1
|
Zhao J, Quinto M, Zakia F, Li D. Microextraction of essential oils: A review. J Chromatogr A 2023; 1708:464357. [PMID: 37696126 DOI: 10.1016/j.chroma.2023.464357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/13/2023]
Abstract
Liquid phase microextraction (LPME) and solid phase microextraction (SPME) are popular extraction techniques for sample preparation due to their green and highly efficient single-step extraction efficiency. With the increasing attention to essential oils, their evaluation and analysis are significant in analytical sciences. In this review, starting from a brief description of the recent advances in the last decade, the attention has been focused on the up-to-date research works and applications based on liquid and solid phase microextraction for essential oil analyses. Particular attention has been given to the approaches using ionic liquids, eutectic solvents, gas flow assisted, and novel composite materials. In the end, the technological convergence of novel microextraction of essential oils in the future has been prospected.
Collapse
Affiliation(s)
- Jinhua Zhao
- Department of Chemistry, Analysis and Inspection Center, Yanbian University, Park Road 977, Yanji, Jilin, China
| | - Maurizio Quinto
- Department of Chemistry, Analysis and Inspection Center, Yanbian University, Park Road 977, Yanji, Jilin, China; Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, Via Napoli 25, Foggia 71122, Italy
| | - Fatima Zakia
- Department of Chemistry, Analysis and Inspection Center, Yanbian University, Park Road 977, Yanji, Jilin, China
| | - Donghao Li
- Department of Chemistry, Analysis and Inspection Center, Yanbian University, Park Road 977, Yanji, Jilin, China; Interdisciplinary Program of Biological Functional Molecules, College of Integration Science, Yanbian University, Park Road 977, Yanji, Jilin, China.
| |
Collapse
|
2
|
Yang Y, Guo Y, Jia X, Zhang Q, Mao J, Feng Y, Yin D, Zhao W, Zhang Y, Ouyang G, Zhang W. An ultrastable 2D covalent organic framework coating for headspace solid-phase microextraction of organochlorine pesticides in environmental water. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131228. [PMID: 36963192 DOI: 10.1016/j.jhazmat.2023.131228] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/07/2023] [Accepted: 03/15/2023] [Indexed: 06/18/2023]
Abstract
Herein, a quinoline-linked ultrastable 2D covalent organic framework (COF-CN) coated fiber was successfully prepared and used for highly-sensitive headspace solid-phase microextraction (HS-SPME) of organochlorine pesticides (OCPs) in environmental water. The extraction efficiency of the COF-CN coating for all 14 OCPs was higher than that of four commercial SPME fiber coatings and most of the published works, with enrichment factors ranging from 540 to 5065. In combination with gas chromatography-tandem mass spectrometry (GC-MS/MS), a wide linear range (0.05-200 ng/L), low detection limits (LODs, 0.0010-13.54 ng/L) and satisfactory reproducibility and repeatability were obtained under optimal conditions. Compared with the published works, the LODs of the developed technique were improved 2-5.9 times, and the enrichment factors (EFs) of the developed method were enhanced at least 2 times. The COF-CN coated fiber can be easily recycled and reused at least 70 times without any washing step. The adsorption mechanism was first characterized by density functional theory calculations and X-ray photoelectron spectroscopy analysis. Besides, the established method was successfully applied to the analysis of the distribution of trace OCPs in real water samples from Henan Province. All these results proved the promising application of the developed HS-SPME-GC-MS/MS method for organic pollutants analysis in water samples.
Collapse
Affiliation(s)
- Yuan Yang
- College of Chemistry, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, PR China
| | - Yun Guo
- College of Chemistry, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, PR China
| | - Xiaocan Jia
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Qidong Zhang
- Food Laboratory of Zhongyuan, Flavour Science Research Center of Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, PR China; Zhengzhou Tobacco Research Institute of CNTC, Fengyang Road, Zhengzhou, Henan 450001, PR China
| | - Jian Mao
- Food Laboratory of Zhongyuan, Flavour Science Research Center of Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, PR China; Zhengzhou Tobacco Research Institute of CNTC, Fengyang Road, Zhengzhou, Henan 450001, PR China
| | - Yumin Feng
- College of Chemistry, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, PR China
| | - Dan Yin
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Wuduo Zhao
- College of Chemistry, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, PR China
| | - Yanhao Zhang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, Henan 450001, PR China.
| | - Gangfeng Ouyang
- Food Laboratory of Zhongyuan, Flavour Science Research Center of Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, PR China; KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, Guangdong 510275, PR China
| | - Wenfen Zhang
- College of Chemistry, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, PR China; Zhengzhou Tobacco Research Institute of CNTC, Fengyang Road, Zhengzhou, Henan 450001, PR China.
| |
Collapse
|
3
|
Gu YX, Yan TC, Yue ZX, Liu FM, Cao J, Ye LH. Recent developments and applications in the microextraction and separation technology of harmful substances in a complex matrix. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107241] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Chen CC, Huang YH, Fang JY. Hydrophobic deep eutectic solvents as green absorbents for hydrophilic VOC elimination. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127366. [PMID: 34653856 DOI: 10.1016/j.jhazmat.2021.127366] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/15/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
As a common hydrophilic volatile organic compound (VOC), acetone is known to harm human health and the atmospheric environment. Absorption is a typical technique applied to capture hydrophilic VOCs; however, the difficulty of separating and recovering absorbed hydrophilic VOCs (e.g., acetone) from aqueous absorbents has become one of the major challenges in practical applications. Hydrophobic deep eutectic solvents (DESs) have therefore been developed as novel green absorbents for capturing hydrophilic VOCs in the present work. The compiled results show that efficient hydrophilic VOC elimination can be accomplished by the proposed hydrophobic DESs through high absorption capacity and thermodynamically favorable gas-to-liquid mass transfer. Among the explored DESs, the hydrophobic DES containing thymol [Thy] and decanoic acid [DecA] with a molar ratio of 1:1 has achieved the highest absorption capacity of acetone, i.e., 6.57 mg acetone per g DES at 20 °C and 1480 ppm acetone. The oxygen of acetone interacts favorably with the hydrogen atom of [Thy] upon absorption, rendering hydrogen bonding interaction surpassing polarity as the key factor in attaining superior solubility of acetone in DESs. Moreover, the absorbed acetone can be easily removed from Thy-based DESs, realizing an effective hydrophilic VOC elimination process with economic and ecological benefits.
