1
|
Rohilla R, Kaur A, Rani S, Prabhakar N. Ultrasensitive detection of holoTC for analysis of Vitamin B12 levels using Ag 2MoO 4 deposited PEDOT sensing platform. Biosens Bioelectron 2025; 267:116783. [PMID: 39316865 DOI: 10.1016/j.bios.2024.116783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/26/2024]
Abstract
Vitamin B12 is an essential micronutrient required for the proper functioning of the human body. Vitamin B12 deficiency is primarily causative of various neurolological disorders alongwith recurrence of oral ulcers and burning sensations which are early signs of condition such as pernicious anemia. Other complications associated with Vitamin B12 deficiency include risk of heart failure due to anemia, risk of developing autoimmune disorders and gastric cancer. Therefore, to obstruct these communal health issues, early detection of Vit B12 is highly needed. However, screening of vitamin B12 insufficiency is hindered by the low sensitivity of the conventional vitamin B12 test. Holotranscobalamin (holoTC) is an early indicator of the negative vitamin B12 balance as it is the first protein to decline in the serum. We report a novel impedimetric immunosensor based on flower-like poly (3,4-ethylenedioxythiophene) (PEDOT) nanostructural film impregnated with silver molybdate nanoparticles (Ag2MoO₄ NPs) deposited on fluorine-doped tin oxide electrode. The prepared electrodes were characterized by Field emission scanning electron microscopy (FE-SEM) with energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), and electrochemical studies. The activated anti-holoTC antibody was immobilized and optimized to capture the target in a response time of 15 min. The electrochemical performance of the sensor was carried out by using the electrochemical impedance spectroscopy technique (EIS) and a good linear relationship between ΔRct and holoTC was obtained in the range from 0.1 pg mL-1 to 100 ng mL-1 with a detection limit of 0.093 pg mL-1. The proposed sensor was successfully applied in human serum samples for holoTC detection. The experimental results showed that the immunosensor is highly selective towards holoTC and presented an acceptable stability of 20 days with reproducibility RSD ≤4%. To the best of our knowledge, this is the first developed electrochemical immunosensor for holoTC detection.
Collapse
Affiliation(s)
- Rishika Rohilla
- Department of Biochemistry, Panjab University, Chandigarh, 160014, India
| | - Amandeep Kaur
- Department of Biochemistry, Panjab University, Chandigarh, 160014, India; Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh, 160014, India
| | - Sonia Rani
- Department of Biochemistry, Panjab University, Chandigarh, 160014, India
| | - Nirmal Prabhakar
- Department of Biochemistry, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
2
|
Augustín M, Pfeifer R, Szabó O, Barek J, Vojs M, Kromka A, Vyskočil V. Novel, fast, and reliable electrochemical dsDNA biosensor based on O-terminated pristine nanocrystalline boron-doped diamond electrode for DNA interaction studies. Bioelectrochemistry 2024; 158:108691. [PMID: 38574451 DOI: 10.1016/j.bioelechem.2024.108691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/12/2024] [Accepted: 03/16/2024] [Indexed: 04/06/2024]
Abstract
We present a novel application of a nanocrystalline boron-doped diamond electrode (B-NCDE) for the construction of an electrochemical DNA biosensor based on double-stranded DNA (dsDNA) for various bioanalytical applications. Surface characterization of the transducer surface (prior and after the fabrication of negatively charged O-terminated surface - O-B-NCDE) was performed by scanning electron microscopy (SEM), Raman spectroscopy, and linear sweep voltammetry (LSV) that was further used for the voltammetric determination, scan rate dependence investigation, and repeatability examination of dsDNA electrochemical oxidation at the O-B-NCDE. The fabrication of a dsDNA/O-B-NCDE biosensor via electrostatic adsorption of dsDNA involved a thorough optimization process of deposition potential (Edep), deposition time (tdep), and optimal saturation concentration (cg(satur)) with optimal values of 0.3 V, 3 min, and 10 mg/mL. The bioanalytical applicability of the fabricated dsDNA/O-B-NCDE biosensor was verified by examining the nature of the interaction between dsDNA and five selected DNA intercalators - namely thioridazine hydrochloride (TR), trimipramine maleate (TRIM), levomepromazine maleate (LEV), imipramine hydrochloride (IMI), and prochlorperazine maleate (PER) - where intercalation was proven for all of the five tested compounds. Moreover, the proposed novel bioanalytical test offers the possibility to selectively distinguish between the phenothiazine representatives (TR, LEV, and PER) and representatives of tricyclic antidepressants group (TRIM and IMI).
Collapse
Affiliation(s)
- Michal Augustín
- Institute of Physics, Czech Academy of Sciences, Cukrovarnická 10/112, 162 00 Prague 6, Czech Republic; UNESCO Laboratory of Environmental Electrochemistry, Department of Analytical Chemistry, Faculty of Science, Charles University, Albertov 6, 128 43 Prague 2, Czech Republic
| | - Rene Pfeifer
- Institute of Physics, Czech Academy of Sciences, Cukrovarnická 10/112, 162 00 Prague 6, Czech Republic
| | - Ondrej Szabó
- Institute of Physics, Czech Academy of Sciences, Cukrovarnická 10/112, 162 00 Prague 6, Czech Republic
| | - Jiří Barek
- UNESCO Laboratory of Environmental Electrochemistry, Department of Analytical Chemistry, Faculty of Science, Charles University, Albertov 6, 128 43 Prague 2, Czech Republic
| | - Marian Vojs
- Institute of Electronics and Photonics, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology in Bratislava, Ilkovičova 3, 812 19 Bratislava, Slovakia
| | - Alexander Kromka
- Institute of Physics, Czech Academy of Sciences, Cukrovarnická 10/112, 162 00 Prague 6, Czech Republic
| | - Vlastimil Vyskočil
- UNESCO Laboratory of Environmental Electrochemistry, Department of Analytical Chemistry, Faculty of Science, Charles University, Albertov 6, 128 43 Prague 2, Czech Republic.
| |
Collapse
|
3
|
Wang Q, Jiu R, Wang Y, Li Z, Chen J, Liu H, Liu J, Cao J. Degradation and detection of organophosphorus pesticides based on peptides and MXene-peptide composite materials. Analyst 2024; 149:3951-3960. [PMID: 38940008 DOI: 10.1039/d4an00674g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Safety problems caused by organophosphorus pesticide (OP) residues are constantly occurring, so the development of new methods for the degradation and detection of OPs is of great scientific significance. In the present study, β-sheet peptides and β-hairpin peptides for catalyzing the hydrolysis of OPs were designed and synthesized. The peptide sequences with the highest hydrolytic activity (EHSGGVTVDPPLTVEHSAG) were screened by investigating the effect of the location of the active sites of the peptide and the peptide's structure on the degradation of OPs. In addition, the relationship between the peptides' conformation and hydrolytic activity was further analyzed based on density functional theory calculations. The noncovalent interactions of the peptides with the OPs and the electrostatic potential on the molecular surface and molecular docking properties were also investigated. It was found that peptides with approximate active amino acids consisting of the catalytic triad and with the hairpin structure had enhanced hydrolytic activity toward the hydrolysis of OPs. To develop an electrochemical sensor technique to detect OPs, the conductive MXene (Ti3C2) material was first immobilized with a caffeic acid monolayer via enediol-metal complex chemistry and then bound with the β-hairpin peptide (EHSGGVTVDPPLTVEHSAG) via carboxy-amine condensation chemistry between the -COOH of caffeic acid and the -NH2 of the peptide to prepare a MXene-peptide composite. Then, the prepared composite was modified on the surface of a glassy carbon electrode to construct an electrochemical sensor for the detection of OPs. The developed technique could be used to monitor OPs within 15 min with a two orders of linear working range and with a detection limit of 0.15 μM. Meanwhile, the sensor showed good reliability for the detection of OPs in real vegetables.
