographytandem mass spectrometry method for the detection of valsartan and its electrochemical transformation products is set up. Here, electrochemical oxidation is used to generate reference materials of the transformation products in situ by hyphenating electrochemistry online to a triple quadrupole mass spectrometer. Using this setup, multiple reaction monitoring transitions are set up without the need for laborious and costly synthesis and isolation of reference materials for the transformation products. The targeted method is then applied to extracts from wastewater treatment plant effluent and the presence of ETP336 and valsartan in the samples is verified. The presented workflow can be used to set up targeted analysis methods for previously unknown transformation products even without the need for expensive high-resolution mass spectrometers.
Collapse
Affiliation(s)
- Valentin Göldner
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 48, 48149, Münster, Germany; International Graduate School for Battery Chemistry, Characterization, Analysis, Recycling and Application (BACCARA), University of Münster, Corrensstraße 40, 48149, Münster, Germany
| | - Jessica Ulke
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 48, 48149, Münster, Germany
| | - Benedict Kirchner
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 48, 48149, Münster, Germany
| | - Dominik Skalka
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 48, 48149, Münster, Germany
| | - Marie Schmalz
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 48, 48149, Münster, Germany
| | - Steffen Heuckeroth
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 48, 48149, Münster, Germany
| | - Uwe Karst
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 48, 48149, Münster, Germany; International Graduate School for Battery Chemistry, Characterization, Analysis, Recycling and Application (BACCARA), University of Münster, Corrensstraße 40, 48149, Münster, Germany.
| |
Collapse
|
4
|
Kumar N, He J, Rusling JF. Electrochemical transformations catalyzed by cytochrome P450s and peroxidases. Chem Soc Rev 2023; 52:5135-5171. [PMID: 37458261 DOI: 10.1039/d3cs00461a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Cytochrome P450s (Cyt P450s) and peroxidases are enzymes featuring iron heme cofactors that have wide applicability as biocatalysts in chemical syntheses. Cyt P450s are a family of monooxygenases that oxidize fatty acids, steroids, and xenobiotics, synthesize hormones, and convert drugs and other chemicals to metabolites. Peroxidases are involved in breaking down hydrogen peroxide and can oxidize organic compounds during this process. Both heme-containing enzymes utilize active FeIVO intermediates to oxidize reactants. By incorporating these enzymes in stable thin films on electrodes, Cyt P450s and peroxidases can accept electrons from an electrode, albeit by different mechanisms, and catalyze organic transformations in a feasible and cost-effective way. This is an advantageous approach, often called bioelectrocatalysis, compared to their biological pathways in solution that require expensive biochemical reductants such as NADPH or additional enzymes to recycle NADPH for Cyt P450s. Bioelectrocatalysis also serves as an ex situ platform to investigate metabolism of drugs and bio-relevant chemicals. In this paper we review biocatalytic electrochemical reactions using Cyt P450s including C-H activation, S-oxidation, epoxidation, N-hydroxylation, and oxidative N-, and O-dealkylation; as well as reactions catalyzed by peroxidases including synthetically important oxidations of organic compounds. Design aspects of these bioelectrocatalytic reactions are presented and discussed, including enzyme film formation on electrodes, temperature, pH, solvents, and activation of the enzymes. Finally, we discuss challenges and future perspective of these two important bioelectrocatalytic systems.
Collapse
Affiliation(s)
- Neeraj Kumar
- Department of Chemistry, University of Connecticut, Storrs, CT 06269-3136, USA.
| | - Jie He
- Department of Chemistry, University of Connecticut, Storrs, CT 06269-3136, USA.
- Institute of Materials Science, University of Connecticut, Storrs, CT 06269-3136, USA
| | - James F Rusling
- Department of Chemistry, University of Connecticut, Storrs, CT 06269-3136, USA.
- Institute of Materials Science, University of Connecticut, Storrs, CT 06269-3136, USA
- Department of Surgery and Neag Cancer Center, Uconn Health, Farmington, CT 06030, USA
- School of Chemistry, National University of Ireland at Galway, Galway, Ireland
| |
Collapse
|
5
|
Göldner V, Speitling M, Karst U. Elucidation of the environmental reductive metabolism of the herbicide tritosulfuron assisted by electrochemistry and mass spectrometry. CHEMOSPHERE 2023; 330:138687. [PMID: 37076082 DOI: 10.1016/j.chemosphere.2023.138687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/30/2023] [Accepted: 04/12/2023] [Indexed: 05/03/2023]
Abstract
The environmental impact of pesticides and other pollutants is, to a great extent, determined by degradation and accumulation processes. Consequently, degradation pathways of pesticides have to be elucidated before approval by the authorities. In this study, the environmental metabolism of the sulfonylurea-herbicide tritosulfuron was investigated using aerobic soil degradation studies, during which a previously unidentified metabolite was observed using high performance liquid chromatography and mass spectrometry. The new metabolite was formed by reductive hydrogenation of tritosulfuron but the isolated amount and purity of the substance were insufficient to fully elucidate its structure. Therefore, electrochemistry coupled to mass spectrometry was successfully applied to mimic the reductive hydrogenation of tritosulfuron. After demonstrating the general feasibility of electrochemical reduction, the electrochemical conversion was scaled up to the semi-preparative scale and 1.0 mg of the hydrogenated product was synthesized. Similar retention times and mass spectrometric fragmentation patterns proved that the same hydrogenated product was formed electrochemically and in soil studies. Using the electrochemically generated standard, the structure of the metabolite was elucidated by means of NMR spectroscopy, which shows the potential of electrochemistry and mass spectrometry in environmental fate studies.