Collapse
Affiliation(s)
- Chun-Chi Chen
- Department of Environmental Engineering and Science, Feng Chia University, Taichung City 407, Taiwan, ROC.
| | - Yen-Hui Huang
- Department of Environmental Engineering and Science, Feng Chia University, Taichung City 407, Taiwan, ROC
| | - Jia-Yu Fang
- Department of Environmental Engineering and Science, Feng Chia University, Taichung City 407, Taiwan, ROC
| |
Collapse
|
5
|
Ghorbani M, Mohammadi P, Keshavarzi M, Ziroohi A, Mohammadi M, Aghamohammadhasan M, Pakseresht M. Developments of Microextraction (Extraction) Procedures for Sample Preparation of Antidepressants in Biological and Water Samples, a Review. Crit Rev Anal Chem 2021; 53:1285-1312. [PMID: 34955046 DOI: 10.1080/10408347.2021.2018648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Antidepressants are an important class of drugs to treat various types of depression. The determination of antidepressants is crucial in biological samples to control adverse effects in humans and study pharmacokinetics and bioavailability. Direct measurement of antidepressants in biological and water samples is a considerable challenge for analysts due to their low concentration, the high matrix effects of real samples, and the presence of metabolites of these drugs in biological samples. The challenge leads to using sample preparation processes as a critical step in determining antidepressants. Extraction and microextraction procedures have been widely utilized as sample preparation procedures for these drugs. The purposes of extraction or microextraction methods for antidepressant medications are to preconcentrate the analyte, reduce the matrix effects, increase the selectivity of the procedures, and convert the sample to a suitable format for introducing it into detection systems. In the review, the various extraction and microextraction methods of these drugs in biological, real water, and wastewater samples were investigated. The theory of each technique was briefly addressed to understand the features and factors affecting each method. The extraction and microextraction methods were classified based on their application for antidepressants, and the advantages and disadvantages of each technique were reviewed. The new developments to overcome the limitations of each procedure were discussed. The investigation indicated the number of applications of liquid-phase microextraction for extracting antidepressants has been almost equal to that of solid-phase microextraction.
Collapse
Affiliation(s)
- Mahdi Ghorbani
- Department of Chemistry, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Parisa Mohammadi
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Faculty of Health, Sabzevar, Iran
| | - Majid Keshavarzi
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Faculty of Health, Sabzevar, Iran
| | - Aliakbar Ziroohi
- Department of biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Morteza Mohammadi
- School of Medicine, Sechenov University of Medical Sciences, Moscow, Russia
| | | | - Maryam Pakseresht
- Department of Chemistry, Faculty of Arts and Sciences, Near East University, Nicosia, Cyprus
| |
Collapse
|
6
|
Application of β-Cyclodextrin metal-organic framework/titanium dioxide hybrid nanocomposite as dispersive solid-phase extraction adsorbent to organochlorine pesticide residues in honey samples. J Chromatogr A 2021; 1663:462750. [PMID: 34942488 DOI: 10.1016/j.chroma.2021.462750] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/29/2021] [Accepted: 12/13/2021] [Indexed: 11/21/2022]
Abstract
A simple and efficient dispersive solid-phase extraction (D-SPE) method combined with gas chromatography tandem mass spectrometry (GC-MS/MS) was developed to determine organochlorine pesticides (OCP) in honey. Firstly, a type of hybrid nanocomposite (CD-MOF/TiO2) was prepared by grafting a metal-organic framework material synthesized with cyclodextrin as an organic ligand onto titanium dioxide. Then, the CD-MOF/TiO2 was used as a D-SPE adsorbent to extract the OCP, and the effects of the amount of adsorbent, ultrasonic time, vortex time, pH, and salinity on the extraction were investigated using Plackett-Burman design and Box-Behnken Design. Under the optimized adsorption and desorption conditions, an analysis method that combined D-SPE with GC-MS/MS was established. The linear ranges of 14 OCP are 1-500 μg kg-1 and the correlation coefficients are between 0.9991 and 1.000. The limits of detection and quantification vary from 0.01 to 0.04 μg kg-1 and 0.04 to 0.12 μg kg-1, respectively. The intra-day and inter-day precision of this method are suitable (RSDs% less than 11.3%). The established CD-MOF/TiO2 / D-SPE method was used for the extraction of OCP in honey samples with recovery in the range of 76.4 to 114.3%. The results demonstrate that the CD-MOF/TiO2 has a good selective enrichment ability for OCP and is suitable for the D-SPE pretreat of honey sample analysis.
