1
|
Hu J, Yan X, Chris Le X. Label-free detection of biomolecules using inductively coupled plasma mass spectrometry (ICP-MS). Anal Bioanal Chem 2024; 416:2625-2640. [PMID: 38175283 DOI: 10.1007/s00216-023-05106-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024]
Abstract
Bioassays using inductively coupled plasma mass spectrometry (ICP-MS) have gained increasing attention because of the high sensitivity of ICP-MS and the various strategies of labeling biomolecules with detectable metal tags. The classic strategy to tag the target biomolecules is through direct antibody-antigen interaction and DNA hybridization, and requires the separation of the bound from the unbound tags. Label-free ICP-MS techniques for biomolecular assays do not require direct labeling: they generate detectable metal ions indirectly from specific biomolecular reactions, such as enzymatic cleavage. Here, we highlight the development of three main strategies of label-free ICP-MS assays for biomolecules: (1) enzymatic cleavage of metal-labeled substrates, (2) release of immobilized metal ions from the DNA backbone, and (3) nucleic acid amplification-assisted aggregation and release of metal tags to achieve amplified detection. We briefly describe the fundamental basis of these label-free ICP-MS assays and discuss the benefits and drawbacks of various designs. Future research is needed to reduce non-specific adsorption and minimize background and interference. Analytical innovations are also required to confront challenges faced by in vivo applications.
Collapse
Affiliation(s)
- Jianyu Hu
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada
| | - Xiaowen Yan
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China.
| | - X Chris Le
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada.
| |
Collapse
|
2
|
Hale O, Cooper HJ, Marty MT. High-Throughput Deconvolution of Native Protein Mass Spectrometry Imaging Data Sets for Mass Domain Analysis. Anal Chem 2023; 95:14009-14015. [PMID: 37672655 PMCID: PMC10515104 DOI: 10.1021/acs.analchem.3c02616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/22/2023] [Indexed: 09/08/2023]
Abstract
Protein mass spectrometry imaging (MSI) with electrospray-based ambient ionization techniques, such as nanospray desorption electrospray ionization (nano-DESI), generates data sets in which each pixel corresponds to a mass spectrum populated by peaks corresponding to multiply charged protein ions. Importantly, the signal associated with each protein is split among multiple charge states. These peaks can be transformed into the mass domain by spectral deconvolution. When proteins are imaged under native/non-denaturing conditions to retain non-covalent interactions, deconvolution is particularly valuable in helping interpret the data. To improve the acquisition speed, signal-to-noise ratio, and sensitivity, native MSI is usually performed using mass resolving powers that do not provide isotopic resolution, and conventional algorithms for deconvolution of lower-resolution data are not suitable for these large data sets. UniDec was originally developed to enable rapid deconvolution of complex protein mass spectra. Here, we developed an updated feature set harnessing the high-throughput module, MetaUniDec, to deconvolve each pixel of native MSI data sets and transform m/z-domain image files to the mass domain. New tools enable the reading, processing, and output of open format .imzML files for downstream analysis. Transformation of data into the mass domain also provides greater accessibility, with mass information readily interpretable by users of established protein biology tools such as sodium dodecyl sulfate polyacrylamide gel electrophoresis.
Collapse
Affiliation(s)
- Oliver
J. Hale
- School
of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
| | - Helen J. Cooper
- School
of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
| | - Michael T. Marty
- Department
of Chemistry and Biochemistry and Bio5 Institute, University of Arizona, 1306 E University Blvd Tucson, Arizona 85721, United States
| |
Collapse
|
3
|
Sun Y, Wang Y, Fang L, Xu T. Signal differentiation models for multiple microRNA detection: a critical review. Anal Bioanal Chem 2023. [PMID: 36864312 DOI: 10.1007/s00216-023-04626-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
MicroRNAs (miRNAs) are a class of small, single-stranded non-coding RNAs which have critical functions in various biological processes. Increasing evidence suggested that abnormal miRNA expression was closely related to many human diseases, and they are projected to be very promising biomarkers for non-invasive diagnosis. Multiplex detection of aberrant miRNAs has great advantages including improved detection efficiency and enhanced diagnostic precision. Traditional miRNA detection methods do not meet the requirements of high sensitivity or multiplexing. Some new techniques have opened novel paths to solve analytical challenges of multiple miRNA detection. Herein, we give a critical overview of the current multiplex strategies for the simultaneous detection of miRNAs from the perspective of two different signal differentiation models, including label differentiation and space differentiation. Meanwhile, recent advances of signal amplification strategies integrated into multiplex miRNA methods are also discussed. We hope this review provides the reader with future perspectives on multiplex miRNA strategies in biochemical research and clinical diagnostics.
Collapse
Affiliation(s)
- Yue Sun
- Department of Pharmacy, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, People's Republic of China
| | - Yinan Wang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, 518060, People's Republic of China
| | - Luo Fang
- Department of Pharmacy, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, People's Republic of China
| | - Tailin Xu
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, 518060, People's Republic of China.