Collapse
Affiliation(s)
- Qiuying Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Healthy of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| | - Ruiqing Jiu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Healthy of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| | - Yunyao Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Healthy of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| | - Zongda Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Healthy of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| | - Jianan Chen
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Healthy of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| | - Haochi Liu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Healthy of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| | - Jifeng Liu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Healthy of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| | - Jia Cao
- Tianjin Vocational College of Bioengineering, China
| |
Collapse
|
4
|
Jaiswal S, Singh B, Dhingra I, Joshi A, Kodgire P. Bioremediation and bioscavenging for elimination of organophosphorus threats: An approach using enzymatic advancements. ENVIRONMENTAL RESEARCH 2024; 252:118888. [PMID: 38599448 DOI: 10.1016/j.envres.2024.118888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/06/2024] [Accepted: 04/05/2024] [Indexed: 04/12/2024]
Abstract
Organophosphorus compounds (OP) are highly toxic pesticides and nerve agents widely used in agriculture and chemical warfare. The extensive use of these chemicals has severe environmental implications, such as contamination of soil, water bodies, and food chains, thus endangering ecosystems and biodiversity. Plants absorb pesticide residues, which then enter the food chain and accumulate in the body fat of both humans and animals. Numerous human cases of OP poisoning have been linked to both acute and long-term exposure to these toxic OP compounds. These compounds inhibit the action of the acetylcholinesterase enzyme (AChE) by phosphorylation, which prevents the breakdown of acetylcholine (ACh) neurotransmitter into choline and acetate. Thus, it becomes vital to cleanse the environment from these chemicals utilizing various physical, chemical, and biological methods. Biological methods encompassing bioremediation using immobilized microbes and enzymes have emerged as environment-friendly and cost-effective approaches for pesticide removal. Cell/enzyme immobilized systems offer higher stability, reusability, and ease of product recovery, making them ideal tools for OP bioremediation. Interestingly, enzymatic bioscavengers (stoichiometric, pseudo-catalytic, and catalytic) play a vital role in detoxifying pesticides from the human body. Catalytic bioscavenging enzymes such as Organophosphate Hydrolase, Organophosphorus acid anhydrolase, and Paraoxonase 1 show high degradation efficiency within the animal body as well as in the environment. Moreover, these enzymes can also be employed to decontaminate pesticides from food, ensuring food safety and thus minimizing human exposure. This review aims to provide insights to potential collaborators in research organizations, government bodies, and industries to bring advancements in the field of bioremediation and bioscavenging technologies for the mitigation of OP-induced health hazards.
Collapse
Affiliation(s)
- Surbhi Jaiswal
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Simrol, Khandwa Road, Indore, 453552, India
| | - Brijeshwar Singh
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Simrol, Khandwa Road, Indore, 453552, India
| | - Isha Dhingra
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Simrol, Khandwa Road, Indore, 453552, India
| | - Abhijeet Joshi
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Simrol, Khandwa Road, Indore, 453552, India.
| | - Prashant Kodgire
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Simrol, Khandwa Road, Indore, 453552, India.
| |
Collapse
|
5
|
Jin S, Chen H, Pan K, Li R, Ma X, Yuan R, Meng X, He H. State-of-the-art electrochemical biosensors based on covalent organic frameworks and their hybrid materials. Talanta 2024; 270:125557. [PMID: 38128284 DOI: 10.1016/j.talanta.2023.125557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/10/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
As the development of global population and industry civilization, the accurate and sensitive detection of intended analytes is becoming an important and great challenge in the field of environmental, medical, and public safety. Recently, electrochemical biosensors have been constructed and used in sensing fields, such as antibiotics, pesticides, specific markers of cancer, and so on. Functional materials have been designed and prepared to enhance detection performance. Among all reported materials, covalent organic frameworks (COFs) are emerging as porous crystalline materials to construct electrochemical biosensors, because COFs have many unique advantages, including large surface area, high stability, atom-level designability, and diversity, to achieve a far better sensing performance. In this comprehensive review, we not only summarize state-of-the-art electrochemical biosensors based on COFs and their hybrid materials but also highlight and discuss some typical examples in detail. We finally provide the challenge and future perspective of COFs-based electrochemical biosensors.
Collapse
Affiliation(s)
- Shi Jin
- Department of Basic Science, Jilin Jianzhu University, Changchun, 130118, PR China
| | - Hongxu Chen
- College of Material and Textile Engineering, Jiaxing University, Jiaxing, 314001, PR China.
| | - Kexuan Pan
- College of Material and Textile Engineering, Jiaxing University, Jiaxing, 314001, PR China
| | - Ruyu Li
- Department of Materials Science and Engineering, Jilin Jianzhu University, Changchun, 130118, PR China
| | - Xingyu Ma
- Department of Materials Science and Engineering, Jilin Jianzhu University, Changchun, 130118, PR China
| | - Rongrong Yuan
- Department of Materials Science and Engineering, Jilin Jianzhu University, Changchun, 130118, PR China.
| | - Xianshu Meng
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin, 300387, PR China
| | - Hongming He
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin, 300387, PR China.
| |
Collapse
|
6
|
Yang Z, Guo J, Wang L, Zhang J, Ding L, Liu H, Yu X. Nanozyme-Enhanced Electrochemical Biosensors: Mechanisms and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307815. [PMID: 37985947 DOI: 10.1002/smll.202307815] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/22/2023] [Indexed: 11/22/2023]
Abstract
Nanozymes, as innovative materials, have demonstrated remarkable potential in the field of electrochemical biosensors. This article provides an overview of the mechanisms and extensive practical applications of nanozymes in electrochemical biosensors. First, the definition and characteristics of nanozymes are introduced, emphasizing their significant role in constructing efficient sensors. Subsequently, several common categories of nanozyme materials are delved into, including metal-based, carbon-based, metal-organic framework, and layered double hydroxide nanostructures, discussing their applications in electrochemical biosensors. Regarding their mechanisms, two key roles of nanozymes are particularly focused in electrochemical biosensors: selective enhancement and signal amplification, which crucially support the enhancement of sensor performance. In terms of practical applications, the widespread use of nanozyme-based electrochemical biosensors are showcased in various domains. From detecting biomolecules, pollutants, nucleic acids, proteins, to cells, providing robust means for high-sensitivity detection. Furthermore, insights into the future development of nanozyme-based electrochemical biosensors is provided, encompassing improvements and optimizations of nanozyme materials, innovative sensor design and integration, and the expansion of application fields through interdisciplinary collaboration. In conclusion, this article systematically presents the mechanisms and applications of nanozymes in electrochemical biosensors, offering valuable references and prospects for research and development in this field.