Collapse
|
7
|
Li G, Row KH. Single-drop microextraction technique for the determination of antibiotics in environmental water. J Sep Sci 2021; 45:883-895. [PMID: 34919334 DOI: 10.1002/jssc.202100682] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/03/2021] [Accepted: 12/05/2021] [Indexed: 12/12/2022]
Abstract
Growing concerns related to antibiotic residues in environmental water have encouraged the development of rapid, sensitive, and accurate analytical methods. Single-drop microextraction has been recognized as an efficient approach for the isolation and preconcentration of several analytes from a complex sample matrix. Thus, single-drop microextraction techniques are cost-effective and less harmful to the environment, subscribing to green analytical chemistry principles. Herein, an overview and the current advances in single-drop microextraction for the determination of antibiotics in environmental water are presented were included. In particular, two main approaches used to perform single-drop microextraction (direct immersion-single-drop microextraction and headspace-single-drop microextraction) are reviewed. Furthermore, the impressive analytical features and future perspectives of single-drop microextraction are discussed in this review. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Guizhen Li
- School of Chemistry and Chemical Engineering, Linyi University, Linyi, Shandong, 276005, P. R. China
| | - Kyung Ho Row
- Department of Chemistry and Chemical Engineering, Inha University, Incheon, 402751, Korea
| |
Collapse
|
8
|
Herce-Sesa B, López-López JA, Moreno C. Advances in ionic liquids and deep eutectic solvents-based liquid phase microextraction of metals for sample preparation in Environmental Analytical Chemistry. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116398] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
9
|
Dmitrienko SG, Apyari VV, Tolmacheva VV, Gorbunova MV. Liquid–Liquid Extraction of Organic Compounds into a Single Drop of the Extractant: Overview of Reviews. JOURNAL OF ANALYTICAL CHEMISTRY 2021. [DOI: 10.1134/s1061934821080049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
10
|
|
11
|
Mazari SA, Siyal AR, Solangi NH, Ahmed S, Griffin G, Abro R, Mubarak NM, Ahmed M, Sabzoi N. Prediction of thermo-physical properties of 1-Butyl-3-methylimidazolium hexafluorophosphate for CO2 capture using machine learning models. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114785] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
12
|
Peng LQ, Cao J. Modern microextraction techniques for natural products. Electrophoresis 2020; 42:219-232. [PMID: 33215711 DOI: 10.1002/elps.202000248] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/16/2020] [Accepted: 11/03/2020] [Indexed: 11/11/2022]
Abstract
Natural product analysis has gained wide attention in recent years, especially for herbal medicines, which contain complex ingredients and play a significant clinical role in the therapy of numerous diseases. The constituents of natural products are usually found at low concentrations, and the matrices are complex. Thus, the extraction of target compounds from natural products before analysis by analytical instruments is very significant for human health and its wide application. The commonly used traditional extraction methods are time-consuming, using large amounts of sample and organic solvents, as well as expensive and inefficient. Recently, microextraction techniques have been used for natural product extraction to overcome the disadvantages of conventional extraction methods. In this paper, the successful applications of and recent developments in microextraction techniques including solvent-based and sorbent-based microextraction methods, in natural product analysis in recent years, especially in the last 5 years, are reviewed for the first time. Their features, advantages, disadvantages, and future development trends are also discussed.
Collapse
Affiliation(s)
- Li-Qing Peng
- College of Pharmaceutical Sciences, Hangzhou Normal University, Hangzhou, 311121, P. R. China
| | - Jun Cao
- College of Pharmaceutical Sciences, Hangzhou Normal University, Hangzhou, 311121, P. R. China.,College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, P. R. China
| |
Collapse
|
13
|
Ionic liquids in the microextraction techniques: The influence of ILs structure and properties. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115994] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
14
|
Maciel EVS, Mejía-Carmona K, Jordan-Sinisterra M, da Silva LF, Vargas Medina DA, Lanças FM. The Current Role of Graphene-Based Nanomaterials in the Sample Preparation Arena. Front Chem 2020; 8:664. [PMID: 32850673 PMCID: PMC7431689 DOI: 10.3389/fchem.2020.00664] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/26/2020] [Indexed: 12/18/2022] Open
Abstract
Since its discovery in 2004 by Novoselov et al., graphene has attracted increasing attention in the scientific community due to its excellent physical and chemical properties, such as thermal/mechanical resistance, electronic stability, high Young's modulus, and fast mobility of charged atoms. In addition, other remarkable characteristics support its use in analytical chemistry, especially as sorbent. For these reasons, graphene-based materials (GBMs) have been used as a promising material in sample preparation. Graphene and graphene oxide, owing to their excellent physical and chemical properties as a large surface area, good mechanical strength, thermal stability, and delocalized π-electrons, are ideal sorbents, especially for molecules containing aromatic rings. They have been used in several sample preparation techniques such as solid-phase extraction (SPE), stir bar sorptive extraction (SBSE), magnetic solid-phase extraction (MSPE), as well as in miniaturized modes as solid-phase microextraction (SPME) in their different configurations. However, the reduced size and weight of graphene sheets can limit their use since they commonly aggregate to each other, causing clogging in high-pressure extractive devices. One way to overcome it and other drawbacks consists of covalently attaching the graphene sheets to support materials (e.g., silica, polymers, and magnetically modified supports). Also, graphene-based materials can be further chemically modified to favor some interactions with specific analytes, resulting in more efficient hybrid sorbents with higher selectivity for specific chemical classes. As a result of this wide variety of graphene-based sorbents, several studies have shown the current potential of applying GBMs in different fields such as food, biological, pharmaceutical, and environmental applications. Within such a context, this review will focus on the last five years of achievements in graphene-based materials for sample preparation techniques highlighting their synthesis, chemical structure, and potential application for the extraction of target analytes in different complex matrices.