| |
Collapse
|
4
|
Wen Y, Zhang XW, Li YY, Chen S, Yu YL, Wang JH. Ultramultiplex NaLnF 4 Nanosatellites Combined with ICP-MS for Exosomal Multi-miRNA Analysis and Cancer Classification. Anal Chem 2022; 94:16196-16203. [DOI: 10.1021/acs.analchem.2c03727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Yun Wen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Xue-Wei Zhang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Yuan-Yuan Li
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Shuai Chen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Yong-Liang Yu
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Jian-Hua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| |
Collapse
|
5
|
Le MUT, Shon HK, Nguyen HP, Lee CH, Kim KS, Na HK, Lee TG. Simultaneous Multiplexed Imaging of Biomolecules in Transgenic Mouse Brain Tissues Using Mass Spectrometry Imaging: A Multi-omic Approach. Anal Chem 2022; 94:9297-9305. [PMID: 35696262 DOI: 10.1021/acs.analchem.2c00676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The importance of multi-omic-based approaches to better understand diverse pathological mechanisms including neurodegenerative diseases has emerged. Spatial information can be of great help in understanding how biomolecules interact pathologically and in elucidating target biomarkers for developing therapeutics. While various analytical methods have been attempted for imaging-based biomolecule analysis, a multi-omic approach to imaging remains challenging due to the different characteristics of biomolecules. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) is a powerful tool due to its sensitivity, chemical specificity, and high spatial resolution in visualizing chemical information in cells and tissues. In this paper, we suggest a new strategy to simultaneously obtain the spatial information of various kinds of biomolecules that includes both labeled and label-free approaches using ToF-SIMS. The enzyme-assisted labeling strategy for the targets of interest enables the sensitive and specific imaging of large molecules such as peptides, proteins, and mRNA, a task that has been, to date, difficult for any MS analysis. Together with the strength of the analytical performance of ToF-SIMS in the label-free tissue imaging of small biomolecules, the proposed strategy allows one to simultaneously obtain integrated information of spatial distribution of metabolites, lipids, peptides, proteins, and mRNA at a high resolution in a single measurement. As part of the suggested strategy, we present a sample preparation method suitable for MS imaging. Because a comprehensive method to examine the spatial distribution of multiple biomolecules in tissues has remained elusive, our strategy can be a useful tool to support the understanding of the interactions of biomolecules in tissues as well as pathological mechanisms.
Collapse
Affiliation(s)
- Minh-Uyen Thi Le
- Center for Nano-Bio Measurement, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Korea.,Department of Nano Science, University of Science and Technology (UST), Daejeon 34113, Korea
| | - Hyun Kyong Shon
- Center for Nano-Bio Measurement, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Korea
| | - Hong-Phuong Nguyen
- Department of Biomedical Science, Inha University College of Medicine, Incheon 22332, Korea
| | - Chul-Ho Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
| | - Kyoung-Shim Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
| | - Hee-Kyung Na
- Center for Nano-Bio Measurement, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Korea
| | - Tae Geol Lee
- Center for Nano-Bio Measurement, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Korea.,Department of Nano Science, University of Science and Technology (UST), Daejeon 34113, Korea
| |
Collapse
|
6
|
Xia LY, Tang YN, Zhang J, Dong TY, Zhou RX. Advances in the DNA Nanotechnology for the Cancer Biomarkers Analysis: Attributes and Applications. Semin Cancer Biol 2022; 86:1105-1119. [PMID: 34979273 DOI: 10.1016/j.semcancer.2021.12.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/26/2021] [Accepted: 12/29/2021] [Indexed: 02/07/2023]
Abstract
The most commonly used clinical methods are enzyme-linked immunosorbent assay (ELISA) and quantitative PCR (qPCR) in which ELISA was applied for the detection of protein biomarkers and qPCR was especially applied for nucleic acid biomarker analysis. Although these constructed methods have been applied in wide range, they also showed some inherent shortcomings such as low sensitivity, large sample volume and complex operations. At present, many methods have been successfully constructed on the basis of DNA nanotechnology with the merits of high accuracy, rapid and simple operation for cancer biomarkers assay. In this review, we summarized the bioassay strategies based on DNA nanotechnology from the perspective of the analytical attributes for the first time and discussed and the feasibility of the reported strategies for clinical application in the future.
Collapse
Affiliation(s)
- Ling-Ying Xia
- Biliary Surgical Department of West China Hospital, Sichuan University, Chengdu, Sichuan 610064, PR China; Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, PR China
| | - Ya-Nan Tang
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, PR China
| | - Jie Zhang
- Biliary Surgical Department of West China Hospital, Sichuan University, Chengdu, Sichuan 610064, PR China
| | - Tian-Yu Dong
- College of Chemistry, Sichuan University Chengdu, Sichuan 610064, PR China
| | - Rong-Xing Zhou
- Biliary Surgical Department of West China Hospital, Sichuan University, Chengdu, Sichuan 610064, PR China.
| |
Collapse
|
7
|
Zhou J, Li Z, Hu J, Wang C, Liu R, Lv Y. HOGG1-assisted DNA methylation analysis via a sensitive lanthanide labelling strategy. Talanta 2021; 239:123136. [PMID: 34920255 DOI: 10.1016/j.talanta.2021.123136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/01/2021] [Accepted: 12/08/2021] [Indexed: 01/09/2023]
Abstract
The assessment of DNA methylation level is an important indicator for the diagnosis and treatment of some diseases. DNA methylation assays are usually based on nucleic acid amplification strategies, which are time-consuming and complicated in operation procedures. Herein, we proposed a sensitive lanthanide-labelled ICP-MS method for DNA methylation analysis that exploited the feature of Human 8-oxoGuanine DNA Glycosylase (hOGG1), which specifically recognizes 8-oxo-G/5mC base pairs to effectively distinguish methylated DNA. A low limit of detection of 84 pM was achieved, and a 0.1% methylation level can be discriminated in the mixture, without any amplification procedure. Compared with commonly used nucleic acid amplification strategies, this proposed method is time-saving and low probability of false positive. Moreover, this work has been successfully validated in human serum samples, the recovery rates is between 96.7% and 105%, and the relative standard deviation (RSD) is in the range of 3.0%-3.5%, indicating that this method has the potential to be applied in clinical and biological samples quantitative analysis.
