1
|
Yao H, Sherer EC, Lu M, Small J, Martin GE, Lam YH, Chen Q, Helmy R, Liu Y, Chen H. One-Step Regio- and Stereoselective Electrochemical Synthesis of Orexin Receptor Antagonist Oxidative Metabolites. J Org Chem 2022; 87:15011-15021. [PMID: 36322780 PMCID: PMC10512451 DOI: 10.1021/acs.joc.2c01311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Synthesis of drug metabolites, which often have complex structures, is an integral step in the evaluation of drug candidate metabolism, pharmacokinetic (PK) properties, and safety profiles. Frequently, such synthetic endeavors entail arduous, multiple-step de novo synthetic routes. Herein, we present the one-step Shono-type electrochemical synthesis of milligrams of chiral α-hydroxyl amide metabolites of two orexin receptor antagonists, MK-8133 and MK-6096, as revealed by a small-scale (pico- to nano-mole level) reaction screening using a lab-built online electrochemistry (EC)/mass spectrometry (MS) (EC/MS) platform. The electrochemical oxidation of MK-8133 and MK-6096 was conducted in aqueous media and found to produce the corresponding α-piperidinols with exclusive regio- and stereoselectivity, as confirmed by high-resolution nuclear magnetic resonance (NMR) characterization of products. Based on density functional theory (DFT) calculations, the exceptional regio- and stereoselectivity for this electrochemical oxidation are governed by more favorable energetics of the transition state, leading to the preferred secondary carbon radical α to the amide group and subsequent steric hindrance associated with the U-shaped conformation of the cation derived from the secondary α-carbon radical, respectively.
Collapse
Affiliation(s)
- Huifang Yao
- Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, MRL, Merck & Co., Inc., PO Box 2000, Rahway, NJ 07065, USA
| | - Edward C. Sherer
- Analytical Research and Development, MRL, Merck & Co., Inc., PO Box 2000, Rahway, NJ 07065, USA
| | - Mei Lu
- Department of Chemistry & Biochemistry, Ohio University, Athens, OH 45701, USA
| | - James Small
- Analytical Research and Development, MRL, Merck & Co., Inc., PO Box 2000, Rahway, NJ 07065, USA
| | - Gary E. Martin
- Analytical Research and Development, MRL, Merck & Co., Inc., PO Box 2000, Rahway, NJ 07065, USA
| | - Yu-hong Lam
- Computational and Structural Chemistry, MRL, Merck & Co., Inc., PO Box 2000, Rahway, NJ 07065, USA
| | - Qinghao Chen
- Process Research and Development, MRL, Merck & Co., Inc., PO Box 2000, Rahway, NJ 07065, USA
| | - Roy Helmy
- Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, MRL, Merck & Co., Inc., PO Box 2000, Rahway, NJ 07065, USA
| | - Yong Liu
- Analytical Research and Development, MRL, Merck & Co., Inc., PO Box 2000, Rahway, NJ 07065, USA
| | - Hao Chen
- Department of Chemistry & Biochemistry, Ohio University, Athens, OH 45701, USA
- Department of Chemistry & Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA
| |
Collapse
|
2
|
Shi W, Huo X, Ding X, Zhu P, Wan Y, Lu X, Feng R, Yu Q, Wang X. Rapid screening of illegally added drugs in functional food using a miniature ion trap mass spectrometer. Food Chem 2022; 386:132808. [PMID: 35364493 DOI: 10.1016/j.foodchem.2022.132808] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 11/04/2022]
Abstract
With the expansion of the functional food market, the qualification assessment of these products has become a major challenge, and efficient analytical tools are urgently needed. Here, a miniature mass spectrometer (MS) with self-aspiration capillary electrospray ionization (SACESI) source and ion trap analyzer was developed for rapid screening of various illegally added drugs in functional foods. No chromatographic separation was required, but a simplified two-step pretreatment method was developed to reduce the operational procedures and time consumption of the entire analysis. SACESI source uses capillary action to drive solution injection, which utilizes a simple structure and convenient operation to constitute a kind of disposable MS detection solution. To achieve accurate and automatic identification, an intelligent recognition algorithm with steps of spectrum preprocessing, characteristic peak matching, and support vector machine learning was constructed. The relative accuracy of rapid screening of 31 suspicious drugs in various samples is up to 99.78%. It achieves 100% correct identification for the 55 batches of actual samples captured by on-site inspection, which demonstrates the feasibility of the proposed analytical system and strategy in food safety applications.