Collapse
Affiliation(s)
| | | | | | | | | | - Fernando Mauro Lanças
- Laboratory of Chromatography (CROMA), São Carlos Institute of Chemistry (IQSC), University of São Paulo, São Carlos, Brazil
| |
Collapse
|
15
|
Direct Immersion Single-Drop Microextraction and Continuous-Flow Microextraction for the Determination of Manganese in Tonic Drinks and Seafood Samples. FOOD ANAL METHOD 2020. [DOI: 10.1007/s12161-020-01794-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
16
|
Delove Tegladza I, Qi T, Chen T, Alorku K, Tang S, Shen W, Kong D, Yuan A, Liu J, Lee HK. Direct immersion single-drop microextraction of semi-volatile organic compounds in environmental samples: A review. JOURNAL OF HAZARDOUS MATERIALS 2020; 393:122403. [PMID: 32126428 DOI: 10.1016/j.jhazmat.2020.122403] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 02/20/2020] [Accepted: 02/23/2020] [Indexed: 06/10/2023]
Abstract
Single-drop microextraction (SDME) techniques are efficient approaches to pretreatment of aqueous samples. The main advantage of SDME lies in the miniaturization of the solvent extraction process, minimizing the hazards associated with the use of toxic organic solvents. Thus, SDME techniques are cost-effective, and represent less harm to the environment, subscribing to green analytical chemistry principles. In practice, two main approaches can be used to perform SDME - direct immersion (DI)-SDME and headspace (HS)-SDME. Even though the DI-SDME has been shown to be quite effective for extraction and enrichment of various organic compounds, applications of DI-SDME are normally more suitable for moderately polar and non-polar semi-volatile organic compounds (SVOCs) using organic solvents which are immiscible with water. In this review, we present a historical overview and current advances in DI-SDME, including the common analytical tools which are usually coupled with DI-SDME. The review also focuses on applications concerning SVOCs in environmental samples. Currents trends in DI-SDME and possible future direction of the procedure are discussed.
Collapse
Affiliation(s)
- Isaac Delove Tegladza
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China
| | - Tong Qi
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China
| | - Tianyu Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China
| | - Kingdom Alorku
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China
| | - Sheng Tang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China.
| | - Wei Shen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China.
| | - Dezhao Kong
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China
| | - Aihua Yuan
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China
| | - Jianfeng Liu
- Shanghai Waigaoqiao Shipbuilding Co., Ltd, Shanghai, 200137, PR China
| | - Hian Kee Lee
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore.
| |
Collapse
|
17
|
Jalili V, Barkhordari A, Ghiasvand A. Bioanalytical Applications of Microextraction Techniques: A Review of Reviews. Chromatographia 2020. [DOI: 10.1007/s10337-020-03884-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
18
|
Trujillo‐Rodríguez MJ, Pino V, Miró M. High‐throughput microscale extraction using ionic liquids and derivatives: A review. J Sep Sci 2020; 43:1890-1907. [DOI: 10.1002/jssc.202000045] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/12/2020] [Accepted: 02/12/2020] [Indexed: 12/31/2022]
Affiliation(s)
| | - Verónica Pino
- Departamento de Química (Unidad Departamental de Química Analítica)Universidad de La Laguna (ULL) Tenerife Spain
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de CanariasUniversidad de La Laguna (ULL) Tenerife Spain
| | - Manuel Miró
- FI‐TRACE group, Department of ChemistryUniversity of the Balearic Islands Palma Spain
| |
Collapse
|
19
|
Marcinkowski Ł, Eichenlaub J, Ghasemi E, Polkowska Ż, Kloskowski A. Measurements of Activity Coefficients at Infinite Dilution for Organic Solutes in the Ionic Liquids N-Ethyl- and N-Octyl- N-methylmorpholinium Bis(trifluoromethanesulfonyl)imide. A Useful Tool for Solvent Selection. Molecules 2020; 25:E634. [PMID: 32024162 PMCID: PMC7037026 DOI: 10.3390/molecules25030634] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 11/16/2022] Open
Abstract
In recent years, many papers describing ionic liquids (IL) as promising solvents in separation techniques have been published. The conscious choice of appropriate ionic liquid as absorption media in effective extraction of selected types of analytes requires deeper understanding of the analyte-IL interactions. Therefore, intensive research is conducted to determine the values of activity coefficient at infinite dilution, which allows us to characterize the nature of these interactions. Based on the inverse gas chromatography retention data, activity coefficients at infinite dilution γ 13 ∞ of 48 different organic compounds in the ionic liquids N-ethyl-N-methylmorpholinium bis(trifluoromethanesulfonyl)imide [C2C1Mor][TFSI] and N-octyl-N-methylmorpholinium bis(trifluoromethanesulfonyl)imide [C8C1Mor][TFSI] were determined. The measurements covered a broad range of volatile organic compounds, including n-alkanes, n-alkenes, n-alkynes, alcohols, aldehydes, ketones, aromatic compounds and common polar solvents, representing different types of interactions. Activity coefficients at infinite dilution were measured in the temperature range from 313.15 to 363.15 K. The excess partial molar enthalpies and entropies at infinite dilution were determined. Selectivity at infinite dilution was also calculated for exemplary separation processes in the hexane/benzene system. The obtained results were analyzed and compared with literature data for ionic liquids containing the same anion [TFSI]¯ and different cations. The study results indicate that some potential applications of the investigated ionic liquids in separation problems exist.