Collapse
Affiliation(s)
- Jing Zhou
- Analytical & Testing Center, Sichuan University, Chengdu, 610064, PR China
| | - Ziyan Li
- Analytical & Testing Center, Sichuan University, Chengdu, 610064, PR China
| | - Jianyu Hu
- Analytical & Testing Center, Sichuan University, Chengdu, 610064, PR China
| | - Chaoqun Wang
- Analytical & Testing Center, Sichuan University, Chengdu, 610064, PR China
| | - Rui Liu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 WangJiang Road, Chengdu, 610064, PR China
| | - Yi Lv
- Analytical & Testing Center, Sichuan University, Chengdu, 610064, PR China; Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 WangJiang Road, Chengdu, 610064, PR China.
| |
Collapse
|
8
|
Hu J, Liu F, Chen Y, Shangguan G, Ju H. Mass Spectrometric Biosensing: A Powerful Approach for Multiplexed Analysis of Clinical Biomolecules. ACS Sens 2021; 6:3517-3535. [PMID: 34529414 DOI: 10.1021/acssensors.1c01394] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Rapid and sensitive detection of clinical biomolecules in a multiplexed fashion is of great importance for accurate diagnosis of diseases. Mass spectrometric (MS) approaches are exceptionally suitable for clinical analysis due to its high throughput, high sensitivity, and reliable qualitative and quantitative capabilities. To break through the bottleneck of MS technique for detecting high-molecular-weight substances with low ionization efficiency, the concept of mass spectrometric biosensing has been put forward by adopting mass spectrometric chips to recognize the targets and mass spectrometry to detect the signals switched by the recognition. In this review, the principle of mass spectrometric sensing, the construction of different mass tags used for biosensing, and the typical combination mode of mass spectrometric imaging (MSI) technique are summarized. Future perspectives including the design of portable matching platforms, exploitation of novel mass tags, development of effective signal amplification strategies, and standardization of MSI methodologies are proposed to promote the advancements and practical applications of mass spectrometric biosensing.
Collapse
Affiliation(s)
- Junjie Hu
- College of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining 272067, China
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Fei Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yunlong Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Guoqiang Shangguan
- College of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining 272067, China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
9
|
Chen X, Song H, Li Z, Liu R, Lv Y. Lanthanide Nanoprobes for the Multiplex Evaluation of Breast Cancer Biomarkers. Anal Chem 2021; 93:13719-13726. [PMID: 34595914 DOI: 10.1021/acs.analchem.1c03445] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Metal stable isotope tagging has demonstrated great and unique success in the multiplex and ratiometry-based accurate detection of biomolecules and single cells, while its sensitivity is regarded as an Achilles' heel. Although lanthanide nanoparticles remain the most promising tags for elemental mass spectrometry, there is no report on the lanthanide nanoparticle-based multiplex immunoassay of disease markers in clinical serum samples because of their tough synthesis and bioconjugation and a complex physiological sample matrix. Herein, to fill this gap, multiple lanthanide nanoparticle tags (NaEuF4, NaTbF4, and NaHoF4) were delicately designed and facilely synthesized with a one-pot solvothermal method for the multiplex evaluation of breast cancer biomarkers carcinoembryonic antigen (CEA), CA153, and CA125 in human serum samples. The proposed method exhibited wide linear ranges and low levels of the detection limit for all biomarkers. The test results were consistent with the routine electrochemiluminescence results in clinical serum samples, which proved the possibility of the early prognosis of breast cancer as well as improving the surgical outcome prediction.
Collapse
Affiliation(s)
- Xue Chen
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Hongjie Song
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Ziyan Li
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Rui Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Yi Lv
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China.,Analytical & Testing Center, Sichuan University, Chengdu 610064, China
| |
Collapse
|
10
|
Torregrosa D, Grindlay G, Gras L, Mora J. Immunoassays based on inductively coupled plasma mass spectrometry detection: So far so good, so what? Microchem J 2021. [DOI: 10.1016/j.microc.2021.106200] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
11
|
Hu Y, Wang Z, Liu L, Zhu J, Zhang D, Xu M, Zhang Y, Xu F, Chen Y. Mass spectrometry-based chemical mapping and profiling toward molecular understanding of diseases in precision medicine. Chem Sci 2021; 12:7993-8009. [PMID: 34257858 PMCID: PMC8230026 DOI: 10.1039/d1sc00271f] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 04/15/2021] [Indexed: 12/11/2022] Open
Abstract
Precision medicine has been strongly promoted in recent years. It is used in clinical management for classifying diseases at the molecular level and for selecting the most appropriate drugs or treatments to maximize efficacy and minimize adverse effects. In precision medicine, an in-depth molecular understanding of diseases is of great importance. Therefore, in the last few years, much attention has been given to translating data generated at the molecular level into clinically relevant information. However, current developments in this field lack orderly implementation. For example, high-quality chemical research is not well integrated into clinical practice, especially in the early phase, leading to a lack of understanding in the clinic of the chemistry underlying diseases. In recent years, mass spectrometry (MS) has enabled significant innovations and advances in chemical research. As reported, this technique has shown promise in chemical mapping and profiling for answering "what", "where", "how many" and "whose" chemicals underlie the clinical phenotypes, which are assessed by biochemical profiling, MS imaging, molecular targeting and probing, biomarker grading disease classification, etc. These features can potentially enhance the precision of disease diagnosis, monitoring and treatment and thus further transform medicine. For instance, comprehensive MS-based biochemical profiling of ovarian tumors was performed, and the results revealed a number of molecular insights into the pathways and processes that drive ovarian cancer biology and the ways that these pathways are altered in correspondence with clinical phenotypes. Another study demonstrated that quantitative biomarker mapping can be predictive of responses to immunotherapy and of survival in the supposedly homogeneous group of breast cancer patients, allowing for stratification of patients. In this context, our article attempts to provide an overview of MS-based chemical mapping and profiling, and a perspective on their clinical utility to improve the molecular understanding of diseases for advancing precision medicine.