Collapse
Affiliation(s)
- Zhongwei Yang
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China
| | - Jiawei Guo
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China
| | - Longwei Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, University of Chinese Academy of Science, Beijing, 100190, P. R. China
| | - Jian Zhang
- Division of Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, Göteborg, 41296, Sweden
| | - Longhua Ding
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China
| | - Hong Liu
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Xin Yu
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| |
Collapse
|
7
|
Hossain MI, Hasnat MA. Recent advancements in non-enzymatic electrochemical sensor development for the detection of organophosphorus pesticides in food and environment. Heliyon 2023; 9:e19299. [PMID: 37662791 PMCID: PMC10474438 DOI: 10.1016/j.heliyon.2023.e19299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/28/2023] [Accepted: 08/17/2023] [Indexed: 09/05/2023] Open
Abstract
Organophosphorus Pesticides (OPPs) are among the extensively used pesticides throughout the world to boost agricultural production. However, persistent residues of these toxic pesticides in various vegetables, fruits, and drinking water poses detrimental health effects. Consequently, the rapid monitoring of these harmful chemicals through simple and cost-effective methods has become crucial. In such an instance, electrochemical methods offer simple, rapid, sensitive, reproducible, and affordable detection pathways. To overcome the limitations associated with electrochemical enzymatic sensors, non-enzymatic sensors have emerged as promising and simpler alternatives. The non-enzymatic sensors have demonstrated superior activity, reaching detection limit up to femto (10-15) molar concentration in recent years, leveraging higher selectivity obtained through the molecularly imprinted polymers, synergistic effects between carbonaceous nanomaterials and metals, metal oxide alloys, and other alternative approaches. Herein, this review paper provides an overview of the recent advancements in the development of non-enzymatic electrochemical sensors for the detection of commonly used OPPs, such as Chlorpyrifos (CHL), Diazinon (DZN), Malathion (MTN), Methyl parathion (MP) and Fenthion (FEN). The design method of the electrodes, electrode functioning mechanism, and their analytical performance metrics, such as limit of detection, sensitivity, selectivity, and linearity range, were reviewed and compared. Furthermore, the existing challenges within this rapidly growing field were discussed along with their potential solutions which will facilitate the fabrication of advanced and sustainable non-enzymatic sensors in the future.
Collapse
Affiliation(s)
- Mohammad Imran Hossain
- Electrochemistry & Catalysis Research Laboratory (ECRL), Department of Chemistry, School of Physical Sciences, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Mohammad A. Hasnat
- Electrochemistry & Catalysis Research Laboratory (ECRL), Department of Chemistry, School of Physical Sciences, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| |
Collapse
|
8
|
Ruiz-Arias MA, Medina-Díaz IM, Bernal-Hernández YY, Barrón-Vivanco BS, González-Arias CA, Romero-Bañuelos CA, Verdín-Betancourt FA, Herrera-Moreno JF, Ponce-Vélez G, Gaspar-Ramírez O, Bastidas-Bastidas PDJ, González FB, Rojas-García AE. The situation of chlorpyrifos in Mexico: a case study in environmental samples and aquatic organisms. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:6323-6351. [PMID: 37301778 DOI: 10.1007/s10653-023-01618-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/11/2023] [Indexed: 06/12/2023]
Abstract
Chlorpyrifos (CPF) is one of the most commonly used organophosphate pesticides. Because CPF was described as a toxic compound without safe levels of exposure for children, certain countries in Latin America and the European Union have banned or restricted its use; however, in Mexico it is used very frequently. The aim of this study was to describe the current situation of CPF in Mexico, as well as its use, commercialization, and presence in soil, water, and aquatic organisms in an agricultural region of Mexico. Structured questionnaires were applied to pesticide retailers to determine the sales pattern of CPF (ethyl and methyl); in addition, monthly censuses were conducted with empty pesticide containers to assess the CPF pattern of use. Furthermore, samples of soil (48 samples), water (51 samples), and fish (31 samples) were collected, which were analyzed chromatographically. Descriptive statistics were performed. The results indicate that CPF was one of the most sold (3.82%) and employed OP (14.74%) during 2021. Only one soil sample was found above the CPF limit of quantification (LOQ); in contrast, all water samples had CPF levels above the LOQ (x̄ = 4614.2 ng/L of CPF). In the case of fish samples, 6.45% demonstrated the presence of methyl-CPF. In conclusion, the information obtained in this study indicates the need for constant monitoring in the area, since the presence of CPF in soil, water, and fish constitutes a threat to the health of wildlife and humans. Therefore, CPF should be banned in Mexico to avoid a serious neurocognitive health problem.
Collapse
Affiliation(s)
- Miguel Alfonso Ruiz-Arias
- Laboratorio de Contaminación y Toxicología Ambiental. Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Ciudad de la Cultura S/N. Col. Centro, C.P. 63000, Tepic, Nayarit, México
- Programa de Doctorado en Ciencias Biológico Agropecuarias. Área de Ciencias Ambientales, Universidad Autónoma de Nayarit, Unidad Académica de Agricultura. Km. 9 Carretera Tepic-Compostela, C.P. 63780, Xalisco, Nayarit, México
| | - Irma Martha Medina-Díaz
- Laboratorio de Contaminación y Toxicología Ambiental. Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Ciudad de la Cultura S/N. Col. Centro, C.P. 63000, Tepic, Nayarit, México
| | - Yael Yvette Bernal-Hernández
- Laboratorio de Contaminación y Toxicología Ambiental. Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Ciudad de la Cultura S/N. Col. Centro, C.P. 63000, Tepic, Nayarit, México
| | - Briscia Socorro Barrón-Vivanco
- Laboratorio de Contaminación y Toxicología Ambiental. Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Ciudad de la Cultura S/N. Col. Centro, C.P. 63000, Tepic, Nayarit, México
| | - Cyndia Azucena González-Arias
- Laboratorio de Contaminación y Toxicología Ambiental. Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Ciudad de la Cultura S/N. Col. Centro, C.P. 63000, Tepic, Nayarit, México
| | - Carlos Alberto Romero-Bañuelos
- Laboratorio de Contaminación y Toxicología Ambiental. Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Ciudad de la Cultura S/N. Col. Centro, C.P. 63000, Tepic, Nayarit, México
| | - Francisco Alberto Verdín-Betancourt
- Unidad Especializada de Ciencias Ambientales, CENITT, Av. Emilio M. González S/N, Ciudad del Conocimiento, Tepic, Nayarit, C.P. 63173, México
| | - José Francisco Herrera-Moreno
- Laboratorio de Contaminación y Toxicología Ambiental. Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Ciudad de la Cultura S/N. Col. Centro, C.P. 63000, Tepic, Nayarit, México
| | - Guadalupe Ponce-Vélez
- Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, C.P. 04510, Cd. de México, México
| | - Octavio Gaspar-Ramírez
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Unidad Noreste (CIATEJ), Apodaca, N.L, C.P. 66629, Mexico
| | - Pedro de Jesús Bastidas-Bastidas
- Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (Residuos de Plaguicidas), Centro de Investigación en Alimentación Y Desarrollo, A.C. (CIAD), Carretera a Eldorado Km. 5.5, Unidad Culiacán, C.P. 80110, Mexico
| | - Fernando Bejarano González
- Red de Acción Sobre Plaguicidas y Alternativas en México, A. C. (RAPAM), Amado Nervo 23, Int. 3, Col. San Juanito, C.P. 56121, Texcoco, Estado de México, Mexico
| | - Aurora Elizabeth Rojas-García
- Laboratorio de Contaminación y Toxicología Ambiental. Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Ciudad de la Cultura S/N. Col. Centro, C.P. 63000, Tepic, Nayarit, México.