Collapse
Affiliation(s)
- Valentin Göldner
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 48, 48149 Münster, Germany; International Graduate School for Battery Chemistry, Characterization, Analysis, Recycling and Application (BACCARA), University of Münster, Corrensstraße 40, 48149, Münster, Germany
| | | | - Uwe Karst
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 48, 48149 Münster, Germany; International Graduate School for Battery Chemistry, Characterization, Analysis, Recycling and Application (BACCARA), University of Münster, Corrensstraße 40, 48149, Münster, Germany.
| |
Collapse
|
6
|
Tonleu Temgoua RC, Kenfack Tonlé I, Boujtita M. Electrochemistry coupled with mass spectrometry for the prediction of the environmental fate and elucidation of the degradation mechanisms of pesticides: current status and future prospects. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:340-350. [PMID: 36661397 DOI: 10.1039/d2em00451h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
One of the crucial steps in the development of a new pesticide (active molecule) is predicting its environmental and in vivo fate, so as to determine potential consequences to a living organism's health and ecology as a whole. In this regard, pesticides undergo transformation processes in response to biotic and abiotic stress. Therefore, there is a need to investigate pesticide transformation products (TPs) and the formation processes they could undergo during the manufacturing process and when discharged into the ecosystem. Although methods based on biological in vitro and in vivo experimental models are tools of choice for the elucidation of metabolic pathways of pesticides (xenobiotics in general), electrochemistry-based techniques offer numerous advantages such as rapid and low-cost analysis, easy implementation, low sample volume requirement, no matrix effects, and miniaturization to improve the performance of the developed methods. However, for greater efficiency, electrochemistry (EC) should be coupled with analytical techniques such as mass spectrometry (MS) and sometimes liquid chromatography (LC), leading to the so-called EC-MS and EC-LC-MS hybrid techniques. In this review, past studies, current applications and utilization of EC-MS and EC-LC-MS techniques for the simulation of environmental fate/degradation of pesticides were reviewed by selected studies with chemical transformation, structures of metabolites, and some experimental conditions. The current challenges and future trends for the mimicry and prediction of the environmental fate/degradation of pesticides based on electrochemical methods combined with mass spectrometry were highlighted.
Collapse
Affiliation(s)
- Ranil Clément Tonleu Temgoua
- Nantes Université, CNRS, CEISAM UMR 6230, F-44000 Nantes, France.
- University of Yaoundé I, Higher Teacher Training College, PO Box 47, Yaoundé, Cameroon
- University of Dschang, Electrochemistry and Chemistry of Materials, Department of Chemistry, Dschang, Cameroon
| | - Ignas Kenfack Tonlé
- University of Dschang, Electrochemistry and Chemistry of Materials, Department of Chemistry, Dschang, Cameroon
| | | |
Collapse
|
7
|
Gorbunov A, Bardin A, Ilyushonok S, Kovach J, Petrenko A, Sukhodolov N, Krasnov K, Krasnov N, Zorin I, Obornev A, Babakov V, Radilov A, Podolskaya E. Multiwell photocatalytic microreactor device integrating drug biotransformation modeling and sample preparation on a MALDI target. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Bussy U, Boisseau R, Croyal M, Temgoua RCT, Boujtita M. In-line formation and identification of toxic reductive metabolites of aristolochic acid using electrochemistry mass spectrometry coupling. Anal Bioanal Chem 2022; 414:2363-2370. [DOI: 10.1007/s00216-022-03874-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/08/2021] [Accepted: 01/04/2022] [Indexed: 11/01/2022]
|
9
|
Kuzikov AV, Filippova TA, Masamrekh RA, Shumyantseva VV. Electrochemical determination of (S)-7-hydroxywarfarin for analysis of CYP2C9 catalytic activity. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2021.115937] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
10
|
Tonleu Temgoua RC, Bussy U, Alvarez-Dorta D, Galland N, Njanja E, Hémez J, Thobie-Gautier C, Tonlé IK, Boujtita M. Electrochemistry-coupled to liquid chromatography-mass spectrometry-density functional theory as a new tool to mimic the environmental degradation of selected phenylurea herbicides. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2021; 23:1600-1611. [PMID: 34596189 DOI: 10.1039/d1em00351h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In vitro and in vivo experimental models, mainly based on cell cultures, animals, healthy humans and clinical trials, are useful approaches for identifying the main metabolic pathways. However, time, cost, and matrix complexity often hinder the success of these methods. In this study, we propose an alternative non-enzymatic method, using electrochemistry (EC) coupled to liquid chromatography (LC) - high resolution mass spectrometry (HRMS) - DFT theoretical calculations (EC/LC-MS/DFT) for the mimicry/simulation of the environmental degradation of phenylurea herbicides, and for the mechanism elucidation of this class of herbicides. Fenuron, monuron, isoproturon, linuron, monolinuron, metoxuron and chlortoluron were selected as relevant model compounds. The intended compounds are oxidized by EC, separated by LC and detected using electrospray ionization HRMS. The main oxidation products were hydroxylated compounds obtained by substitution and addition reactions. Unstable quinone imines/methines, rarely observed by conventional methods, have been identified during the oxidative degradation of phenylurea herbicides for the first time in this study. Some were directly observed and the others were trapped by glutathione GSH. Reactions such as hydrolytic substitutions (-Cl/+OH and -C3H7/+OH and -CH3/+OH and -OCH3/+OH), aromatic hydroxylation, alkyl carbon hydroxylation, dehydrochlorination/dehydromethylation/dehydromethoxylation and conjugation have been successfully mimicked. The obtained results, supported by theoretical calculations, are useful for simulating/understanding and predicting the oxidative degradation pathways of pesticides in the environment.