Collapse
Affiliation(s)
- Yechen Hu
- School of Pharmacy, Nanjing Medical University Nanjing 211166 China
| | - Zhongcheng Wang
- School of Pharmacy, Nanjing Medical University Nanjing 211166 China
| | - Liang Liu
- School of Pharmacy, Nanjing Medical University Nanjing 211166 China
- Department of Pharmacy, Zhongnan Hospital of Wuhan University Wuhan 430071 China
| | - Jianhua Zhu
- School of Pharmacy, Nanjing Medical University Nanjing 211166 China
| | - Dongxue Zhang
- School of Pharmacy, Nanjing Medical University Nanjing 211166 China
| | - Mengying Xu
- School of Pharmacy, Nanjing Medical University Nanjing 211166 China
| | - Yuanyuan Zhang
- School of Pharmacy, Nanjing Medical University Nanjing 211166 China
| | - Feifei Xu
- School of Pharmacy, Nanjing Medical University Nanjing 211166 China
| | - Yun Chen
- School of Pharmacy, Nanjing Medical University Nanjing 211166 China
- State Key Laboratory of Reproductive Medicine, Key Laboratory of Cardiovascular & Cerebrovascular Medicine Nanjing 210029 China
| |
Collapse
|
12
|
Li BR, Tang H, Yu RQ, Jiang JH. Single-Nanoparticle ICP-MS for Sensitive Detection of Uracil-DNA Glycosylase Activity. Anal Chem 2021; 93:8381-8385. [PMID: 34100608 DOI: 10.1021/acs.analchem.1c01447] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Single-nanoparticle inductively coupled plasma mass spectrometry (SP-ICP-MS) has demonstrated unique advantages for the detection of biological samples. However, methods for enzyme activity detection based on SP-ICP-MS technology have been rarely explored. Here we report the development of a novel SP-ICP-MS assay for uracil-DNA glycosylase (UDG) activity detection based on its ability to specifically recognize and remove uracil to induce the cleavage of the DNA probe. Our design allows the generation of single gold nanoparticles correlated to the specific enzymatic reaction for a highly sensitive SP-ICP-MS measurement. The developed assay enables sensitive UDG activity detection with a detection limit of 0.0003 U/mL. The cell lysate analysis by the developed assay reveals its applicability for the detection of UDG activity in real samples. It is envisioned that our design may provide a new paradigm for developing the SP-ICP-MS assay for enzyme activity detection in biological samples.
Collapse
Affiliation(s)
- Bang-Rui Li
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Hao Tang
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Ru-Qin Yu
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Jian-Hui Jiang
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
13
|
Jin X, Yang L, Yan X, Wang Q. Screening Platform Based on Inductively Coupled Plasma Mass Spectrometry for β-Site Amyloid Protein Cleaving Enzyme 1 (BACE1) Inhibitors. ACS Chem Neurosci 2021; 12:1093-1099. [PMID: 33764738 DOI: 10.1021/acschemneuro.0c00816] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
β-Site amyloid protein cleaving enzyme 1 (BACE1) is a promising therapeutic target for developing inhibitors to alleviate Alzheimer's disease (AD). Herein, we established an inductively coupled plasma mass spectrometry (ICPMS)-based inhibitor screening platform. A biotin-labeled lanthanide-coded peptide probe (LCPP; biotin-PEG2-EVNLDAEC-DOTA-Ln) was designed to determine the activity of BACE1 and evaluate the degree of inhibition of inhibitors. The platform was first validated with two commercially available inhibitors (BSI I and BSI IV) in terms of IC50 values and then applied to two newly designed inhibitors (inhibitors II and III) based on the crystal structure of BACE1 interacting with inhibitor I, and each of them contained an acylguanidine core structure. We found that their inhibition effects were improved as evaluated by the sensitive and accurate LCPP-ICPMS platform, demonstrating its ability for new drug screening.
Collapse
Affiliation(s)
- Xin Jin
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Limin Yang
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiaowen Yan
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Qiuquan Wang
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
14
|
Larraga-Urdaz AL, Sanchez MLF, Encinar JR, Costa-Fernandez JM. Signal amplification strategies for clinical biomarker quantification using elemental mass spectrometry. Anal Bioanal Chem 2021; 414:53-62. [PMID: 33674934 DOI: 10.1007/s00216-021-03251-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/18/2021] [Accepted: 02/24/2021] [Indexed: 11/29/2022]
Abstract
The current trends in modern medicine towards early diagnosis, or even prognosis, of different diseases have brought about the need for the corresponding biomarker detection at ever lower levels in really complex matrices. To do so, it is necessary to use proper extremely sensitive detection techniques such as elemental mass spectrometry. However, target labelling with metals for subsequent sensitive ICP-MS detection falls short nowadays even if resorting to inorganic nanoparticles containing a high number of detectable elements. Thus, new amplification strategies are being proposed to face this analytical challenge that will be critically discussed in this paper. Fundamentals of different novel strategies developed to achieve signal amplification and sensitive elemental mass spectrometry detection are here discussed. Some representative examples of relevant clinical applications are highlighted, along with future prospects and challenges.