| |
Collapse
|
9
|
Gianvittorio S, Gualandi I, Tonelli D. ALP-Based Biosensors Employing Electrodes Modified with Carbon Nanomaterials for Pesticides Detection. Molecules 2023; 28:molecules28041532. [PMID: 36838520 PMCID: PMC9959578 DOI: 10.3390/molecules28041532] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/08/2023] Open
Abstract
Due to the growing presence of pesticides in the environment and in food, the concern of their impact on human health is increasing. Therefore, the development of fast and reliable detection methods is needed. Enzymatic inhibition-based biosensors represent a good alternative for replacing the more complicated and time-consuming traditional methods (chromatography, spectrophotometry, etc.). This paper describes the development of an electrochemical biosensor exploiting alkaline phosphatase as the biological recognition element and a chemically modified glassy carbon electrode as the transducer. The biosensor was prepared modifying the GCE surface by a mixture of Multi-Walled-Carbon-Nanotubes (MWCNTs) and Electrochemically-Reduced-Graphene-Oxide (ERGO) followed by the immobilization of the enzyme by cross-linking with bovine serum albumin and glutaraldehyde. The inhibition of the biosensor response caused by pesticides was established using 2-phospho-L-ascorbic acid as the enzymatic substrate, whose dephosphorylation reaction produces ascorbic acid (AA). The MWCNTs/ERGO mixture shows a synergic effect in terms of increased sensitivity and decreased overpotential for AA oxidation. The response of the biosensor to the herbicide 2,4-dichloro-phenoxy-acetic-acid was evaluated and resulted in the concentration range 0.04-24 nM, with a limit of the detection of 16 pM. The determination of other pesticides was also achieved. The re-usability of the electrode was demonstrated by performing a washing procedure.
Collapse
|
10
|
Wang G, Dong H, Han J, Zhang M, Huang J, Sun J, Guan F, Shen Z, Xu D, Sun X, Guo Y, Zhao S. Interference-resistant aptasensor with tetrahedral DNA nanostructure for profenofos detection based on the composites of graphene oxide and polyaniline. Bioelectrochemistry 2022; 148:108227. [PMID: 35973324 DOI: 10.1016/j.bioelechem.2022.108227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/04/2022] [Accepted: 08/06/2022] [Indexed: 11/28/2022]
Abstract
In this work, an interference-resistant electrochemical aptasensor that could detect profenofos in vegetables was constructed based on complexes of graphene oxide and polyaniline (GO@PANI) and gold nanoparticles-tetrahedral DNA nanostructure (Au-TDN). Compared with a single chain aptamer, the tetrahedral DNA nanostructure is highly stable and allows the aptamer on this structure to stand in a highly ordered position on an electrode surface. Moreover, the AuNPs are biocompatible and can protect the activity of the aptamer, which can improve the assembly success rate of Au-TDN. Besides, the conductivity of PANI had been tremendously enhanced thanks to the existence of GO, which improved the dispersion of PANI. The GO@PANI was prepared by a chemical synthesis method, which had a large surface area and was able to adsorb many Au-TDN. Under optimal working parameters, the constructed aptasensor exhibited good electrochemical sensing performance with a detection limit of 10.50 pg/mL and a linear range of 1.0 × 102-1.0 × 107 pg/mL. In addition, it was employed in detecting profenofos in vegetables with a good recovery rate of 90.41-116.37 %. More importantly, the aptasensor also has excellent stability and high selectivity. This study provides a promising method to avoid interference in the detection of profenofos by sensors.
Collapse
Affiliation(s)
- Guanjie Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No.266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No.266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No.266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Haowei Dong
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No.266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No.266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No.266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Jie Han
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No.266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No.266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No.266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Mei Zhang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No.266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No.266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No.266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Jingcheng Huang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No.266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No.266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No.266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Jiashuai Sun
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No.266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No.266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No.266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Fukai Guan
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No.266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No.266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No.266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Zhen Shen
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No.266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No.266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No.266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Deyan Xu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No.266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No.266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No.266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Xia Sun
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No.266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No.266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No.266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Yemin Guo
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No.266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No.266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No.266 Xincun Xilu, Zibo, Shandong 255049, China.
| | - Shancang Zhao
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No.266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No.266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No.266 Xincun Xilu, Zibo, Shandong 255049, China; Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250100, China.
| |
Collapse
|
11
|
Aptamer-based sensor for specific recognition of malathion in fruits and vegetables by surface-enhanced Raman spectroscopy and electrochemistry combination. Anal Chim Acta 2022; 1221:340148. [DOI: 10.1016/j.aca.2022.340148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/20/2022] [Accepted: 07/04/2022] [Indexed: 11/20/2022]
|
12
|
Kumaran A, Vashishth R, Singh S, U S, James A, Velayudhaperumal Chellam P. Biosensors for detection of organophosphate pesticides: Current technologies and future directives. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107420] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Rashk-E-Eram, Mukherjee K, Saha A, Bhattacharjee S, Mallick A, Sarkar B. Nanoscale iron for sustainable aquaculture and beyond. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
14
|
Sivaranjanee R, Senthil Kumar P, Saravanan R, Govarthanan M. Electrochemical sensing system for the analysis of emerging contaminants in aquatic environment: A review. CHEMOSPHERE 2022; 294:133779. [PMID: 35114262 DOI: 10.1016/j.chemosphere.2022.133779] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/19/2022] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
This survey distinguishes understudied spaces of arising impurity research in wastewaters and the habitat, and suggests bearing for future checking. Thinking about the impeding effect of toxins on human wellbeing and biological system, their discovery in various media including water is fundamental. This review sums up and assesses the latest advances in the electrochemical detecting of emerging contaminants (ECs). This survey is expected to add to the advancement in electrochemical applications towards the ECs. Different electrochemical insightful procedures like Amperometry, Voltammetry has been examined in this overview. The improvement of cutting edge nanomaterial-based electrochemical sensors and biosensors for the discovery of drug compounds has accumulated monstrous consideration because of their benefits, like high affectability and selectivity, continuous observing, and convenience has been reviewed in this survey. This survey likewise features the diverse electrochemical treatment procedures accessible for the removal of ECs.
Collapse
Affiliation(s)
- R Sivaranjanee
- Department of Chemical Engineering, St. Joseph's College of Engineering, Chennai, 600119, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India.
| | - R Saravanan
- Department of Mechanical Engineering, Universidad de Tarapacá, Arica, Chile
| | - M Govarthanan
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| |
Collapse
|
15
|
Portable electrochemical sensing methodologies for on-site detection of pesticide residues in fruits and vegetables. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214305] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
16
|
Wang L, Zhang M, Yang B, Tan J, Ding X, Li W. Recent Advances in Multidimensional (1D, 2D, and 3D) Composite Sensors Derived from MXene: Synthesis, Structure, Application, and Perspective. SMALL METHODS 2021; 5:e2100409. [PMID: 34927986 DOI: 10.1002/smtd.202100409] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/11/2021] [Indexed: 05/27/2023]
Abstract
With the advent of the era of intelligent manufacturing, sensors, with various detection objects, have set off a wave of enthusiasm and reached new heights in medical treatment, intelligent industry, daily life, and so on. MXene, as an emerging family of 2D transition metal carbides/nitrides, possesses impressive electrical conductivity, outstanding structural controllability, and satisfying universality with other substrates. Consequently, MXene-based sensors with various functions show a booming growth based on great research potential of MXene. To promote the orderly and efficient development of MXene application in sensors, and further accelerate market-scale application of ideal sensors, in this review, a full range research effort on current MXene-based sensors is summarized. Starting with various synthesis methods of the raw material MXene, a comprehensive summary work along with 1D, 2D, or 3D MXene-based sensors on most recent works is put forward, including the preparation method, characteristic structure, and potential sensing application of each type of MXene-based composite sensors. Ultimately, insights of the opportunities and challenges on the strength of the current reported MXene-based sensor are given.