Collapse
Affiliation(s)
- Wenyan Shi
- Division of Advanced Manufacturing, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Xinming Huo
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China.
| | - Xinyue Ding
- Division of Advanced Manufacturing, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Peiyuan Zhu
- Shenzhen Han Industrial Technologies Co.Ltd., Shenzhen 518055, China
| | - Yutong Wan
- Shenzhen Chin Instrument Co., Ltd., Shenzhen 518055, China
| | - Xinqiong Lu
- Shenzhen Chin Instrument Co., Ltd., Shenzhen 518055, China
| | - Rui Feng
- Research Institute for Frontier Science, Beihang University, Beijing 100191, China
| | - Quan Yu
- Division of Advanced Manufacturing, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| | - Xiaohao Wang
- Division of Advanced Manufacturing, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| |
Collapse
|
3
|
Ma Y, Cui L, Li M, Cao J, Zheng L, Wei Z. Product Identification and Mechanism Exploration of Organic Electrosynthesis Using on-line Electrochemistry-Mass Spectrometry. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
4
|
Cheng H, Yang T, Edwards M, Tang S, Xu S, Yan X. Picomole-Scale Transition Metal Electrocatalysis Screening Platform for Discovery of Mild C-C Coupling and C-H Arylation through in Situ Anodically Generated Cationic Pd. J Am Chem Soc 2022; 144:1306-1312. [PMID: 35015550 DOI: 10.1021/jacs.1c11179] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Development of new transition-metal-catalyzed electrochemistry promises to improve overall synthetic efficiency. Here, we describe the first integrated platform for online screening of electrochemical transition-metal catalysis. It utilizes the intrinsic electrochemical capabilities of nanoelectrospray ionization mass spectrometry (nano-ESI-MS) and picomole-scale anodic corrosion of a Pd electrode to generate and evaluate highly efficient cationic catalysts for mild electrocatalysis. We demonstrate the power of the novel electrocatalysis platform by (1) identifying electrolytic Pd-catalyzed Suzuki coupling at room temperature, (2) discovering Pd-catalyzed electrochemical C-H arylation in the absence of external oxidant or additive, (3) developing electrolyzed Suzuki coupling/C-H arylation cascades, and (4) achieving late-stage functionalization of two drug molecules by the newly developed mild electrocatalytic C-H arylation. More importantly, the scale-up reactions confirm that new electrochemical pathways discovered by nano-ESI can be implemented under the conventional electrolytic reaction conditions. This approach enables in situ mechanistic studies by capturing various intermediates including transient transition metal species by MS, and thus uncovering the critical role of anodically generated cationic Pd catalyst in promoting otherwise sluggish transmetalation in C-H arylation. The anodically generated cationic Pd with superior catalytic efficiency and novel online electrochemical screening platform hold great potential for discovering mild transition-metal-catalyzed reactions.