Collapse
Affiliation(s)
- Andrea L Larraga-Urdaz
- Department of Physical and Analytical Chemistry, University of Oviedo, Avda. Julian Claveria, 8, 33006, Oviedo, Spain
| | - Maria L Fernandez Sanchez
- Department of Physical and Analytical Chemistry, University of Oviedo, Avda. Julian Claveria, 8, 33006, Oviedo, Spain
| | - Jorge Ruiz Encinar
- Department of Physical and Analytical Chemistry, University of Oviedo, Avda. Julian Claveria, 8, 33006, Oviedo, Spain.
| | - Jose M Costa-Fernandez
- Department of Physical and Analytical Chemistry, University of Oviedo, Avda. Julian Claveria, 8, 33006, Oviedo, Spain.
| |
Collapse
|
15
|
Kang Q, He M, Chen B, Xiao G, Hu B. MNAzyme-Catalyzed Amplification Assay with Lanthanide Tags for the Simultaneous Detection of Multiple microRNAs by Inductively Coupled Plasma–Mass Spectrometry. Anal Chem 2020; 93:737-744. [DOI: 10.1021/acs.analchem.0c02455] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Qi Kang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Man He
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Beibei Chen
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Guangyang Xiao
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Bin Hu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China
| |
Collapse
|
16
|
Nanoparticles as labels of specific-recognition reactions for the determination of biomolecules by inductively coupled plasma-mass spectrometry. Anal Chim Acta 2020; 1128:251-268. [DOI: 10.1016/j.aca.2020.07.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 02/08/2023]
|
17
|
Lores-Padín A, Fernández B, Álvarez L, González-Iglesias H, Lengyel I, Pereiro R. Multiplex bioimaging of proteins-related to neurodegenerative diseases in eye sections by laser ablation - Inductively coupled plasma - Mass spectrometry using metal nanoclusters as labels. Talanta 2020; 221:121489. [PMID: 33076097 DOI: 10.1016/j.talanta.2020.121489] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/23/2020] [Accepted: 07/29/2020] [Indexed: 11/29/2022]
Abstract
Simultaneous determination of proteins with micrometric resolution is a significant challenge. In this study, laser ablation (LA) inductively coupled plasma - mass spectrometry (ICP-MS) was employed to quantify the distribution of proteins associated to the eye disease age-related macular degeneration (AMD) using antibodies labelled with three different metal nanoclusters (MNCs). PtNCs, AuNCs and AgNCs contain hundreds of metal atoms and were used to detect metallothionein 1/2 (MT1/2), complement factor H (CFH) and amyloid precursor protein (APP) in retina, ciliary body, retinal pigment epithelium (RPE), choroid and sclera from human cadaveric eye sections. First, the labelling of MNCs bioconjugated primary antibodies (Ab) was optimised following an immunolabelling protocol to avoid the non-specific interaction of MNCs with the tissue. Then, the LA and ICP-MS conditions were studied to obtain high-resolution images for the simultaneous detection of the three labels at the same tissue section. A significant signal amplification was found when using AuNCs, AgNCs and PtNCs labelled Ab of 310, 723 and 1194 respectively. After the characterisation of MNCs labelled immunoprobes, the Ab labelling was used for determination of MT1/2, CFH and APP in the RPE-choroid-sclera, where accumulation of extracellular deposits related to AMD was observed. Experimental results suggest that this method is fully suitable for the simultaneous detection of at least three different proteins.
Collapse
Affiliation(s)
- Ana Lores-Padín
- Department of Physical and Analytical Chemistry, University of Oviedo, Julian Clavería 8, 33006, Oviedo, Spain
| | - Beatriz Fernández
- Department of Physical and Analytical Chemistry, University of Oviedo, Julian Clavería 8, 33006, Oviedo, Spain; Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, Universidad de Oviedo, Oviedo, Spain.
| | - Lydia Álvarez
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, Universidad de Oviedo, Oviedo, Spain; Instituto Oftalmológico Fernández-Vega, Avda. Dres. Fernández-Vega, 34, 33012, Oviedo, Spain
| | - Héctor González-Iglesias
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, Universidad de Oviedo, Oviedo, Spain; Instituto Oftalmológico Fernández-Vega, Avda. Dres. Fernández-Vega, 34, 33012, Oviedo, Spain.