Collapse
Affiliation(s)
- Łukasz Marcinkowski
- Department of Physical Chemistry, Faculty of Chemistry, Gdansk University of Technology, Narutowicza Str.11/12, 80-233 Gdansk, Poland; (J.E.); (A.K.)
| | - Joachim Eichenlaub
- Department of Physical Chemistry, Faculty of Chemistry, Gdansk University of Technology, Narutowicza Str.11/12, 80-233 Gdansk, Poland; (J.E.); (A.K.)
| | - Elham Ghasemi
- Department of Analytical Chemistry, Faculty of Chemistry, Gdansk University of Technology, Narutowicza Str.11/12, 80-233 Gdansk, Poland; (E.G.); (Ż.P.)
| | - Żaneta Polkowska
- Department of Analytical Chemistry, Faculty of Chemistry, Gdansk University of Technology, Narutowicza Str.11/12, 80-233 Gdansk, Poland; (E.G.); (Ż.P.)
| | - Adam Kloskowski
- Department of Physical Chemistry, Faculty of Chemistry, Gdansk University of Technology, Narutowicza Str.11/12, 80-233 Gdansk, Poland; (J.E.); (A.K.)
| |
Collapse
|
20
|
Recent advances and trends in miniaturized sample preparation techniques. J Sep Sci 2019; 43:202-225. [DOI: 10.1002/jssc.201900776] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/16/2019] [Accepted: 10/30/2019] [Indexed: 12/16/2022]
|
21
|
Akbaş H. Synthesis and Spectroscopic Characterization of Protic Tris(2-Hydroxyethyl)-Ammonium Ionic Liquids. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2019. [DOI: 10.18596/jotcsa.612396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
22
|
Marcinkowska R, Konieczna K, Marcinkowski Ł, Namieśnik J, Kloskowski A. Application of ionic liquids in microextraction techniques: Current trends and future perspectives. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.07.025] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
23
|
Triazine-based porous organic framework as adsorbent for solid-phase microextraction of some organochlorine pesticides. J Chromatogr A 2019; 1602:83-90. [DOI: 10.1016/j.chroma.2019.06.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/28/2019] [Accepted: 06/01/2019] [Indexed: 02/05/2023]
|
24
|
Rodríguez Cabal LF, Vargas Medina DA, Martins Lima A, Lanças FM, Santos-Neto ÁJ. Robotic-assisted dynamic large drop microextraction. J Chromatogr A 2019; 1608:460416. [PMID: 31420177 DOI: 10.1016/j.chroma.2019.460416] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/26/2019] [Accepted: 07/30/2019] [Indexed: 11/25/2022]
Abstract
By proper design of an innovative extraction device, a lab-made multipurpose autosampler was exploited in the automated performance of the dynamic large drops based microextraction. The pluses of this new analytical strategy were demonstrated in the determination of sulfonamides and fluoroquinolones in surface water samples, by direct immersion single drop microextraction (SDME) and liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) analysis. Operational autosampler features and critical experimental factors influencing SDME, including the extraction mode (static or dynamic), extraction, stirring rate, salt addition, drop size, number of cycles and drop exposition time, were comprehensively investigated using both univariate and multivariate optimization. The lab-made autosampler allowed to performance challenging dynamic and static large drop based SDMEs in an automated and effortless way and with minimal requirements of hardware and software. Large stable drops provided high surface area, enhancing the phase ratio and in consequence increasing the analytes uptake. The best extraction efficiencies were obtained as a result of the synergic interaction between the use of large drops and the automated dynamic mode of extraction. The developed method proved to be a reliable, sensitive, and robust analytical tool, with intraday RSDs ranging between 4.0 and 7.6% (n = 6), and interday RSDs between 4.8 and 9.3% (n = 6), and, LOD and LOQ in the range of 15-50 and 35-100 ng L-1, respectively.
Collapse
Affiliation(s)
| | | | - Adriel Martins Lima
- University of São Paulo, São Carlos, Institute of Chemistry of São Carlos, SP, Brazil
| | - Fernando Mauro Lanças
- University of São Paulo, São Carlos, Institute of Chemistry of São Carlos, SP, Brazil
| | | |
Collapse
|
25
|
Alternative Green Extraction Phases Applied to Microextraction Techniques for Organic Compound Determination. SEPARATIONS 2019. [DOI: 10.3390/separations6030035] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The use of green extraction phases has gained much attention in different fields of study, including in sample preparation for the determination of organic compounds by chromatography techniques. Green extraction phases are considered as an alternative to conventional phases due to several advantages such as non-toxicity, biodegradability, low cost and ease of preparation. In addition, the use of greener extraction phases reinforces the environmentally-friendly features of microextraction techniques. Thus, this work presents a review about new materials that have been used in extraction phases applied to liquid and sorbent-based microextractions of organic compounds in different matrices.