Collapse
Affiliation(s)
- Heyong Cheng
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States.,College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Tingyuan Yang
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Madison Edwards
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Shuli Tang
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Shiqing Xu
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Xin Yan
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
5
|
Song C, Wei XY, Qiu ZD, Gong L, Chen ZY, Ma Y, Shen Y, Zhao YJ, Wang WH, Lai CJS, Yang B. Exploring the resources of the genus Viscum for potential therapeutic applications. JOURNAL OF ETHNOPHARMACOLOGY 2021; 277:114233. [PMID: 34044077 DOI: 10.1016/j.jep.2021.114233] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 05/03/2021] [Accepted: 05/20/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The genus Viscum comprises approximately 100 species that are mainly distributed across Africa, Asia and Europe. The extracts and preparations of Viscum species are widely used as common complementary and alternative medicines in the treatment of rheumatism and cancer. AIM OF THE REVIEW This review aims to explore the medicinal properties of twelve species belonging to the genus Viscum for potential therapeutic applications. MATERIALS AND METHODS We collected online information (including PubMed, CNKI, Google Scholar, and Web of Science) from January 1915 to April 2021 and knowledge from classical books on Chinese herbal medicines available for 12 species of the genus Viscum, including Viscum coloratum (Kom.) Nakai, Viscum album L., Viscum articulatum Burm. f., Viscum liquidambaricola Hayata, Viscum ovalifolium DC., Viscum capitellatum Sm., Viscum cruciatum Sieber ex Boiss., Viscum nudum Danser, Viscum angulatum B.Heyne ex DC., Viscum tuberculatum A.Rich., Viscum multinerve Hayata, and Viscum diospyrosicola Hayata. RESULTS At least 250 different compounds have been reported across twelve Viscum species, including amino acid and peptides, alkaloids, phenolic acids, flavonoids, terpenoids, carbohydrates, fatty acids, lipids, and other types of compounds. In particular, for Viscum coloratum (Kom.) Nakai and Viscum album L., the plants, preparations, and bioactive components have been thoroughly reviewed. This has allowed to elucidate the role of active components, including lectins, viscotoxins, flavonoids, terpenoids, phenolic acids, and polysaccharides, in multiple bioactivities, such as anti-cancer, anti-rheumatism arthralgia, anti-inflammation, anti-cardiovascular diseases, enhancing immunity, and anti-chemotherapy side effects. We also evaluated quality control methods based on active compounds, in vivo exposure compounds, and discriminated chemical markers. CONCLUSIONS This is the first report to systematically review the pharmaceutical development history, chemical composition, clinical evidence, pharmacological activity, discriminated chemical markers, in vivo exposure, and quality control on twelve distinct species of Viscum plants with medicinal properties. The significant safety and efficacy, along with the minor side effects are constantly confirmed in clinics. The genus Viscum is thus an important medicinal resource that is worth exploring and developing in future pharmacological and chemical studies.
Collapse
Affiliation(s)
- Chuan Song
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China; State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China
| | - Xu-Ya Wei
- Academician Workstation, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, PR China
| | - Zi-Dong Qiu
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China
| | - Li Gong
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China
| | - Ze-Yan Chen
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China
| | - Ying Ma
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China
| | - Ye Shen
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China
| | - Yu-Jun Zhao
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China
| | - Wei-Hao Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China
| | - Chang-Jiang-Sheng Lai
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China.
| | - Bin Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China.
| |
Collapse
|
6
|
Nolte O, Volodin IA, Stolze C, Hager MD, Schubert US. Trust is good, control is better: a review on monitoring and characterization techniques for flow battery electrolytes. MATERIALS HORIZONS 2021; 8:1866-1925. [PMID: 34846470 DOI: 10.1039/d0mh01632b] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Flow batteries (FBs) currently are one of the most promising large-scale energy storage technologies for energy grids with a large share of renewable electricity generation. Among the main technological challenges for the economic operation of a large-scale battery technology is its calendar lifetime, which ideally has to cover a few decades without significant loss of performance. This requirement can only be met if the key parameters representing the performance losses of the system are continuously monitored and optimized during the operation. Nearly all performance parameters of a FB are related to the two electrolytes as the electrochemical storage media and we therefore focus on them in this review. We first survey the literature on the available characterization methods for the key FB electrolyte parameters. Based on these, we comprehensively review the currently available approaches for assessing the most important electrolyte state variables: the state-of-charge (SOC) and the state-of-health (SOH). We furthermore discuss how monitoring and operation strategies are commonly implemented as online tools to optimize the electrolyte performance and recover lost battery capacity as well as how their automation is realized via battery management systems (BMSs). Our key findings on the current state of this research field are finally highlighted and the potential for further progress is identified.