| | - Imre Lengyel
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, Northern Ireland, United Kingdom
| | - Rosario Pereiro
- Department of Physical and Analytical Chemistry, University of Oviedo, Julian Clavería 8, 33006, Oviedo, Spain; Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, Universidad de Oviedo, Oviedo, Spain
| |
Collapse
|
18
|
Tong Zhang, Peng G, Li P, Xiang D, Yuan X. Effect of Nanostructure and Europium Doping on Fluorescence Properties of YbxMnyOz:Eu3+ Nanotube Arrays. RUSS J INORG CHEM+ 2020. [DOI: 10.1134/s0036023620060273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Chen ZH, Fan QX, Han XY, Shi G, Zhang M. Design of smart chemical ‘tongue’ sensor arrays for pattern-recognition-based biochemical sensing applications. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2019.115794] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
20
|
Li BR, Tang H, Yu RQ, Jiang JH. Single-Nanoparticle ICPMS DNA Assay Based on Hybridization-Chain-Reaction-Mediated Spherical Nucleic Acid Assembly. Anal Chem 2020; 92:2379-2382. [DOI: 10.1021/acs.analchem.9b05741] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Bang-Rui Li
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Hao Tang
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Ru-Qin Yu
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Jian-Hui Jiang
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
21
|
Liang Y, Liu Q, Zhou Y, Chen S, Yang L, Zhu M, Wang Q. Counting and Recognizing Single Bacterial Cells by a Lanthanide-Encoding Inductively Coupled Plasma Mass Spectrometric Approach. Anal Chem 2019; 91:8341-8349. [DOI: 10.1021/acs.analchem.9b01130] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Yong Liang
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Qian Liu
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Yang Zhou
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Shi Chen
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Limin Yang
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Min Zhu
- PerkinElmer Instruments (Shanghai) Co. Ltd., Shanghai 201203, China
| | - Qiuquan Wang
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
- State Key Lab of Marine Environmental Science, Xiamen University, Xiamen, Fujian 361005, China
| |
Collapse
|
22
|
Ji C, Liang Y, Ge F, Yang L, Wang Q. Inhibitory Covalent Labeling and Clickable-Eu-Tagging-Based ICPMS: Measurement of pH-Dependent Absolute Activities of the Cathepsins in Hepatocyte Lysosomes. Anal Chem 2019; 91:7032-7038. [PMID: 31072096 DOI: 10.1021/acs.analchem.9b01662] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We report an inhibitory covalent labeling and clickable-element-tagging strategy for measuring the absolute activity of a protease in cells using inductively coupled plasma mass spectrometry (ICPMS). Epoxysuccinyl-leucine-tyrosine-6-aminocaproic-lysine-amino-Boc-alkyne (epoxysuccinyl-LYK-alkyne) was designed and synthesized to achieve irreversibly labeling of the cysteine cathepsins, recording their momentary activities. L and Y assisted epoxysuccinyl-LYK-alkyne in accessing the deprotonated -S- of Cys25, located at the bottom of the long cathepsin active domain. Quantitative Eu-tagging was followed using azido-DOTA-Eu through a bioorthogonal 1:1 copper-catalyzed azide-alkyne-cycloaddition click reaction. The Eu tag could be absolutely quantified using 153Eu-species-nonspecific-isotope-dilution ICPMS coupled with HPLC, serving as a Eu ruler and allowing us to simultaneously measure the pH-dependent activities of cathepsins B, L, and S as well as the pH in the lysosomal microenvironment of liver cancerous C7721 and paracancerous C7701 cells. As long as suitable labeling molecules and elemental tags are designed and synthesized, we believe that such a tandem labeling and tagging ICPMS approach can be applied to the measurement of the activities of other proteases in cells, providing more accurate information on the proteases' biofunctions and thus implementing precise clinical diagnoses.
Collapse
Affiliation(s)
- Caixia Ji
- Department of Chemistry & the MOE Key Lab of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| | - Yong Liang
- Department of Chemistry & the MOE Key Lab of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| | - Fuchun Ge
- Department of Chemistry & the MOE Key Lab of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| | - Limin Yang
- Department of Chemistry & the MOE Key Lab of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| | - Qiuquan Wang
- Department of Chemistry & the MOE Key Lab of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China.,State Key Lab of Marine Environmental Science , Xiamen University , Xiamen 361005 , China
| |
Collapse
|
23
|
Yuan R, Ge F, Liang Y, Zhou Y, Yang L, Wang Q. Viruslike Element-Tagged Nanoparticle Inductively Coupled Plasma Mass Spectrometry Signal Multiplier: Membrane Biomarker Mediated Cell Counting. Anal Chem 2019; 91:4948-4952. [DOI: 10.1021/acs.analchem.9b00749] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Rong Yuan
- Department of Chemistry & the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Fuchun Ge
- Department of Chemistry & the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yong Liang
- Department of Chemistry & the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yang Zhou
- Department of Chemistry & the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Limin Yang
- Department of Chemistry & the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Qiuquan Wang
- Department of Chemistry & the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- State Key Lab of Marine Environmental Science, Xiamen University, Xiamen 361005, China
| |
Collapse
|
24
|
Bauer M, Remmler D, Dallmann A, Jakubowski N, Börner HG, Panne U, Limberg C. Specific Decoration of a Discrete Bismuth Oxido Cluster by Selected Peptides towards the Design of Metal Tags. Chemistry 2019; 25:759-763. [PMID: 30350473 DOI: 10.1002/chem.201805234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Indexed: 11/12/2022]
Abstract
Metal tags find application in a multitude of biomedical systems and the combination with laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) offers an opportunity for multiplexing. To lay the foundation for an increase of the signal intensities in such processes, we herein present a general approach for efficient functionalization of a well-defined metal oxido cluster [Bi6 O4 (OH)4 (SO3 CF3 )6 (CH3 CN)6 ]⋅2 CH3 CN (1), which can be realized by selecting 7mer peptide sequences via combinatorial means from large one-bead one-compound peptide libraries. Selective cluster-binding peptide sequences (CBS) for 1 were discriminated from non-binders by treatment with H2 S gas to form the reduction product Bi2 S3 , clearly visible to the naked eye. Interactions were further confirmed by NMR experiments. Extension of a binding peptide with a maleimide linker (Mal) introduces the possibility to covalently attach thiol-bearing moieties such as biological probes and for their analysis the presence of the cluster instead of mononuclear entities should lead to an increase of signal intensities in LA-ICP-MS measurements. To prove this, CBS-Mal was covalently bound onto thiol-presenting glass substrates, which then captured 1 effectively, so that LA-ICP-MS measurements demonstrated drastic signal amplification compared to single lanthanide tags.