Collapse
|
26
|
Marcinkowski Ł, Śmiechowski M, Szepiński E, Kloskowski A, Warmińska D. Interactions of N-alkyl-N-methylmorpholinium based ionic liquids with acetonitrile studied by density and velocity of sound measurements and molecular dynamics simulations. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.04.152] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
27
|
A Simple and Green Microextraction Procedure for Extraction of Morin in Food and Beverages Using Ionic Liquid. FOOD ANAL METHOD 2019. [DOI: 10.1007/s12161-019-01514-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
28
|
Analytical applications and physicochemical properties of ionic liquid-based hybrid materials: A review. Anal Chim Acta 2019; 1054:1-16. [DOI: 10.1016/j.aca.2018.10.061] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 10/23/2018] [Accepted: 10/25/2018] [Indexed: 12/14/2022]
|
29
|
Abstract
The high performance of chemically-modified silica gel packing materials is based on the utilization of pure silica gels. Earlier silica gels used to be made from inorganic silica; however, nowadays, silica gels are made from organic silanes. The surface smoothness and lack of trace metals of new silica gels permits easy surface modifications (chemical reactions) and improves the reproducibility and stability. Sharpening peak symmetry is based on developing better surface modification methods (silylation). Typical examples can be found in the chromatography of amitriptyline for silanol testing and that of quinizarin for trace metal testing. These test compounds were selected and demonstrated sensitive results in the measurement of trace amounts of either silanol or trace metals. Here, we demonstrate the three-dimensional model chemical structures of bonded-phase silica gels with surface electron density for easy understanding of the molecular interaction sites with analytes. Furthermore, a quantitative explanation of hydrophilic and hydrophobic liquid chromatographies was provided. The synthesis methods of superficially porous silica gels and their modified products were introduced.
Collapse
|
30
|
Asfaw AA, Aspromonte J, Wolfs K, Van Schepdael A, Adams E. Overview of sample introduction techniques prior to GC for the analysis of volatiles in solid materials. J Sep Sci 2018; 42:214-225. [DOI: 10.1002/jssc.201800711] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 09/28/2018] [Accepted: 09/29/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Adissu Alemayehu Asfaw
- Department of Pharmaceutical and Pharmacological Sciences; Pharmaceutical Analysis; KU Leuven - University of Leuven; Leuven Belgium
- College of Health Sciences; Department of Pharmacy; Mekelle University; Mekelle Ethiopia
| | - Juan Aspromonte
- Department of Pharmaceutical and Pharmacological Sciences; Pharmaceutical Analysis; KU Leuven - University of Leuven; Leuven Belgium
| | - Kris Wolfs
- Department of Pharmaceutical and Pharmacological Sciences; Pharmaceutical Analysis; KU Leuven - University of Leuven; Leuven Belgium
| | - Ann Van Schepdael
- Department of Pharmaceutical and Pharmacological Sciences; Pharmaceutical Analysis; KU Leuven - University of Leuven; Leuven Belgium
| | - Erwin Adams
- Department of Pharmaceutical and Pharmacological Sciences; Pharmaceutical Analysis; KU Leuven - University of Leuven; Leuven Belgium
| |
Collapse
|
31
|
Sun X, Tan J, Ding H, Tan X, Xing J, Xing L, Zhai Y, Li Z. Detection of Polycyclic Aromatic Hydrocarbons in Water Samples by Annular Platform-Supported Ionic Liquid-Based Headspace Liquid-Phase Microextraction. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2018; 2018:3765682. [PMID: 30363692 PMCID: PMC6180925 DOI: 10.1155/2018/3765682] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/03/2018] [Accepted: 08/27/2018] [Indexed: 06/08/2023]
Abstract
In this paper, a new method of annular platform-supported headspace liquid-phase microextraction (LPME) was designed using ionic liquid as an extraction solvent, wherein extraction stability and efficiency were improved by adding an annular platform inside the extraction bottle. The ionic liquid 1-silicyl-3-benzylimidazolehexafluorophosphate was first synthesized and proved to be an excellent extraction solvent. Coupled with liquid chromatography, the proposed method was employed to analysis of polycyclic aromatic hydrocarbons (PAHs) in water and optimized in aspects of extraction temperature, extraction solvent volume, extraction time, pH, stirring rate, and salt effect of solution. The results indicated that this method showed good linearity (R 2 > 0.995) within 0.5 µg·L-1 to 1000 µg·L-1 for PAHs. The method was more suitable for extraction of volatile PAHs, with recoveries from 65.0% to 102% and quantification limits from 0.01 to 0.05 µg·L-1. It has been successfully applied for detection of PAHs in seawater samples.
Collapse
Affiliation(s)
- Xiaojie Sun
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Jie Tan
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, China
| | - Haiyan Ding
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Xiaojie Tan
- The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Jun Xing
- Key Laboratory of Analytical Chemistry for Biology and Medicine, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Lihong Xing
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Yuxiu Zhai
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Zhaoxin Li
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| |
Collapse
|
32
|
Chatzimitakos TG, Pierson SA, Anderson JL, Stalikas CD. Enhanced magnetic ionic liquid-based dispersive liquid-liquid microextraction of triazines and sulfonamides through a one-pot, pH-modulated approach. J Chromatogr A 2018; 1571:47-54. [PMID: 30119971 DOI: 10.1016/j.chroma.2018.08.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 07/04/2018] [Accepted: 08/04/2018] [Indexed: 02/03/2023]
Abstract
In this study, an enhanced variant of magnetic ionic liquid (MIL)-based dispersive liquid-liquid microextraction is put forward. The procedure combines a water insoluble solid support and the [P66614+][Dy(III)(hfacac)4-] MIL, in a one-pot, pH-modulated procedure for microextraction of triazines (TZs) and sulfonamides (SAs). The solid supporting material was mixed with the MIL to overcome difficulties concerning the weighing of MIL and to control the uniform dispersion of the MIL, rendering the whole extraction procedure more reproducible. The pH-modulation during extraction step makes possible the one-pot extraction of SAs and TZs, from a single sample, in 15 min. Overall, the new analytical method developed enjoys the benefits of sensitivity (limits of quantification: 0.034-0.091 μg L-1) and precision (relative standard deviation: 5.2-8.1%), while good recoveries (i.e., 89-101%) were achieved from lake water and effluent from a municipal wastewater treatment plant. Owing to all of the above, the new procedure can be used to determine the concentrations of SAs and TZs at levels below the maximum residue limits.