Collapse
Affiliation(s)
- Oliver Nolte
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany.
| | | | | | | | | |
Collapse
|
7
|
Li W, Sun J, Gao Y, Zhang Y, Ouyang J, Na N. Monitoring of electrochemical reactions on different electrode configurations by ambient mass spectrometry. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116180] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
8
|
Development of a miniaturized injection cell for online electrochemistry–capillary electrophoresis–mass spectrometry. MONATSHEFTE FUR CHEMIE 2018. [DOI: 10.1007/s00706-018-2202-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
9
|
Ren Y, Zhang W, Lin Z, Bushman LR, Anderson PL, Ouyang Z. In-capillary microextraction for direct mass spectrometry analysis of biological samples. Talanta 2018; 189:451-457. [PMID: 30086946 DOI: 10.1016/j.talanta.2018.07.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 06/30/2018] [Accepted: 07/10/2018] [Indexed: 11/24/2022]
Abstract
Slug flow microextraction (SFME)-nanoESI was originally explored as a single-step sampling ionization method for MS analysis of biofluids. In this work, a comprehensive study and development of the SFME has been carried out. Revers-phase SFME was developed to analyze chemical compounds in oil samples. A three-phase SFME system was introduced as a suitable approach for analyzing polar compounds in biofluids. The impacts by the capillary inner diameter, solvent and sample properties were also investigated, leading the use of fused silica capillaries for performing SFME.
Collapse
Affiliation(s)
- Yue Ren
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China; Weldon School of Biomedical Engineering and Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Wenpeng Zhang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China; Weldon School of Biomedical Engineering and Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA.
| | - Ziqing Lin
- Weldon School of Biomedical Engineering and Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Lane R Bushman
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO 80045, USA
| | - Peter L Anderson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO 80045, USA
| | - Zheng Ouyang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China; Weldon School of Biomedical Engineering and Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
10
|
Mekonnen TF, Panne U, Koch M. Prediction of biotransformation products of the fungicide fluopyram by electrochemistry coupled online to liquid chromatography-mass spectrometry and comparison with in vitro microsomal assays. Anal Bioanal Chem 2018; 410:2607-2617. [PMID: 29455286 DOI: 10.1007/s00216-018-0933-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 01/22/2018] [Accepted: 01/31/2018] [Indexed: 12/22/2022]
Abstract
Biotransformation processes of fluopyram (FLP), a new succinate dehydrogenase inhibitor (SDHI) fungicide, were investigated by electrochemistry (EC) coupled online to liquid chromatography (LC) and electrospray mass spectrometry (ESI-MS). Oxidative phase I metabolite production was achieved using an electrochemical flow-through cell equipped with a boron-doped diamond (BDD) electrode. Structural elucidation and prediction of oxidative metabolism pathways were assured by retention time, isotopic patterns, fragmentation, and accurate mass measurements using EC/LC/MS, LC-MS/MS, and/or high-resolution mass spectrometry (HRMS). The results obtained by EC were compared with conventional in vitro studies by incubating FLP with rat and human liver microsomes (RLM, HLM). Known phase I metabolites of FLP (benzamide, benzoic acid, 7-hydroxyl, 8-hydroxyl, 7,8-dihydroxyl FLP, lactam FLP, pyridyl acetic acid, and Z/E-olefin FLP) were successfully simulated by EC/LC/MS. New metabolites including an imide, hydroxyl lactam, and 7-hydroxyl pyridyl acetic acid oxidative metabolites were predicted for the first time in our study using EC/LC/MS and liver microsomes. We found oxidation by dechlorination to be one of the major metabolism mechanisms of FLP. Thus, our results revealed that EC/LC/MS-based metabolic elucidation was more advantageous on time and cost of analysis and enabled matrix-free detection with valuable information about the mechanisms and intermediates of metabolism processes. Graphical abstract Oxidative metabolism of fluopyram.