Collapse
Affiliation(s)
- Lin Wang
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science and Technology, No. 6, Xuefu Road, Xi'an, 710021, China
| | - Meiyun Zhang
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science and Technology, No. 6, Xuefu Road, Xi'an, 710021, China
| | - Bin Yang
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science and Technology, No. 6, Xuefu Road, Xi'an, 710021, China
| | - Jiaojun Tan
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science and Technology, No. 6, Xuefu Road, Xi'an, 710021, China
| | - Xueyao Ding
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science and Technology, No. 6, Xuefu Road, Xi'an, 710021, China
| | - Weiwei Li
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science and Technology, No. 6, Xuefu Road, Xi'an, 710021, China
| |
Collapse
|
17
|
Raja IS, Vedhanayagam M, Preeth DR, Kim C, Lee JH, Han DW. Development of Two-Dimensional Nanomaterials Based Electrochemical Biosensors on Enhancing the Analysis of Food Toxicants. Int J Mol Sci 2021; 22:3277. [PMID: 33806998 PMCID: PMC8005143 DOI: 10.3390/ijms22063277] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/19/2021] [Accepted: 03/21/2021] [Indexed: 12/25/2022] Open
Abstract
In recent times, food safety has become a topic of debate as the foodborne diseases triggered by chemical and biological contaminants affect human health and the food industry's profits. Though conventional analytical instrumentation-based food sensors are available, the consumers did not appreciate them because of the drawbacks of complexity, greater number of analysis steps, expensive enzymes, and lack of portability. Hence, designing easy-to-use tests for the rapid analysis of food contaminants has become essential in the food industry. Under this context, electrochemical biosensors have received attention among researchers as they bear the advantages of operational simplicity, portability, stability, easy miniaturization, and low cost. Two-dimensional (2D) nanomaterials have a larger surface area to volume compared to other dimensional nanomaterials. Hence, researchers nowadays are inclined to develop 2D nanomaterials-based electrochemical biosensors to significantly improve the sensor's sensitivity, selectivity, and reproducibility while measuring the food toxicants. In the present review, we compile the contribution of 2D nanomaterials in electrochemical biosensors to test the food toxicants and discuss the future directions in the field. Further, we describe the types of food toxicity, methodologies quantifying food analytes, how the electrochemical food sensor works, and the general biomedical properties of 2D nanomaterials.
Collapse
Affiliation(s)
| | | | - Desingh Raj Preeth
- Chemical Biology and Nanobiotechnology Laboratory, AU-KBC Research Centre, Anna University, MIT Campus, Chromepet, Chennai 600 044, India;
| | - Chuntae Kim
- BIO-IT Foundry Technology Institute, Pusan National University, Busan 46241, Korea; (I.S.R.); (C.K.)
| | - Jong Hun Lee
- Department of Food Science and Biotechnology, Gachon University, Seongnam 13120, Korea
| | - Dong Wook Han
- BIO-IT Foundry Technology Institute, Pusan National University, Busan 46241, Korea; (I.S.R.); (C.K.)
- Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan 46241, Korea
| |
Collapse
|
18
|
Vasconcelos H, Coelho LCC, Matias A, Saraiva C, Jorge PAS, de Almeida JMMM. Biosensors for Biogenic Amines: A Review. BIOSENSORS-BASEL 2021; 11:bios11030082. [PMID: 33805834 PMCID: PMC8000219 DOI: 10.3390/bios11030082] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 01/11/2023]
Abstract
Biogenic amines (BAs) are well-known biomolecules, mostly for their toxic and carcinogenic effects. Commonly, they are used as an indicator of quality preservation in food and beverages since their presence in higher concentrations is associated with poor quality. With respect to BA’s metabolic pathways, time plays a crucial factor in their formation. They are mainly formed by microbial decarboxylation of amino acids, which is closely related to food deterioration, therefore, making them unfit for human consumption. Pathogenic microorganisms grow in food without any noticeable change in odor, appearance, or taste, thus, they can reach toxic concentrations. The present review provides an overview of the most recent literature on BAs with special emphasis on food matrixes, including a description of the typical BA assay formats, along with its general structure, according to the biorecognition elements used (enzymes, nucleic acids, whole cells, and antibodies). The extensive and significant amount of research that has been done to the investigation of biorecognition elements, transducers, and their integration in biosensors, over the years has been reviewed.
Collapse
Affiliation(s)
- Helena Vasconcelos
- School of Agrarian and Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal; (H.V.); (C.S.)
- INESC TEC—Institute for Systems and Computer Engineering, Technology and Science and Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal; (L.C.C.C.); (A.M.); (P.A.S.J.)
| | - Luís C. C. Coelho
- INESC TEC—Institute for Systems and Computer Engineering, Technology and Science and Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal; (L.C.C.C.); (A.M.); (P.A.S.J.)
| | - Ana Matias
- INESC TEC—Institute for Systems and Computer Engineering, Technology and Science and Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal; (L.C.C.C.); (A.M.); (P.A.S.J.)
| | - Cristina Saraiva
- School of Agrarian and Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal; (H.V.); (C.S.)
| | - Pedro A. S. Jorge
- INESC TEC—Institute for Systems and Computer Engineering, Technology and Science and Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal; (L.C.C.C.); (A.M.); (P.A.S.J.)
- Department. of Physics and Astronomy, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - José M. M. M. de Almeida
- INESC TEC—Institute for Systems and Computer Engineering, Technology and Science and Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal; (L.C.C.C.); (A.M.); (P.A.S.J.)
- Department of Physics, School of Science and Technology, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal
- Correspondence:
| |
Collapse
|
19
|
Musarurwa H, Tavengwa NT. Emerging green solvents and their applications during pesticide analysis in food and environmental samples. Talanta 2021; 223:121507. [DOI: 10.1016/j.talanta.2020.121507] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/01/2020] [Accepted: 08/03/2020] [Indexed: 12/24/2022]
|
20
|
Recent progress on electrochemical sensing strategies as comprehensive point-care method. MONATSHEFTE FUR CHEMIE 2021. [DOI: 10.1007/s00706-020-02732-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
21
|
Nanomaterial-based fluorescent biosensors for monitoring environmental pollutants: A critical review. TALANTA OPEN 2020. [DOI: 10.1016/j.talo.2020.100006] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
22
|
A simple enzymeless approach for Paraoxon determination using imidazole-functionalized carbon nanotubes. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 116:111140. [PMID: 32806307 DOI: 10.1016/j.msec.2020.111140] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 05/13/2020] [Accepted: 05/28/2020] [Indexed: 12/23/2022]
Abstract
This work describes the application of a glassy carbon electrode (GCE) modified with imidazole functionalized carbon nanotubes (CNT-H-IMZ) for Paraoxon (PX) determination in samples of commercial, fresh and 100% orange juice. Homemade multi-walled CNTs were treated according to the Hummers procedure to oxidize graphite and later chemically functionalized with imidazole groups. Modified electrodes with CNT-H-IMZ presented a high peak current of PX reduction and an electrocatalytic effect in comparison to the other electrodes. This behavior was associated with the synergistic contribution of IMZ and CNT that increases the electrochemical activity of PX. Repeatability and reproducibility studies showed that the relative peak current values did not show significant differences between them, less than 10%, and it was possible to define that the diffusional process is the mechanism that limits the electrode mass transport. After the optimization of parameters inherent to the methodology and the voltammetric technique, the proposed device presented a linear region of 1.0 to 16.0 μM-1 (R2 = 0.99), presenting LOD and LOQ as 120 and 400 nM-1, respectively. The method proposed was successfully applied to PX determination in spiked samples.