Collapse
Affiliation(s)
- Theodoros G Chatzimitakos
- Laboratory of Analytical Chemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece
| | - Stephen A Pierson
- Department of Chemistry, Iowa State University, Ames, IA, 50010 United States
| | - Jared L Anderson
- Department of Chemistry, Iowa State University, Ames, IA, 50010 United States
| | - Constantine D Stalikas
- Laboratory of Analytical Chemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece.
| |
Collapse
|
33
|
Nawała J, Dawidziuk B, Dziedzic D, Gordon D, Popiel S. Applications of ionic liquids in analytical chemistry with a particular emphasis on their use in solid-phase microextraction. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.04.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
34
|
Zeeb M, Farahani H, Mirza B, Papan MK. Quantification of Meloxicam in Human Plasma Using Ionic Liquid-Based Ultrasound-Assisted In Situ Solvent Formation Microextraction Followed by High-Performance Liquid Chromatography. J Chromatogr Sci 2018; 56:443-451. [PMID: 31986203 DOI: 10.1093/chromsci/bmy012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 11/24/2017] [Accepted: 02/05/2018] [Indexed: 12/17/2022]
Abstract
A robust extraction method against the variations of sample ionic strength viz. ionic liquid-based ultrasound-assisted in situ solvent formation microextraction (IL-UA-ISFME) was coupled for the first time with high-performance liquid chromatography-ultraviolet detection (HPLC-UV), and successfully used as a more sustainable approach for the determination of meloxicam (MEL) in human plasma. Herein, a hydrophobic IL (1-butyl-3-methylimidazolium hexafluorophosphate) was formed by adding a hydrophilic IL (1-butyl-3-methylimidazolium tetrafluoroborate) to aqueous sample solution containing an ion-exchange reagent (sodium hexafluorophosphate). The target analyte was transferred into the IL medium while the extraction solvent was completely dispersed into the sample using ultrasonic irradiation and then, the settled enriched phase was injected to HPLC. Firstly, main factors affecting the microextraction performance were evaluated and optimized. The linearity was in the range of 5-1,500 ng mL-1 with regression coefficient corresponding to 0.997. Limits of detection (LOD; signal-to-noise ratio (S/N) = 3) and quantification (LOQ, S/N = 10) were 1 and 5 ng mL-1, respectively. An acceptable recovery range of 82.1-93.6% and satisfactory intra-assay (3.6-4.8%, n = 6) and inter-assay (3.3-5.1%, n = 9) precision as well as remarkable sample clean up exhibited good efficiency of the method. The freeze-thaw stability study was performed for samples and standard solutions. To study the applicability of the proposed method, it was employed for the determination of MEL in human plasma after oral administration of the drug and some pharmacokinetic data were achieved. The technique proved to be accurate and reliable for the screening intentions.
Collapse
Affiliation(s)
- Mohsen Zeeb
- Department of Applied Chemistry, Faculty of Science, Islamic Azad University, South Tehran Branch, Pirouzi st., Dehhaghi st., PO Box 1777613651, Tehran, Iran
| | - Hadi Farahani
- Research Institute of Petroleum Industry (RIPI), West Blvd. of Azadi Sport Complex, PO Box 1485733111, Iran
| | - Behrooz Mirza
- Department of Chemistry, Karaj Branch, Islamic Azad University, Moazzen Blvd., PO Box 31485-313, Alborz, Iran
| | - Mohammad Kazem Papan
- Department of Chemistry, Payame Noor University, Nakhl st., PO Box 19395-4697, Tehran, Iran
| |
Collapse
|
35
|
Chormey DS, Bakırdere S. Principles and Recent Advancements in Microextraction Techniques. FUNDAMENTALS OF QUORUM SENSING, ANALYTICAL METHODS AND APPLICATIONS IN MEMBRANE BIOREACTORS 2018. [DOI: 10.1016/bs.coac.2018.03.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
36
|
|
37
|
Magnetic ionic liquids as extraction solvents in vacuum headspace single-drop microextraction. Talanta 2017; 172:86-94. [DOI: 10.1016/j.talanta.2017.05.021] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 05/09/2017] [Accepted: 05/10/2017] [Indexed: 12/25/2022]
|
38
|
Introducing a new and rapid microextraction approach based on magnetic ionic liquids: Stir bar dispersive liquid microextraction. Anal Chim Acta 2017; 983:130-140. [DOI: 10.1016/j.aca.2017.06.024] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 05/31/2017] [Accepted: 06/02/2017] [Indexed: 01/15/2023]
|
39
|
Non-conventional solvents in liquid phase microextraction and aqueous biphasic systems. J Chromatogr A 2017; 1500:1-23. [DOI: 10.1016/j.chroma.2017.04.012] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 04/06/2017] [Accepted: 04/07/2017] [Indexed: 01/08/2023]
|
40
|
Kokosa JM. Selecting an Appropriate Solvent Microextraction Mode for a Green Analytical Method. COMPREHENSIVE ANALYTICAL CHEMISTRY 2017. [DOI: 10.1016/bs.coac.2016.12.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
41
|
Owczarek K, Szczepanska N, Plotka-Wasylka J, Rutkowska M, Shyshchak O, Bratychak M, Namiesnik J. Natural Deep Eutectic Solvents in Extraction Process. CHEMISTRY & CHEMICAL TECHNOLOGY 2016. [DOI: 10.23939/chcht10.04si.601] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Developing new, eco-friendly solvents which would meet technological and economic demands is perhaps the most popular aspects of Green Chemistry. Natural deep eutectic solvents (NADES) fully meet green chemistry principles. These solvents offer many advantages including biodegradability, low toxicity, sustainability, low costs and simple preparation. This paper provides an overview of knowledge regarding NADES with special emphasis on extraction applications and further perspectives as truly sustainable solvents.