Collapse
Affiliation(s)
- Ranil Clément Tonleu Temgoua
- Université de Nantes, CNRS, CEISAM UMR 6230, F-44000 Nantes, France.
- University of Yaoundé I, Higher Teacher Training College, P.O. Box 47, Yaoundé, Cameroon
- University of Dschang, Electrochemistry and Chemistry of Materials, Department of Chemistry, Dschang, Cameroon
| | - Ugo Bussy
- Michigan State University, Department of Fisheries and Wildlife, 293 Farm Lane East Lansing, MI, 22101, USA
| | | | - Nicolas Galland
- Université de Nantes, CNRS, CEISAM UMR 6230, F-44000 Nantes, France.
| | - Evangeline Njanja
- University of Dschang, Electrochemistry and Chemistry of Materials, Department of Chemistry, Dschang, Cameroon
| | - Julie Hémez
- Université de Nantes, CNRS, CEISAM UMR 6230, F-44000 Nantes, France.
| | | | - Ignas Kenfack Tonlé
- University of Dschang, Electrochemistry and Chemistry of Materials, Department of Chemistry, Dschang, Cameroon
| | - Mohammed Boujtita
- Université de Nantes, CNRS, CEISAM UMR 6230, F-44000 Nantes, France.
| |
Collapse
|
11
|
Göldner V, Fangmeyer J, Karst U. Development of an electrochemical flow-through cell for the fast and easy generation of isotopically labeled metabolite standards. Drug Test Anal 2021; 14:262-268. [PMID: 34634186 DOI: 10.1002/dta.3175] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 09/30/2021] [Indexed: 02/06/2023]
Abstract
In drug development, metabolite standards of new chemical entities are required for a comprehensive safety evaluation. Stable isotope-labeled internal metabolite standards at the milligram scale, which are difficult and expensive to synthesize in common bottom-up approaches, are necessary for metabolite quantification using liquid chromatography/mass spectrometry. A preparative electrochemical flow-through cell is presented here as a powerful tool for the cheap and straightforward synthesis of milligram amounts of isotopically labeled metabolite standards. The developed cell scales up established, so-called "coulometric" electrochemical cells. Problems like electrode fouling and cross contamination between syntheses are addressed by the use of exchangeable working electrodes. The applicability of the developed cell for the synthesis of metabolite standards is demonstrated using isotopically labeled acetaminophen as a model system for the generation of a biologically relevant phase II metabolite.
Collapse
Affiliation(s)
- Valentin Göldner
- Institute of Inorganic and Analytical Chemistry, University of Münster, Münster, Germany.,International Graduate School for Battery Chemistry, Characterization, Analysis, Recycling and Application (BACCARA), University of Münster, Münster, Germany
| | - Jens Fangmeyer
- Institute of Inorganic and Analytical Chemistry, University of Münster, Münster, Germany
| | - Uwe Karst
- Institute of Inorganic and Analytical Chemistry, University of Münster, Münster, Germany.,International Graduate School for Battery Chemistry, Characterization, Analysis, Recycling and Application (BACCARA), University of Münster, Münster, Germany
| |
Collapse
|
12
|
Korzhenko O, Führer P, Göldner V, Olthuis W, Odijk M, Karst U. Microfluidic Electrochemistry Meets Trapped Ion Mobility Spectrometry and High-Resolution Mass Spectrometry-In Situ Generation, Separation, and Detection of Isomeric Conjugates of Paracetamol and Ethoxyquin. Anal Chem 2021; 93:12740-12747. [PMID: 34495637 DOI: 10.1021/acs.analchem.1c02791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Over the last 3 decades, electrochemistry (EC) has been successfully applied in phase I and phase II metabolism simulation studies. The electrochemically generated phase I metabolite-like oxidation products can react with selected reagents to form phase II conjugates. During conjugate formation, the generation of isomeric compounds is possible. Such isomeric conjugates are often separated by high-performance liquid chromatography (HPLC). Here, we demonstrate a powerful approach that combines EC with ion mobility spectrometry to separate possible isomeric conjugates. In detail, we present the hyphenation of a microfluidic electrochemical chip with an integrated mixer coupled online to trapped ion mobility spectrometry (TIMS) and time-of-flight high-resolution mass spectrometry (ToF-HRMS), briefly chipEC-TIMS-ToF-HRMS. This novel method achieves results in several minutes, which is much faster than traditional separation approaches like HPLC, and was applied to the drug paracetamol and the controversial feed preservative ethoxyquin. The analytes were oxidized in situ in the electrochemical microfluidic chip under formation of reactive intermediates and mixed with different thiol-containing reagents to form conjugates. These were analyzed by TIMS-ToF-HRMS to identify possible isomers. It was observed that the oxidation products of both paracetamol and ethoxyquin form two isomeric conjugates, which are characterized by different ion mobilities, with each reagent. Therefore, using this hyphenated technique, it is possible to not only form reactive oxidation products and their conjugates in situ but also separate and detect these isomeric conjugates within only a few minutes.