Collapse
|
23
|
Shauloff N, Teradal NL, Jelinek R. Porous Graphene Oxide-Metal Ion Composite for Selective Sensing of Organophosphate Gases. ACS Sens 2020; 5:1573-1581. [PMID: 32449345 DOI: 10.1021/acssensors.9b02367] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Organophosphates are used as agricultural pesticides and also encountered as toxic nerve agents in chemical warfare. Accordingly, development of sensors for detecting and monitoring organophosphate vapors is highly sought after. We present a new capacitive gas sensor exhibiting remarkable specificity and sensitivity toward the organophosphate nerve gas simulants triethyl-phosphate (TEP) and dimethyl methyl phosphate and the pesticide dichlorvos. Specifically, the capacitive sensor comprises a composite porous graphene oxide matrix intercalating cobalt or nickel ions, prepared through a simple freeze-drying procedure. We demonstrate that the porous graphene oxide/metal ion electrode undergoes fast capacitance changes only upon exposure to organophosphate vapors. Moreover, the sensor exhibits extraordinary sensitivity upon interactions with TEP. Detailed mechanistic analyses, carried out in comparison to porous graphene oxide coupled to other transition metal ions, reveal that the remarkable sensing properties of the Co2+ or Ni2+/porous graphene oxide systems likely arise from the distinct mode of metal ion incorporation into the graphene oxide host matrix and substitution of metal-complexed water ligands with organophosphate molecules. The new metal ion/porous graphene oxide capacitive sensor may be employed for alerting and monitoring organophosphate gases in different environments.
Collapse
Affiliation(s)
- Nitzan Shauloff
- Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Nagappa L. Teradal
- Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Raz Jelinek
- Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
- Ilse Katz Institute for Nanotechnology, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| |
Collapse
|
24
|
Yamaguchi U, Ogawa M, Takei H. Patterned Superhydrophobic SERS Substrates for Sample Pre-Concentration and Demonstration of Its Utility through Monitoring of Inhibitory Effects of Paraoxon and Carbaryl on AChE. Molecules 2020; 25:E2223. [PMID: 32397331 PMCID: PMC7248789 DOI: 10.3390/molecules25092223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 04/28/2020] [Accepted: 05/06/2020] [Indexed: 12/16/2022] Open
Abstract
We describe a patterned surface-enhanced Raman spectroscopy (SERS) substrate with the ability to pre-concentrate target molecules. A surface-adsorbed nanosphere monolayer can serve two different functions. First, it can be made into a SERS platform when covered by silver. Alternatively, it can be fashioned into a superhydrophobic surface when coated with a hydrophobic molecular species such as decyltrimethoxy silane (DCTMS). Thus, if silver is patterned onto a latter type of substrate, a SERS spot surrounded by a superhydrophobic surface can be prepared. When an aqueous sample is placed on it and allowed to dry, target molecules in the sample become pre-concentrated. We demonstrate the utility of the patterned SERS substrate by evaluating the effects of inhibitors to acetylcholinesterase (AChE). AChE is a popular target for drugs and pesticides because it plays a critical role in nerve signal transduction. We monitored the enzymatic activity of AChE through the SERS spectrum of thiocholine (TC), the end product from acetylthiocholine (ATC). Inhibitory effects of paraoxon and carbaryl on AChE were evaluated from the TC peak intensity. We show that the patterned SERS substrate can reduce both the necessary volumes and concentrations of the enzyme and substrate by a few orders of magnitude in comparison to a non-patterned SERS substrate and the conventional colorimetric method.
Collapse
Affiliation(s)
- Umi Yamaguchi
- Graduate School of Life Sciences, Toyo University, Itakura, Gunma 374-0193, Japan;
| | - Maki Ogawa
- Faculty of Life Sciences, Toyo University, Itakura, Gunma 374-0193, Japan;
| | - Hiroyuki Takei
- Faculty of Life Sciences, Toyo University, Itakura, Gunma 374-0193, Japan;
- Bio Nano Electronics Research Centre, Toyo University, Kawagoe, Saitama 350-0815, Japan
| |
Collapse
|
25
|
Hryniewicz BM, Wolfart F, Gómez-Romero P, Orth ES, Vidotti M. Enhancement of organophosphate degradation by electroactive pyrrole and imidazole copolymers. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.135842] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
26
|
Zhao F, Yao Y, Jiang C, Shao Y, Barceló D, Ying Y, Ping J. Self-reduction bimetallic nanoparticles on ultrathin MXene nanosheets as functional platform for pesticide sensing. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121358. [PMID: 31600694 DOI: 10.1016/j.jhazmat.2019.121358] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 08/29/2019] [Accepted: 09/28/2019] [Indexed: 06/10/2023]
Abstract
Two-dimensional (2D) transition metal carbides and nitrides, named MXene, appear promising application prospects in sensor filed. Metal nanoparticles, especially bimetallic nanoparticles, are the superior nanocatalyst, which process excellent features due to the high specific surface area and synergistic catalytic capacity. Using ultrathin MXene nanosheets as the natural reducing agent and support, we prepare the shape-controlled Au-Pd bimetallic nanoparticles via a self-reduction process at room temperature in a short time, which can well enhance the catalytic performance and are benefit for the acetylcholinesterase immobilization. Based on their desired properties, we propose a disposable electrochemical biosensor for the detection of organophosphorus pesticide using the multi-dimensional nanocomposites (MXene/Au-Pd) as the functional platform. Under the optimized conditions, our fabricated biosensor exhibits a favorable linear relationship with the concentration of paraoxon from 0.1 to 1000 μg L-1, with a low detection limit of 1.75 ng L-1. Furthermore, the biosensor can be applied for paraoxon detection in pear and cucumber samples, providing an effective and useful avenue for the applicability of novel 2D nanomaterials in biosensing field.