Collapse
Affiliation(s)
- Mona Bauer
- Humboldt-Universität zu Berlin, Department of Chemistry, Brook-Taylor-Str. 2, 12489, Berlin, Germany.,Bundesanstalt für Materialforschung und -prüfung, Richard-Willstätter-Straße 11, 12489, Berlin, Germany
| | - Dario Remmler
- Humboldt-Universität zu Berlin, Department of Chemistry, Brook-Taylor-Str. 2, 12489, Berlin, Germany.,Bundesanstalt für Materialforschung und -prüfung, Richard-Willstätter-Straße 11, 12489, Berlin, Germany
| | - André Dallmann
- Humboldt-Universität zu Berlin, Department of Chemistry, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| | - Norbert Jakubowski
- Bundesanstalt für Materialforschung und -prüfung, Richard-Willstätter-Straße 11, 12489, Berlin, Germany
| | - Hans G Börner
- Humboldt-Universität zu Berlin, Department of Chemistry, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| | - Ulrich Panne
- Humboldt-Universität zu Berlin, Department of Chemistry, Brook-Taylor-Str. 2, 12489, Berlin, Germany.,Bundesanstalt für Materialforschung und -prüfung, Richard-Willstätter-Straße 11, 12489, Berlin, Germany
| | - Christian Limberg
- Humboldt-Universität zu Berlin, Department of Chemistry, Brook-Taylor-Str. 2, 12489, Berlin, Germany.,IRIS Adlershof, 12489, Berlin, Germany
| |
Collapse
|
25
|
Müller-Bomke S, Sperling M, Hayen H, Karst U. Biolabeling with cobaltocinium tags. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION B-A JOURNAL OF CHEMICAL SCIENCES 2018. [DOI: 10.1515/znb-2018-0093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
A label for amino and thiol functionalities of peptides and proteins based on the activated cobaltocinium hexafluorophosphate succinimide ester (CoS) is presented. Despite the known selectivity of a succinimide ester towards amines, CoS also modifies cysteine residues under the same reaction conditions. The derivatized biomolecules were investigated using liquid chromatography with subsequent electrospray-mass spectrometric detection (LC/ESI-MS). In combination with their remarkable stability under physiological conditions, easy handling and good spectroscopic properties, cobaltocinium ions provide all requirements for a powerful labeling reagent. Furthermore, in direct comparison to the isoelectronic well-established ferrocene reagents, the higher redox potential and the chemical stability of the cobaltocinium moiety add to the benefits as a derivatizing agent for bioanalysis.
Collapse
Affiliation(s)
- Susanne Müller-Bomke
- Westfälische Wilhelms-Universität Münster, Institute of Inorganic and Analytical Chemistry , Corrensstraße 30 , 48149 Münster , Germany
| | - Michael Sperling
- Westfälische Wilhelms-Universität Münster, Institute of Inorganic and Analytical Chemistry , Corrensstraße 30 , 48149 Münster , Germany
| | - Heiko Hayen
- Westfälische Wilhelms-Universität Münster, Institute of Inorganic and Analytical Chemistry , Corrensstraße 30 , 48149 Münster , Germany
| | - Uwe Karst
- Westfälische Wilhelms-Universität Münster, Institute of Inorganic and Analytical Chemistry , Corrensstraße 30 , 48149 Münster , Germany
| |
Collapse
|
26
|
Cheignon C, Cordeau E, Prache N, Cantel S, Martinez J, Subra G, Arnaudguilhem C, Bouyssiere B, Enjalbal C. Receptor-Ligand Interaction Measured by Inductively Coupled Plasma Mass Spectrometry and Selenium Labeling. J Med Chem 2018; 61:10173-10184. [PMID: 30395477 DOI: 10.1021/acs.jmedchem.8b01320] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In the search for an alternative strategy to the radioactivity measurement conventionally performed to probe receptor-ligand interactions in pharmacological assays, we demonstrated that selenium labeling of the studied ligand combined with elemental mass spectrometry was as efficient and robust as the reference method but devoid of its environmental and health hazards. The proof-of-concept was illustrated on two GPCR receptors, vasopressin (V1A) and cholecystokinin B (CCK-B), involving peptides as endogenous ligands. We proposed several methodologies to produce selenium-labeled ligands according to peptide sequences along with binding affinity constraints. A selection of selenopeptides that kept high affinities toward the targeted receptor were engaged in saturation and competitive binding experiments with subsequent sensitive RP-LC-ICP-MS measurements. Experimental values of affinity constant ( Ki) were perfectly correlated to literature data, illustrating the general great potency of replacing radioactive iodine by selenium for ligand labeling to further undergo unaffected pharmacology experiments efficiently monitored by elemental mass spectrometry.