Collapse
Affiliation(s)
- Tessema F Mekonnen
- Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter Str. 11, 12489, Berlin, Germany.,School of Analytical Sciences Adlershof (SALSA), Humboldt-Universität zu Berlin, Albert-Einstein-Str. 5-9, 12489, Berlin, Germany
| | - Ulrich Panne
- Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter Str. 11, 12489, Berlin, Germany.,School of Analytical Sciences Adlershof (SALSA), Humboldt-Universität zu Berlin, Albert-Einstein-Str. 5-9, 12489, Berlin, Germany
| | - Matthias Koch
- Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter Str. 11, 12489, Berlin, Germany.
| |
Collapse
|
11
|
Portychová L, Schug KA. Instrumentation and applications of electrochemistry coupled to mass spectrometry for studying xenobiotic metabolism: A review. Anal Chim Acta 2017; 993:1-21. [PMID: 29078951 DOI: 10.1016/j.aca.2017.08.050] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 08/21/2017] [Accepted: 08/26/2017] [Indexed: 01/03/2023]
Abstract
The knowledge of metabolic pathways and biotransformation of xenobiotics, artificial substances foreign to the entire biological system, is crucial for elucidation of degradation routes of potentially toxic substances. Nowadays, there are many methods to simulate xenobiotic metabolism in the human body in vitro. In this review, the metabolism of various substances in the human body is described, followed by a summary of methods used for prediction of metabolic pathways and biotransformation. Above all, focus is placed on the coupling of electrochemistry to mass spectrometry, which is still a relatively new technique. This promising tool can mimic both oxidative phase I and conjugative phase II metabolism. Different experimental arrangements, with or without a separation step, and various applications of this technique are illustrated and critically reviewed.
Collapse
Affiliation(s)
- Lenka Portychová
- Research Institute for Organic Synthesis, Inc., 533 54 Rybitví, Czech Republic; Department of Analytical Chemistry, Palacký University, 771 46 Olomouc, Czech Republic
| | - Kevin A Schug
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, USA.
| |
Collapse
|
12
|
Yuill EM, Baker LA. Electrochemical Aspects of Mass Spectrometry: Atmospheric Pressure Ionization and Ambient Ionization for Bioanalysis. ChemElectroChem 2017. [DOI: 10.1002/celc.201600751] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Elizabeth M. Yuill
- Department of Chemistry; Indiana University; 800 E. Kirkwood Avenue Bloomington, Indiana 47405 USA
| | - Lane A. Baker
- Department of Chemistry; Indiana University; 800 E. Kirkwood Avenue Bloomington, Indiana 47405 USA
| |
Collapse
|
13
|
Wang Z, Zhang Y, Liu B, Wu K, Thevuthasan S, Baer DR, Zhu Z, Yu XY, Wang F. In Situ Mass Spectrometric Monitoring of the Dynamic Electrochemical Process at the Electrode–Electrolyte Interface: a SIMS Approach. Anal Chem 2016; 89:960-965. [DOI: 10.1021/acs.analchem.6b04189] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Zhaoying Wang
- Beijing
National Laboratory for Molecular Sciences, National Centre for Mass
Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry
for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yanyan Zhang
- Beijing
National Laboratory for Molecular Sciences, National Centre for Mass
Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry
for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | | | - Kui Wu
- Beijing
National Laboratory for Molecular Sciences, National Centre for Mass
Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry
for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | | | | | | | | | - Fuyi Wang
- Beijing
National Laboratory for Molecular Sciences, National Centre for Mass
Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry
for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
14
|
Zheng Q, Zhang H, Wu S, Chen H. Probing Protein 3D Structures and Conformational Changes Using Electrochemistry-Assisted Isotope Labeling Cross-Linking Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:864-875. [PMID: 26902947 PMCID: PMC4841728 DOI: 10.1007/s13361-016-1356-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Revised: 01/25/2016] [Accepted: 01/28/2016] [Indexed: 06/05/2023]
Abstract