Collapse
Affiliation(s)
- Fengnian Zhao
- School of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China
| | - Yao Yao
- School of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China
| | - Chengmei Jiang
- School of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China
| | - Yuzhou Shao
- School of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China
| | - Damià Barceló
- ICRA-Catalan Institute for Water Research, Scientific and Technological Park of the University of Girona, Emili Grahit 101, 17003 Girona, Spain
| | - Yibin Ying
- School of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China; Zhejiang A&F University, Hangzhou 311300, PR China
| | - Jianfeng Ping
- School of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China.
| |
Collapse
|
27
|
El-Maghrabey M, El-Shaheny R, Belal F, Kishikawa N, Kuroda N. Green Sensors for Environmental Contaminants. NANOTECHNOLOGY IN THE LIFE SCIENCES 2020. [DOI: 10.1007/978-3-030-45116-5_17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
28
|
Plekhanova YV, Reshetilov AN. Microbial Biosensors for the Determination of Pesticides. JOURNAL OF ANALYTICAL CHEMISTRY 2019. [DOI: 10.1134/s1061934819120098] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
29
|
Pundir C, Malik A, Preety. Bio-sensing of organophosphorus pesticides: A review. Biosens Bioelectron 2019; 140:111348. [DOI: 10.1016/j.bios.2019.111348] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 05/22/2019] [Indexed: 01/09/2023]
|
30
|
Tandem catalysis driven by enzymes directed hybrid nanoflowers for on-site ultrasensitive detection of organophosphorus pesticide. Biosens Bioelectron 2019; 141:111473. [PMID: 31272060 DOI: 10.1016/j.bios.2019.111473] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/20/2019] [Accepted: 06/23/2019] [Indexed: 10/26/2022]
Abstract
Accurate analysis of organophosphate pesticides (OPs) with portable devices remain an elusive goal that have received widespread investigative attention in the areas of environmental contamination and disease prevention. Herein, using all-in-one enzyme-inorganic hybrid nanoflowers (ACC-HNFs) to fabricate high-performance artificial enzyme cascade system, we established a sensitive and affordable lab-on-paper biosensor. This biosensor incorporated disposable screen-printed carbon electrode (SPCE) and colorimetric test strips, which enabled the dual-modal readout (electrochemical and colorimetric signal) for on-site monitoring of OPs, achieving an "on-demand" tuning of the detection performance. Using paraoxon as a model analyte, the ACC-HNFs-based lab-on-paper platform could reach a limit of detection down to the femtogram/mL level (6 fg mL-1). Meticulous design of ACC-HNFs provided a versatile approach for constructing artificial enzyme as a recognizer and amplifier to fill the gap in constructing robust artificial enzyme systems which can be used for on-site contamination monitoring and biological diagnosis.
Collapse
|
31
|
Kaur N, Thakur H, Prabhakar N. Multi walled carbon nanotubes embedded conducting polymer based electrochemical aptasensor for estimation of malathion. Microchem J 2019. [DOI: 10.1016/j.microc.2019.03.042] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
32
|
Amatatongchai M, Sroysee W, Sodkrathok P, Kesangam N, Chairam S, Jarujamrus P. Novel three-Dimensional molecularly imprinted polymer-coated carbon nanotubes (3D-CNTs@MIP) for selective detection of profenofos in food. Anal Chim Acta 2019; 1076:64-72. [PMID: 31203965 DOI: 10.1016/j.aca.2019.04.075] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/14/2019] [Accepted: 04/18/2019] [Indexed: 11/25/2022]
Abstract
A new and facile method for selective measurement of profenofos (PFF) using a simple flow-injection system with a molecularly-imprinted-polymer-coated carbon nanotube (3D-CNTs@MIP) amperometric sensor is proposed. The 3D-CNTs@MIP was synthesized by successively coating the surface of carboxylated CNTs with SiO2 and vinyl end groups, then terminating with molecularly imprinted polymer (MIP) shells. MIP was grafted to the CNT cores using methacrylic acid (MAA) monomer, ethylene glycol dimethacrylate (EGDMA) as cross linker, and 2,2'-azobisisobutyronitrile (AIBN) as initiator. We constructed the PFF sensor by coating the surface of a glassy carbon electrode (GCE) with 3D-CNTs@MIP and removed the imprinting template by solvent extraction. Morphological and structural characterization reveal that blending of the MIP on the CNT surface significantly increases the selective surface area, leading to greater numbers of imprinting sites for improved sensitivity and electron transfer. The 3D-CNTs@MIP sensor exhibits a fast response with good recognition when applied to PFF detection by cyclic voltammetry and amperometry. The PFF oxidation current signal appears at +0.7 V vs Ag/AgCl using 0.1 M phosphate buffer (pH 7.0) as the carrier solution. The designed 3D-imprinted sensor provides a linear response over the range 0.01-200 μM (r2 = 0.995) with a low detection limit of 0.002 μM (3σ). The sensor was successfully applied to detection of PFF in vegetable samples.
Collapse
Affiliation(s)
- Maliwan Amatatongchai
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand; Nanomaterials Science, Sensors & Catalysis for Problem-Based Projects, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand.
| | - Wongduan Sroysee
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand; Nanomaterials Science, Sensors & Catalysis for Problem-Based Projects, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| | - Porntip Sodkrathok
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand; Nanomaterials Science, Sensors & Catalysis for Problem-Based Projects, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| | - Nuttapol Kesangam
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand; Nanomaterials Science, Sensors & Catalysis for Problem-Based Projects, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| | - Sanoe Chairam
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand; Nanomaterials Science, Sensors & Catalysis for Problem-Based Projects, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| | - Purim Jarujamrus
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand; Nanomaterials Science, Sensors & Catalysis for Problem-Based Projects, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| |
Collapse
|
33
|
Aghaie A, Khanmohammadi A, Hajian A, Schmid U, Bagheri H. Nonenzymatic Electrochemical Determination of Paraoxon Ethyl in Water and Fruits by Graphene-Based NiFe Bimetallic Phosphosulfide Nanocomposite as a Superior Sensing Layer. FOOD ANAL METHOD 2019. [DOI: 10.1007/s12161-019-01486-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
34
|
Affiliation(s)
- Teresa L. Mako
- Department of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, Rhode Island 02881, United States
| | - Joan M. Racicot
- Department of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, Rhode Island 02881, United States
| | - Mindy Levine
- Department of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, Rhode Island 02881, United States
| |
Collapse
|
35
|
Xu J, Yu C, Feng T, Liu M, Li F, Wang Y, Xu J. N-Carbamoylmaleimide-treated carbon dots: stabilizing the electrochemical intermediate and extending it for the ultrasensitive detection of organophosphate pesticides. NANOSCALE 2018; 10:19390-19398. [PMID: 30307023 DOI: 10.1039/c8nr05098h] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
To date, numerous methods have been reported for the detection of organophosphorus pesticides (OP) due to their severe potential hazard to the environment, public health and national security. However, very few works have ever found that the signal loss of thiocholine (TCh) during electrochemical processing is a key factor leading to the low sensitivity of acetylcholinesterase (AChE)-based OP electrochemical sensing platforms. Herein, we propose an ultrasensitive detection method for multiple OPs including parathion-methyl, paraoxon, dimethoate and O,O-dimethyl-O-2,2-dichlorovinyl-phosphate using N-carbamoylmaleimide-functionalized carbon dots (N-MAL-CDs) as a nano-stabilizer. For the first time, Michael addition is introduced into an AChE-based OP electrochemical sensing platform to enrich the electrochemical intermediate TCh. The Michael addition between TCh and N-MAL-CDs is demonstrated via XRD, FTIR, SEM and EDS elemental mapping experiments. Due to the stabilization and enhancement of TCh with N-MAL-CDs, the as prepared OP sensing platform achieves ultrahigh sensitivity by detecting the initial electrochemical signals of TCh without signal loss, showing a wide linear range of 3.8 × 10-15-3.8 × 10-10 M for parathion-methyl and 1.8 × 10-14-3.6 × 10-10 M for paraoxon, with a limit of detection of 1.4 × 10-15 M for parathion-methyl and 4.8 × 10-15 M for paraoxon.