Collapse
Affiliation(s)
- Oxana Korzhenko
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstr. 28/30, 48149 Münster, Germany
| | - Pascal Führer
- BIOS Lab on a Chip Group, MESA+ Institute for Nanotechnology, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands
| | - Valentin Göldner
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstr. 28/30, 48149 Münster, Germany.,International Graduate School for Battery Chemistry, Characterization, Analysis, Recycling and Application (BACCARA), University of Münster, Corrensstr. 40, 48149 Münster, Germany
| | - Wouter Olthuis
- BIOS Lab on a Chip Group, MESA+ Institute for Nanotechnology, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands
| | - Mathieu Odijk
- BIOS Lab on a Chip Group, MESA+ Institute for Nanotechnology, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands
| | - Uwe Karst
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstr. 28/30, 48149 Münster, Germany.,International Graduate School for Battery Chemistry, Characterization, Analysis, Recycling and Application (BACCARA), University of Münster, Corrensstr. 40, 48149 Münster, Germany
| |
Collapse
|
13
|
Yang J, Dong X, Zhen XT, Chen Y, Zheng H, Ye LH, Liu FM, Cao J. Rapid analysis and identification of flavonoid and organic acid metabolites in Hawthorn using an on-line flow injection assisted electrochemical microreactor combined with quadrupole time-of-flight tandem mass spectrometry. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2020.103700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
14
|
Hafeez M, Li X, Zhang Z, Huang J, Wang L, Zhang J, Shah S, Khan MM, Xu F, Fernández-Grandon GM, Zalucki MP, Lu Y. De Novo Transcriptomic Analyses Revealed Some Detoxification Genes and Related Pathways Responsive to Noposion Yihaogong ® 5% EC (Lambda-Cyhalothrin 5%) Exposure in Spodoptera frugiperda Third-Instar Larvae. INSECTS 2021; 12:insects12020132. [PMID: 33546242 PMCID: PMC7913311 DOI: 10.3390/insects12020132] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/29/2021] [Accepted: 01/30/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary Insect pest resistance to synthetic insecticides is a major problem that limits efficient management and thus decreases productivity for farmers and increases the use of harmful materials that pollute the environment and endanger humans and beneficial organisms. A major approach for resistance management is understanding how insect pest field populations develop resistance at molecular levels. To provide a comprehensive insight into the resistance mechanisms of Spodoptera frugiperda larvae to lambda-cyhalothrin 5%, we investigated the molecular basis of resistance mechanism in field collected population of fall armyworm (Spodoptera frugiperda) to lambda-cyhalothrin 5% insecticide, a pyrethroid insecticide by using de novo transcriptomics analysis. We found that resistance to lambda-cyhalothrin 5% can be metabolic by increasing the levels of detoxifying enzymes such as P450, GST and UGT and related genes to insecticide resistance in the field population. The obtained transcriptome information provides large gene resources available for further studying the resistance development of Spodoptera frugiperda to pesticides. The DGE data provide comprehensive insights into the gene expression profiles of fall armyworm (Spodoptera frugiperda) to lambda-cyhalothrin 5% and will facilitate the study of the role of each gene in lambda-cyhalothrin resistance development. Abstract The fall armyworm, Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae), is a polyphagous, invasive insect pest which causes significant losses in important crops wherever it has spread. The use of pesticides in agriculture is a key tool in the management of many important crop pests, including S. frugiperda, but continued use of insecticides has selected for various types of resistance, including enzyme systems that provide enhanced mechanisms of detoxification. In the present study, we analyzed the de novo transcriptome of S. frugiperda larvae exposed to Noposion Yihaogong® 5% emulsifiable concentrate (EC) insecticide focusing on detoxification genes and related pathways. Results showed that a total of 1819 differentially expressed genes (DEGs) were identified in larvae after being treated with Noposion Yihaogong® 5% EC insecticide, of which 863 were up- and 956 down-regulated. Majority of these differentially expressed genes were identified in numerous Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, including metabolism of xenobiotics and drug metabolism. Furthermore, many of S. frugiperda genes involved in detoxification pathways influenced by lambda-cyhalothrin stress support their predicted role by further co-expression network analysis. Our RT-qPCR results were consistent with the DEG’s data of transcriptome analysis. The comprehensive transcriptome sequence resource attained through this study enriches the genomic platform of S. frugiperda, and the identified DEGs may enable greater molecular underpinnings behind the insecticide-resistance mechanism caused by lambda-cyhalothrin.