This study presents a new chemical cross-linking mass spectrometry (MS) method in combination with electrochemistry and isotope labeling strategy for probing both protein three-dimensional (3D) structures and conformational changes. For the former purpose, the target protein/protein complex is cross-linked with equal mole of premixed light and heavy isotope labeled cross-linkers carrying electrochemically reducible disulfide bonds (i.e., DSP-d0 and DSP-d8 in this study, DSP = dithiobis[succinimidyl propionate]), digested and then electrochemically reduced followed with online MS analysis. Cross-links can be quickly identified because of their reduced intensities upon electrolysis and the presence of doublet isotopic peak characteristics. In addition, electroreduction converts cross-links into linear peptides, facilitating MS/MS analysis to gain increased information about their sequences and modification sites. For the latter purpose of probing protein conformational changes, an altered procedure is adopted, in which the protein in two different conformations is cross-linked using DSP-d0 and DSP-d8 separately, and then the two protein samples are mixed in 1:1 molar ratio. The merged sample is subjected to digestion and electrochemical mass spectrometric analysis. In such a comparative cross-linking experiment, cross-links could still be rapidly recognized based on their responses to electrolysis. More importantly, the ion intensity ratios of light and heavy isotope labeled cross-links reveal the conformational changes of the protein, as exemplified by examining the effect of Ca(2+) on calmodulin conformation alternation. This new cross-linking MS method is fast and would have high value in structural biology. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Qiuling Zheng
- Center for Intelligent Chemical Instrumentation, Department of Chemistry and Biochemistry, Edison Biotechnology Institute, Ohio University, Athens, OH, 45701, USA
| | - Hao Zhang
- Department of Chemistry, Washington University, St. Louis, MO, 63130, USA
| | - Shiyong Wu
- Center for Intelligent Chemical Instrumentation, Department of Chemistry and Biochemistry, Edison Biotechnology Institute, Ohio University, Athens, OH, 45701, USA
| | - Hao Chen
- Center for Intelligent Chemical Instrumentation, Department of Chemistry and Biochemistry, Edison Biotechnology Institute, Ohio University, Athens, OH, 45701, USA.
| |
Collapse
|
15
|
Merits of online electrochemistry liquid sample desorption electrospray ionization mass spectrometry (EC/LS DESI MS). Anal Bioanal Chem 2016; 408:2227-38. [DOI: 10.1007/s00216-015-9246-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 11/25/2015] [Accepted: 12/02/2015] [Indexed: 12/11/2022]
|
16
|
Cai Y, Liu P, Held MA, Dewald HD, Chen H. Coupling Electrochemistry with Probe Electrospray Ionization Mass Spectrometry. Chemphyschem 2016; 17:1104-8. [DOI: 10.1002/cphc.201600033] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Indexed: 01/22/2023]
Affiliation(s)
- Yi Cai
- Center for Intelligent Chemical Instrumentation Department of Chemistry and Biochemistry Edison Biotechnology Institute Ohio University Athens OH 45701 USA
| | - Pengyuan Liu
- Center for Intelligent Chemical Instrumentation Department of Chemistry and Biochemistry Edison Biotechnology Institute Ohio University Athens OH 45701 USA
| | - Michael A. Held
- Center for Intelligent Chemical Instrumentation Department of Chemistry and Biochemistry Edison Biotechnology Institute Ohio University Athens OH 45701 USA
| | - Howard D. Dewald
- Center for Intelligent Chemical Instrumentation Department of Chemistry and Biochemistry Edison Biotechnology Institute Ohio University Athens OH 45701 USA
| | - Hao Chen
- Center for Intelligent Chemical Instrumentation Department of Chemistry and Biochemistry Edison Biotechnology Institute Ohio University Athens OH 45701 USA
| |
Collapse
|
17
|
Ingram AJ, Boeser CL, Zare RN. Going beyond electrospray: mass spectrometric studies of chemical reactions in and on liquids. Chem Sci 2016; 7:39-55. [PMID: 28757996 PMCID: PMC5508663 DOI: 10.1039/c5sc02740c] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 10/01/2015] [Indexed: 12/16/2022] Open
Abstract
There has been a burst in the number and variety of available ionization techniques to use mass spectrometry to monitor chemical reactions in and on liquids. Chemists have gained the capability to access chemistry at unprecedented timescales, and monitor reactions and detect intermediates under almost any set of conditions. Herein, recently developed ionization techniques that facilitate mechanistic studies of chemical processes are reviewed. This is followed by a discussion of our perspective on the judicious application of these and similar techniques in order to study reaction mechanisms.
Collapse
Affiliation(s)
- Andrew J Ingram
- Department of Chemistry , Stanford University , Stanford , CA 94305 , USA .
| | | | - Richard N Zare
- Department of Chemistry , Stanford University , Stanford , CA 94305 , USA .
| |
Collapse
|