Collapse
|
42
|
Płotka-Wasylka J, Owczarek K, Namieśnik J. Modern solutions in the field of microextraction using liquid as a medium of extraction. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.08.010] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
43
|
Mori T, Ikeda Y, Takao K. Extraction Behavior of U(VI) Using Novel Betainium-Type Ionic Liquids: More Hydrophobic Cations Enhance Extractability, Selectivity, and Recyclability. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2016. [DOI: 10.1246/bcsj.20160210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
44
|
Matsumiya M, Yamada T, Murakami S, Kohno Y, Tsunashima K. Evaluation of the Extraction Properties and Stability of Extracted Rare Earth Complexes in Ionic Liquid Extraction System Using β-Diketone. SOLVENT EXTRACTION AND ION EXCHANGE 2016. [DOI: 10.1080/07366299.2016.1207393] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
45
|
Zeeb M, Farahani H, Papan MK. Determination of atenolol in human plasma using ionic-liquid-based ultrasound-assisted in situ solvent formation microextraction followed by high-performance liquid chromatography. J Sep Sci 2016; 39:2138-45. [DOI: 10.1002/jssc.201501365] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 03/16/2016] [Accepted: 03/17/2016] [Indexed: 01/28/2023]
Affiliation(s)
- Mohsen Zeeb
- Department of Applied Chemistry, Faculty of Science; Islamic Azad University, South Tehran Branch; Tehran Iran
| | - Hadi Farahani
- Research Institute of Petroleum Industry (RIPI); Tehran Iran
| | | |
Collapse
|
46
|
El-Hady DA, Albishri HM, Wätzig H. Ionic liquids in enhancing the sensitivity of capillary electrophoresis: Off-line and on-line sample preconcentration techniques. Electrophoresis 2016; 37:1609-23. [DOI: 10.1002/elps.201600069] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 03/26/2016] [Accepted: 03/29/2016] [Indexed: 01/02/2023]
Affiliation(s)
- Deia Abd El-Hady
- Department of Chemistry, Faculty of Science; University of Jeddah; Jeddah Saudi Arabia
- Department of Chemistry, Faculty of Science; Assiut University; Assiut Egypt
| | - Hassan M. Albishri
- Department of Chemistry, Faculty of Science; King Abdulaziz University; Jeddah Saudi Arabia
| | - Hermann Wätzig
- Institute of Medicinal and Pharmaceutical Chemistry; TU Braunschweig; Braunschweig Germany
| |
Collapse
|
47
|
Abdelhamid HN. Ionic liquids for mass spectrometry: Matrices, separation and microextraction. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2015.12.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
48
|
Automation of static and dynamic non-dispersive liquid phase microextraction. Part 1: Approaches based on extractant drop-, plug-, film- and microflow-formation. Anal Chim Acta 2016; 906:22-40. [DOI: 10.1016/j.aca.2015.11.038] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 11/29/2015] [Accepted: 11/30/2015] [Indexed: 12/29/2022]
|
49
|
Serrano M, Chatzimitakos T, Gallego M, Stalikas CD. 1-Butyl-3-aminopropyl imidazolium-functionalized graphene oxide as a nanoadsorbent for the simultaneous extraction of steroids and β-blockers via dispersive solid-phase microextraction. J Chromatogr A 2016; 1436:9-18. [PMID: 26858116 DOI: 10.1016/j.chroma.2016.01.052] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 01/20/2016] [Accepted: 01/21/2016] [Indexed: 10/22/2022]
Abstract
In this study, we describe the synthesis of graphene oxide functionalized with the ionic liquid 1-butyl-3-aminopropyl imidazolium chloride and its use as an adsorbent for the dispersive solid-phase microextraction (micro SPE) of four anabolic steroids and six β-blockers from aqueous samples of environmental importance, prior to their HPLC-diode array detector analysis. As the ionic liquid is covalently attached to graphene oxide sheets, it is made possible for it to participate in the dispersive micro SPE procedure. The limits of detection and limits of quantification of the proposed method were found to be in the range of 7-23ng/L and between 20 and 70ng/L, respectively. The linearity was satisfactory, with the determination coefficients to range from 0.9940 to 0.9998 while the within- and between-day relative standard deviation of the method ranged between 3.1 and 7.6% and from 4.0 to 8.5%, respectively. In order to test the applicability of the proposed method in real-life samples, the effluent from a municipal wastewater treatment plant as well as natural water samples from two rivers and a lake were collected and analyzed. After the analysis of samples, the effluent from municipal wastewater treatment plant was fortified with the analytes, at concentrations equal to 2 and 10 times the LOQs. Recoveries were calculated after subtracting the native (no-spike) concentrations of analytes, when needed. All the recoveries were in the range of 87-98%. A comparison study attests to the superiority of the developed nanomaterial over graphene oxide and graphene for the dispersive micro SPE of steroids and β-blockers.
Collapse
Affiliation(s)
- Maria Serrano
- Department of Analytical Chemistry, University of Cordoba, 14071 Cordoba, Spain
| | - Theodoros Chatzimitakos
- Laboratory of Analytical Chemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece
| | - Mercedes Gallego
- Department of Analytical Chemistry, University of Cordoba, 14071 Cordoba, Spain
| | - Constantine D Stalikas
- Laboratory of Analytical Chemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece.
| |
Collapse
|