Collapse
Affiliation(s)
- Muhammad Hafeez
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (M.H.); (X.L.); (Z.Z.); (J.H.); (L.W.); (J.Z.)
| | - Xiaowei Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (M.H.); (X.L.); (Z.Z.); (J.H.); (L.W.); (J.Z.)
| | - Zhijun Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (M.H.); (X.L.); (Z.Z.); (J.H.); (L.W.); (J.Z.)
| | - Jun Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (M.H.); (X.L.); (Z.Z.); (J.H.); (L.W.); (J.Z.)
| | - Likun Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (M.H.); (X.L.); (Z.Z.); (J.H.); (L.W.); (J.Z.)
| | - Jinming Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (M.H.); (X.L.); (Z.Z.); (J.H.); (L.W.); (J.Z.)
| | - Sakhawat Shah
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Muhammad Musa Khan
- Key Laboratory of Bio-Pesticide Innovation and Application, South China Agricultural University, Guangzhou 510642, China;
| | - Fei Xu
- Central Laboratory of Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China;
| | | | - Myron P. Zalucki
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia;
| | - Yaobin Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (M.H.); (X.L.); (Z.Z.); (J.H.); (L.W.); (J.Z.)
- Correspondence:
| |
Collapse
|
15
|
Temgoua RC, Bussy U, Alvarez-Dorta D, Galland N, Hémez J, Thobie-Gautier C, Tonlé IK, Boujtita M. Using electrochemistry coupled to high resolution mass spectrometry for the simulation of the environmental degradation of the recalcitrant fungicide carbendazim. Talanta 2021; 221:121448. [DOI: 10.1016/j.talanta.2020.121448] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 01/28/2023]
|
16
|
Gao B, Zhao S, Zhang Z, Li L, Hu K, Kaziem AE, He Z, Hua X, Shi H, Wang M. A potential biomarker of isofenphos-methyl in humans: A chiral view. ENVIRONMENT INTERNATIONAL 2019; 127:694-703. [PMID: 30991225 DOI: 10.1016/j.envint.2019.04.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/28/2019] [Accepted: 04/06/2019] [Indexed: 06/09/2023]
Abstract
Isofenphos-methyl (IFP) is a very active and persistent chiral insecticide. However, IFP has lower activity against acetylcholinesterases (AChEs). Previously, it was confirmed that phosphorothioate organophosphorus pesticides with N-alkyl (POPN) require activation by oxidative desulfuration and N-dealkylation. In this work, we demonstrated that IFP could be metabolized in human liver microsomes to isofenphos-methyl oxon (IFPO, 52.7%), isocarbophos (ICP, 14.2%) and isocarbophos oxon (ICPO, 11.2%). It was found that (R)-IFP was preferentially degraded compared to the (S)-enantiomer, and the enantiomeric fraction (EF) value reached 0.61 at 60 min. However, (S)-enantiomers of the three metabolites, were degraded preferentially, and the EF values ranged from 0.34 to 0.45. Cytochrome P450 (CYP) isoforms CYP3A4, CYP2E1, and CYP1A2 and carboxylesterase enzyme have an essential role in the enantioselective metabolism of IFP; but, the enzymes that participate in the degradation of IFP metabolites are different. The AChE inhibition bioassay indicated that ICPO is the only effective inhibitor of AChE. The covalent molecular docking has proposed that the metabolites of IFP and its analogs after N-dealkylation and oxidative desulfuration will possess the highest inhibitory activity against AChE. This study is the first to demonstrate that ICPO can be regarded as a potential biomarker for the biomonitoring of IFP and ICP exposure in humans.
Collapse
Affiliation(s)
- Beibei Gao
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State and Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, Jiangsu 210095, China
| | - Shuangshuang Zhao
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State and Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, Jiangsu 210095, China
| | - Zhaoxian Zhang
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State and Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, Jiangsu 210095, China
| | - Lianshan Li
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State and Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, Jiangsu 210095, China
| | - Kunming Hu
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State and Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, Jiangsu 210095, China
| | - Amir E Kaziem
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State and Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, Jiangsu 210095, China; Department of Environmental Agricultural Science, Institute of Environmental Studies and Research, Ain Shams University. Cairo11566, Egypt
| | - Zongzhe He
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State and Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, Jiangsu 210095, China
| | - Xiude Hua
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State and Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, Jiangsu 210095, China
| | - Haiyan Shi
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State and Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, Jiangsu 210095, China
| | - Minghua Wang
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State and Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, Jiangsu 210095, China.
| |
Collapse
|
17
|
van Geenen FAMG, Franssen MCR, Miikkulainen V, Ritala M, Zuilhof H, Kostiainen R, Nielen MWF. TiO 2 Photocatalyzed Oxidation of Drugs Studied by Laser Ablation Electrospray Ionization Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:639-646. [PMID: 30617860 PMCID: PMC6445813 DOI: 10.1007/s13361-018-2120-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/27/2018] [Accepted: 12/02/2018] [Indexed: 05/04/2023]
Abstract
In drug discovery, it is important to identify phase I metabolic modifications as early as possible to screen for inactivation of drugs and/or activation of prodrugs. As the major class of reactions in phase I metabolism is oxidation reactions, oxidation of drugs with TiO2 photocatalysis can be used as a simple non-biological method to initially eliminate (pro)drug candidates with an undesired phase I oxidation metabolism. Analysis of reaction products is commonly achieved with mass spectrometry coupled to chromatography. However, sample throughput can be substantially increased by eliminating pretreatment steps and exploiting the potential of ambient ionization mass spectrometry (MS). Furthermore, online monitoring of reactions in a time-resolved way would identify sequential modification steps. Here, we introduce a novel (time-resolved) TiO2-photocatalysis laser ablation electrospray ionization (LAESI) MS method for the analysis of drug candidates. This method was proven to be compatible with both TiO2-coated glass slides as well as solutions containing suspended TiO2 nanoparticles, and the results were in excellent agreement with studies on biological oxidation of verapamil, buspirone, testosterone, andarine, and ostarine. Finally, a time-resolved LAESI MS setup was developed and initial results for verapamil showed excellent analytical stability for online photocatalyzed oxidation reactions within the set-up up to at least 1 h. Graphical Abstract.