Collapse
Affiliation(s)
- Clémence Cheignon
- IBMM, University of Montpellier, CNRS, ENSCM , 34095 Montpellier , France
| | - Emmanuelle Cordeau
- IBMM, University of Montpellier, CNRS, ENSCM , 34095 Montpellier , France
| | - Nolween Prache
- IBMM, University of Montpellier, CNRS, ENSCM , 34095 Montpellier , France
| | - Sonia Cantel
- IBMM, University of Montpellier, CNRS, ENSCM , 34095 Montpellier , France
| | - Jean Martinez
- IBMM, University of Montpellier, CNRS, ENSCM , 34095 Montpellier , France
| | - Gilles Subra
- IBMM, University of Montpellier, CNRS, ENSCM , 34095 Montpellier , France
| | - Carine Arnaudguilhem
- CNRS/Univ Pau & Pays Adour/E2S UPPA , Institut des Sciences Analytiques et de Physico-Chimie pour L'Environnement et les Matériaux, UMR 5254 , 64000 Pau , France
| | - Brice Bouyssiere
- CNRS/Univ Pau & Pays Adour/E2S UPPA , Institut des Sciences Analytiques et de Physico-Chimie pour L'Environnement et les Matériaux, UMR 5254 , 64000 Pau , France
| | - Christine Enjalbal
- IBMM, University of Montpellier, CNRS, ENSCM , 34095 Montpellier , France
| |
Collapse
|
27
|
Quantitative mapping of specific proteins in biological tissues by laser ablation-ICP-MS using exogenous labels: aspects to be considered. Anal Bioanal Chem 2018; 411:549-558. [PMID: 30310944 DOI: 10.1007/s00216-018-1411-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/17/2018] [Accepted: 09/27/2018] [Indexed: 12/21/2022]
Abstract
Laser ablation (LA) coupled with inductively coupled plasma mass spectrometry (ICP-MS) is a versatile tool for direct trace elemental and isotopic analysis of solids. The development of new strategies for quantitative elemental mapping of biological tissues is one of the growing research areas in LA-ICP-MS. On the other hand, the latest advances are related to obtaining not only the elemental distribution of heteroatoms but also molecular information. In this vein, mapping of specific proteins in biological tissues can be done with LA-ICP-MS by use of metal-labelled immunoprobes. However, although LA-ICP-MS is, in principle, a quantitative technique, critical requirements should be met for absolute quantification of protein distribution. In this review, progress based on the use of metal-labelled antibodies for LA-ICP-MS mapping of specific proteins is reported. Critical requirements to obtain absolute quantitative mapping of specific proteins by LA-ICP-MS are highlighted. Additionally, illustrative examples of the advances made so far with LA-ICP-MS are provided. Graphical abstract In the proposed critical review, last advances based on the use of metal-labelled antibodies and critical requirements for LA-ICP-MS quantitative mapping of specific proteins are tackled.
Collapse
|
28
|
Cid-Barrio L, Calderón-Celis F, Abásolo-Linares P, Fernández-Sánchez ML, Costa-Fernández JM, Encinar JR, Sanz-Medel A. Advances in absolute protein quantification and quantitative protein mapping using ICP-MS. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2017.09.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
29
|
Lee RFS, Theiner S, Meibom A, Koellensperger G, Keppler BK, Dyson PJ. Application of imaging mass spectrometry approaches to facilitate metal-based anticancer drug research. Metallomics 2017; 9:365-381. [DOI: 10.1039/c6mt00231e] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
30
|
Müller L, Traub H, Jakubowski N. Novel Applications of Lanthanoides as Analytical or Diagnostic Tools in the Life Sciences by ICP-MS-based Techniques. PHYSICAL SCIENCES REVIEWS 2016. [DOI: 10.1515/psr-2016-0064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Inductively coupled plasma mass spectrometry (ICP-MS) is a well-established analytical method for multi-elemental analysis in particular for elements at trace and ultra-trace levels. It has found acceptance in various application areas during the last decade. ICP-MS is also more and more applied for detection in the life sciences. For these applications, ICP-MS excels by a high sensitivity, which is independent of the molecular structure of the analyte, a wide linear dynamic range and by excellent multi-element capabilities. Furthermore, methods based on ICP-MS offer simple quantification concepts, for which usually (liquid) standards are applied, low matrix effects compared to other conventional bioanalytical techniques, and relative limits of detection (LODs) in the low pg g−1 range and absolute LODs down to the attomol range.
In this chapter, we focus on new applications where the multi-element capability of ICP-MS is used for detection of lanthanoides or rare earth elements, which are applied as elemental stains or tags of biomolecules and in particular of antibodies.
Collapse
|
31
|
Tang N, Li Z, Yang L, Wang Q. ICPMS-Based Specific Quantification of Phosphotyrosine: A Gallium-Tagging and Tyrosine-Phosphatase Mediated Strategy. Anal Chem 2016; 88:9890-9896. [DOI: 10.1021/acs.analchem.6b02979] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Nannan Tang
- Department
of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis
and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Zhaoxin Li
- Department
of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis
and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Limin Yang
- Department
of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis
and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Qiuquan Wang
- Department
of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis
and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
- State
Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian 361005, China
| |
Collapse
|
32
|
Abstract
Lanthanide complexes are of increasing importance in cancer diagnosis and therapy, owing to the versatile chemical and magnetic properties of the lanthanide-ion 4f electronic configuration. Following the first implementation of gadolinium(III)-based contrast agents in magnetic resonance imaging in the 1980s, lanthanide-based small molecules and nanomaterials have been investigated as cytotoxic agents and inhibitors, in photodynamic therapy, radiation therapy, drug/gene delivery, biosensing, and bioimaging. As the potential utility of lanthanides in these areas continues to increase, this timely review of current applications will be useful to medicinal chemists and other investigators interested in the latest developments and trends in this emerging field.
Collapse
Affiliation(s)
- Ruijie D. Teo
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - John Termini
- Department of Molecular Medicine, Beckman Research Institute of the City of Hope, 1500 E. Duarte Road, Duarte, California 91010, USA
| | - Harry B. Gray
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|