Collapse
Affiliation(s)
- Fred A M G van Geenen
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
- TI-COAST, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Maurice C R Franssen
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Ville Miikkulainen
- Department of Chemistry, University of Helsinki, P.O. Box 55, 00014, Helsinki, Finland
| | - Mikko Ritala
- Department of Chemistry, University of Helsinki, P.O. Box 55, 00014, Helsinki, Finland
| | - Han Zuilhof
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
- School of Pharmaceutical Sciences and Technology, Tianjin University, 92 Weijin Road, Tianjin, People's Republic of China
- Department of Chemical and Materials Engineering, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Risto Kostiainen
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014, Helsinki, Finland
| | - Michel W F Nielen
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.
- RIKILT, Wageningen University & Research, P.O. Box 230, 6700 AE, Wageningen, The Netherlands.
| |
Collapse
|
18
|
Potęga A, Garwolińska D, Nowicka AM, Fau M, Kot-Wasik A, Mazerska Z. Phase I and phase II metabolism simulation of antitumor-active 2-hydroxyacridinone with electrochemistry coupled on-line with mass spectrometry. Xenobiotica 2019; 49:922-934. [PMID: 30301406 DOI: 10.1080/00498254.2018.1524946] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Here, we report the metabolic profile and the results of associated metabolic studies of 2-hydroxy-acridinone (2-OH-AC), the reference compound for antitumor-active imidazo- and triazoloacridinones. Electrochemistry coupled with mass spectrometry was applied to simulate the general oxidative metabolism of 2-OH-AC for the first time. The reactivity of 2-OH-AC products to biomolecules was also examined. The usefulness of the electrochemistry for studying the reactive drug metabolite trapping (conjugation reactions) was evaluated by the comparison with conventional electrochemical (controlled-potential electrolysis) and enzymatic (microsomal incubation) approaches. 2-OH-AC oxidation products were generated in an electrochemical thin-layer cell. Their tentative structures were assigned based on tandem mass spectrometry in combination with accurate mass measurements. Moreover, the electrochemical conversion of 2-OH-AC in the presence of reduced glutathione and/or N-acetylcysteine unveiled the formation of reactive metabolite-nucleophilic trapping agent conjugates (m/z 517 and m/z 373, respectively) through the thiol group. This glutathione S-conjugate was also identified after electrolysis experiment as well as was detected in liver microsomes. Summing up, the present work illustrates that the electrochemical simulation of metabolic reactions successfully supports the results of classical electrochemical and enzymatic studies. Therefore, it can be a useful tool for synthesis of drug metabolites, including reactive metabolites.
Collapse
Affiliation(s)
- Agnieszka Potęga
- a Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry , Gdańsk University of Technology , Gdańsk , Poland
| | - Dorota Garwolińska
- b Department of Analytical Chemistry, Faculty of Chemistry , Gdańsk University of Technology , Gdańsk , Poland
| | - Anna M Nowicka
- c Laboratory of Theory and Applications of Electrodes, Faculty of Chemistry , University of Warsaw , Warsaw , Poland
| | - Michał Fau
- c Laboratory of Theory and Applications of Electrodes, Faculty of Chemistry , University of Warsaw , Warsaw , Poland
| | - Agata Kot-Wasik
- b Department of Analytical Chemistry, Faculty of Chemistry , Gdańsk University of Technology , Gdańsk , Poland
| | - Zofia Mazerska
- a Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry , Gdańsk University of Technology , Gdańsk , Poland
| |
Collapse
|
19
|
Development of a miniaturized injection cell for online electrochemistry–capillary electrophoresis–mass spectrometry. MONATSHEFTE FUR CHEMIE 2018. [DOI: 10.1007/s00706-018-2202-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
20
|
Electrochemical simulation of three novel cardiovascular drugs phase I metabolism and development of a new method for determination of them by liquid chromatography coupled with tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1093-1094:100-112. [PMID: 30015307 DOI: 10.1016/j.jchromb.2018.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 06/06/2018] [Accepted: 07/02/2018] [Indexed: 01/25/2023]
Abstract
In this study electrochemistry (EC) coupled with electrospray ionization mass spectrometry (ESI-MS) was used to study the metabolic fate of three novel cardiovascular drugs: rivaroxaban (RIV), aliskiren (ALS), and prasugrel (PRS). Mimicry of the oxidative phase I metabolism was achieved in a simple amperometric thin-layer cell equipped with a boron-doped diamond (MD) working electrode. Structures of the electrochemically-generated metabolites were elucidated from MS/MS experiments. Additionally, a sensitive, specific, and rapid ultra-high performance liquid chromatography-tandem mass spectrometer (UHPLC-MS/MS) method has been developed and validated for the selected drugs in human urine samples. Three different sample preparation methods were compared and finally, sample preparation was accomplished through an ultrasound-assisted emulsification microextraction process (USAEME). The drugs were detected using a triple quadrupole tandem mass spectrometer by multiple reaction monitoring via an electrospray ionization source with positive ionization mode (ESI(+)). The results obtained by EC-MS were compared with conventional in vivo studies by analyzing urine samples from patients. Data from in vivo experiments showed good agreement with the data from electrochemical oxidation. Thus, EC-MS is very well-suited for the simulation of the oxidative metabolism of rivaroxaban, aliskiren, and prasugrel as well. Moreover, electrochemical conversion of target compounds appears to be a new in vitro technology for the prediction of potential metabolites.
Collapse
|
21
|
Navarro Suarez L, Brückner L, Rohn S. Electrochemical Oxidation of Primary Bile Acids: A Tool for Simulating Their Oxidative Metabolism? Int J Mol Sci 2018; 19:E2491. [PMID: 30142907 PMCID: PMC6165074 DOI: 10.3390/ijms19092491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/16/2018] [Accepted: 08/18/2018] [Indexed: 01/14/2023] Open
Abstract
Bile acids are a subgroup of sterols and important products of cholesterol catabolism in mammalian organisms. Modifications (e.g., oxidation and 7-dehydroxylation) are predominantly exerted by the intestinal microbiota. Bile acids can be found in almost all living organisms, and their concentration and metabolism can be used for the assessment of the pathological and nutritional status of an organism. Electrochemical oxidation is a rapid, relatively inexpensive approach to simulate natural metabolic redox processes in vitro. This technique further allows the identification of oxidative degradation pathways of individual substances, as well as the demonstration of binding studies of generated oxidation products with biologically relevant molecules. When coupling an electrochemical and a high-resolution mass spectrometric system, oxidation products can be generated and identified directly by non-targeted ESI-MS. Here, a method for the generation of oxidation products of the primary bile acids cholic acid and chenodeoxycholic acid was exemplarily developed. Most products and the highest intensities were observed at a pH value of 6. For cholic acid, a high potential of 3 V was necessary, while for chenodeoxycholic acid, a potential of 2.4 V led to a higher number of oxidation products. In a second approach, a binding study with glutathione was performed to simulate phase II metabolism. It was possible to detect signals of free glutathione, free bile acids, and adducts of both reactants. As the resulting mass spectra also showed some new signals of the oxidized bile acid, which could not be observed without glutathione, it can be assumed that glutathione is able to bind reactive oxidation species before reacting with other products.
Collapse
Affiliation(s)
- Laura Navarro Suarez
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany.
| | - Lea Brückner
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany.
| | - Sascha Rohn
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany.
| |
Collapse
|
22
|
Investigation of Chlorpyrifos and Its Transformation Products in Fruits and Spices by Combining Electrochemistry and Liquid Chromatography Coupled to Tandem Mass Spectrometry. FOOD ANAL METHOD 2018. [DOI: 10.1007/s12161-018-1245-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
23
|
Affiliation(s)
- Yujie Liang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road 38, Beijing 100191, China
| | - Jialiang Wei
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road 38, Beijing 100191, China
| | - Xu Qiu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road 38, Beijing 100191, China
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road 38, Beijing 100191, China
- State Key Laboratory of Organometallic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
24
|
Mekonnen TF, Panne U, Koch M. Prediction of biotransformation products of the fungicide fluopyram by electrochemistry coupled online to liquid chromatography-mass spectrometry and comparison with in vitro microsomal assays. Anal Bioanal Chem 2018; 410:2607-2617. [PMID: 29455286 DOI: 10.1007/s00216-018-0933-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 01/22/2018] [Accepted: 01/31/2018] [Indexed: 12/22/2022]
Abstract
Biotransformation processes of fluopyram (FLP), a new succinate dehydrogenase inhibitor (SDHI) fungicide, were investigated by electrochemistry (EC) coupled online to liquid chromatography (LC) and electrospray mass spectrometry (ESI-MS). Oxidative phase I metabolite production was achieved using an electrochemical flow-through cell equipped with a boron-doped diamond (BDD) electrode. Structural elucidation and prediction of oxidative metabolism pathways were assured by retention time, isotopic patterns, fragmentation, and accurate mass measurements using EC/LC/MS, LC-MS/MS, and/or high-resolution mass spectrometry (HRMS). The results obtained by EC were compared with conventional in vitro studies by incubating FLP with rat and human liver microsomes (RLM, HLM). Known phase I metabolites of FLP (benzamide, benzoic acid, 7-hydroxyl, 8-hydroxyl, 7,8-dihydroxyl FLP, lactam FLP, pyridyl acetic acid, and Z/E-olefin FLP) were successfully simulated by EC/LC/MS. New metabolites including an imide, hydroxyl lactam, and 7-hydroxyl pyridyl acetic acid oxidative metabolites were predicted for the first time in our study using EC/LC/MS and liver microsomes. We found oxidation by dechlorination to be one of the major metabolism mechanisms of FLP. Thus, our results revealed that EC/LC/MS-based metabolic elucidation was more advantageous on time and cost of analysis and enabled matrix-free detection with valuable information about the mechanisms and intermediates of metabolism processes. Graphical abstract Oxidative metabolism of fluopyram.
Collapse
Affiliation(s)
- Tessema F Mekonnen
- Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter Str. 11, 12489, Berlin, Germany.,School of Analytical Sciences Adlershof (SALSA), Humboldt-Universität zu Berlin, Albert-Einstein-Str. 5-9, 12489, Berlin, Germany
| | - Ulrich Panne
- Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter Str. 11, 12489, Berlin, Germany.,School of Analytical Sciences Adlershof (SALSA), Humboldt-Universität zu Berlin, Albert-Einstein-Str. 5-9, 12489, Berlin, Germany
| | - Matthias Koch
- Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter Str. 11, 12489, Berlin, Germany.
| |
Collapse
|
25
|
Voltammetric and electrogeneration approaches for the assessment of the oxidative drug metabolism. Anal Bioanal Chem 2018; 410:2229-2239. [DOI: 10.1007/s00216-018-0897-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/12/2018] [Accepted: 01/16/2018] [Indexed: 12/26/2022]
|
26
|
Szultka-Młyńska M, Bajkacz S, Baranowska I, Buszewski B. Structural characterization of electrochemically and in vivo generated potential metabolites of selected cardiovascular drugs by EC-UHPLC/ESI-MS using an experimental design approach. Talanta 2017; 176:262-276. [PMID: 28917751 DOI: 10.1016/j.talanta.2017.08.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 08/08/2017] [Accepted: 08/11/2017] [Indexed: 11/20/2022]
Abstract
In the last few years, a number of studies were conducted which aimed at understanding the mechanisms of cardiovascular drug, metabolism, and there is still the need to determine the metabolites of cardiac drugs for the purpose of metabolism control. In this study, we employ a direct combination of electrochemical oxidation and mass spectrometric (EC-MS) identification for monitoring the oxidation pathway of ten cardiovascular drugs (metoprolol, propranolol, propafenone, mexiletine, oxprenolol, pirbuterol, pindolol, cicloprolol, acebutolol and atenolol). Oxidation was accomplished in an electrochemical thin-layer cell coupled on-line to electrospray ionization mass spectrometry (EC/ESI-MS). For further characterization of electrochemical products, the approach involving liquid chromatography linked to tandem mass spectrometry was used. Appropriate conditions for oxidation and identification processes with such parameters as the potential value, mobile phase (type and pH) and working electrode were optimized. Optimization was performed with the use of central composite design (CCD). Besides electrochemical oxidation of analytes (phase I of metabolic transformation), addition of glutathione (GSH) for follow-up reactions (phase II conjunction) was also investigated. The electrochemical results were compared to in-vivo experiments by analyzing plasma and urine samples from patients who had been administered selected cardiovascular drugs. These results show that electrochemistry coupled to mass spectrometry turned out to be an analytical tool suitable to procure a feasible analytical base for the envisioned in vivo experiments.
Collapse
Affiliation(s)
- Małgorzata Szultka-Młyńska
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarin 7, 87-100 Torun, Poland; Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, 87-100 Torun, Poland.
| | - Sylwia Bajkacz
- Department of Inorganic, Analytical Chemistry and Electrochemistry, Silesian University of Technology, 7 M. Strzody Str., 44-100 Gliwice, Poland
| | - Irena Baranowska
- Department of Inorganic, Analytical Chemistry and Electrochemistry, Silesian University of Technology, 7 M. Strzody Str., 44-100 Gliwice, Poland
| | - Bogusław Buszewski
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarin 7, 87-100 Torun, Poland; Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, 87-100 Torun, Poland
| |
Collapse
|
27
|
Electrochemistry coupled online to liquid chromatography-mass spectrometry for fast simulation of biotransformation reactions of the insecticide chlorpyrifos. Anal Bioanal Chem 2017; 409:3359-3368. [DOI: 10.1007/s00216-017-0277-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 02/17/2017] [Accepted: 02/22/2017] [Indexed: 12/11/2022]
|
28
|
An electrochemical device generating metal ion adducts of organic compounds for electrospray mass spectrometry. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.06.108] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
29
|
Büter L, Faber H, Wigger T, Vogel M, Karst U. Differential Protein Labeling Based on Electrochemically Generated Reactive Intermediates. Anal Chem 2015; 87:9931-8. [DOI: 10.1021/acs.analchem.5b02497] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Lars Büter
- Westfälische Wilhelms-Universität Münster, NRW Graduate School of Chemistry, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
- Westfälische Wilhelms-Universität Münster, Institut für Anorganische und Analytische Chemie, Corrensstraße 30, 48149 Münster, Germany
| | - Helene Faber
- Westfälische Wilhelms-Universität Münster, Institut für Anorganische und Analytische Chemie, Corrensstraße 30, 48149 Münster, Germany
| | - Tina Wigger
- Westfälische Wilhelms-Universität Münster, NRW Graduate School of Chemistry, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
- Westfälische Wilhelms-Universität Münster, Institut für Anorganische und Analytische Chemie, Corrensstraße 30, 48149 Münster, Germany
| | - Martin Vogel
- Westfälische Wilhelms-Universität Münster, Institut für Anorganische und Analytische Chemie, Corrensstraße 30, 48149 Münster, Germany
| | - Uwe Karst
- Westfälische Wilhelms-Universität Münster, NRW Graduate School of Chemistry, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
- Westfälische Wilhelms-Universität Münster, Institut für Anorganische und Analytische Chemie, Corrensstraße 30, 48149 Münster, Germany
| |
Collapse
|