Collapse
Affiliation(s)
- Jinjin Xu
- Shanghai Key Lab of Chemical Assessment and Sustainability, College of Environmental Science and Engineering, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China.
| | | | | | | | | | | | | |
Collapse
|
36
|
Khoshbin Z, Verdian A, Housaindokht MR, Izadyar M, Rouhbakhsh Z. Aptasensors as the future of antibiotics test kits-a case study of the aptamer application in the chloramphenicol detection. Biosens Bioelectron 2018; 122:263-283. [PMID: 30268964 DOI: 10.1016/j.bios.2018.09.060] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/08/2018] [Accepted: 09/16/2018] [Indexed: 12/31/2022]
Abstract
Antibiotics are a type of antimicrobial drug with the ubiquitous presence in foodstuff that effectively applied to treat the diseases and promote the animal growth worldwide. Chloramphenicol as one of the antibiotics with the broad action spectrum against Gram-positive and Gram-negative bacteria is widely applied for the effective treatment of infectious diseases in humans and animals. Unfortunately, the serious side effects of chloramphenicol, such as aplastic anemia, kidney damage, nausea, and diarrhea restrict its application in foodstuff and biomedical fields. Development of the sufficiently sensitive methods to detect chloramphenicol residues in food and clinical diagnosis seems to be an essential demand. Biosensors have been introduced as the promising tools to overcome the requirement. As one of the newest types of the biosensors, aptamer-based biosensors (aptasensors) are the efficient sensing platforms for the chloramphenicol monitoring. In the present review, we summarize the recent achievements of the accessible aptasensors for qualitative detection and quantitative determination of chloramphenicol as a candidate of the antibiotics. The present chloramphenicol aptasensors can be classified in two main optical and electrochemical categories. Also, the other formats of the aptasensing assays like the high performance liquid chromatography (HPLC) and microchip electrophoresis (MCE) have been reviewed. The enormous interest in utilizing the diverse nanomaterials is also highlighted in the fabrication of the chloramphenicol aptasensors. Finally, some results are presented based on the advantages and disadvantages of the studied aptasensors to achieve a promising perspective for designing the novel antibiotics test kits.
Collapse
Affiliation(s)
- Zahra Khoshbin
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Asma Verdian
- Department of food safety and quality control, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran.
| | | | - Mohammad Izadyar
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Zeinab Rouhbakhsh
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
37
|
Zhao F, Wu J, Ying Y, She Y, Wang J, Ping J. Carbon nanomaterial-enabled pesticide biosensors: Design strategy, biosensing mechanism, and practical application. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.06.017] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
38
|
Bucur B, Munteanu FD, Marty JL, Vasilescu A. Advances in Enzyme-Based Biosensors for Pesticide Detection. BIOSENSORS 2018; 8:E27. [PMID: 29565810 PMCID: PMC6022933 DOI: 10.3390/bios8020027] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/18/2018] [Accepted: 03/20/2018] [Indexed: 01/10/2023]
Abstract
The intensive use of toxic and remanent pesticides in agriculture has prompted research into novel performant, yet cost-effective and fast analytical tools to control the pesticide residue levels in the environment and food. In this context, biosensors based on enzyme inhibition have been proposed as adequate analytical devices with the added advantage of using the toxicity of pesticides for detection purposes, being more "biologically relevant" than standard chromatographic methods. This review proposes an overview of recent advances in the development of biosensors exploiting the inhibition of cholinesterases, photosynthetic system II, alkaline phosphatase, cytochrome P450A1, peroxidase, tyrosinase, laccase, urease, and aldehyde dehydrogenase. While various strategies have been employed to detect pesticides from different classes (organophosphates, carbamates, dithiocarbamates, triazines, phenylureas, diazines, or phenols), the number of practical applications and the variety of environmental and food samples tested remains limited. Recent advances focus on enhancing the sensitivity and selectivity by using nanomaterials in the sensor assembly and novel mutant enzymes in array-type sensor formats in combination with chemometric methods for data analysis. The progress in the development of solar cells enriched the possibilities for efficient wiring of photosynthetic enzymes on different surfaces, opening new avenues for development of biosensors for photosynthesis-inhibiting herbicides.
Collapse
Affiliation(s)
- Bogdan Bucur
- National Institute of Research and Development for Biological Sciences, Centre of Bioanalysis, 296 Splaiul Independentei, 060031 Bucharest, Romania.
| | - Florentina-Daniela Munteanu
- Faculty of Food Engineering, Tourism and Environmental Protection, "Aurel Vlaicu" University of Arad, Elena Dragoi, No. 2, 310330 Arad, Romania.
| | - Jean-Louis Marty
- BAE Laboratory, Université de Perpignan via Domitia, 52 Avenue Paul Alduy, 66860 Perpignan, France.
| | - Alina Vasilescu
- International Centre of Biodynamics, 1B Intrarea Portocalelor, 060101 Bucharest, Romania.
| |
Collapse
|
39
|
Zhang J, Song W, Sun Y, Cheng B, Shan A. Changes in glucose metabolism and mRNA expression of IRS-2 in rats exposed to phoxim and the protective effects of vitamin E. Toxicol Res (Camb) 2018; 7:201-210. [PMID: 30090575 PMCID: PMC6061297 DOI: 10.1039/c7tx00243b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 11/22/2017] [Indexed: 11/21/2022] Open
Abstract
Research has shown that organophosphorus pesticides impair glucose homeostasis and cause insulin resistance and type 2 diabetes. The current study investigates the influence of phoxim on insulin signaling pathways and the protective effects of vitamin E. Phoxim (180 mg kg-1) and VE (200 mg kg-1) were administered orally to Sprague-Dawley rats over a period of 28 consecutive days. After exposure to phoxim, the animals showed glucose intolerance and hyperinsulinemia during glucose tolerance tests, and insulin tolerance tests demonstrated an impaired glucose-lowering effect of insulin. Phoxim increases the fasting glucose, insulin and cholesterol levels, as well as the liver hexokinase activity (HK) significantly while decreasing the high density lipoprotein (HDL) cholesterol, and glycogen content in the liver and skeletal muscles observably. Furthermore, we observed an increase of insulin resistance biomarkers and a decrease of insulin sensitivity indices. The insulin receptor substrate (IRS)-2 mRNA expressions of liver and skeletal muscles were down-regulated by phoxim, while the expression of IRS-1 showed no difference. There were no differences in triglycerides, LDL-cholesterol, and fasting glucose treated with phoxim. On the basis of biochemical and molecular findings, phoxim has been determined to impair glucose homeostasis through insulin resistance and insulin signaling pathway disruptions resulting in a reduced function of insulin in hepatocytes and muscles. VE supplementation reduced the fasting glucose, increased the glycogen content and HDL-cholesterol, but did not reduce the insulin resistance indices, when phoxim-treated rats were compared to VE supplemented rats. Overall, this study shows that vitamin E modifies the phoxim toxicity in rats only to a moderate degree.
Collapse
Affiliation(s)
- Jing Zhang
- Institute of Animal Nutrition , Northeast Agricultural University , Harbin , 150030 , P. R. China . ; ; Tel: +86 0451 5519 0685
| | - Wentao Song
- Institute of Animal Nutrition , Northeast Agricultural University , Harbin , 150030 , P. R. China . ; ; Tel: +86 0451 5519 0685
| | - Yuecheng Sun
- Institute of Animal Nutrition , Northeast Agricultural University , Harbin , 150030 , P. R. China . ; ; Tel: +86 0451 5519 0685
| | - Baojing Cheng
- Institute of Animal Nutrition , Northeast Agricultural University , Harbin , 150030 , P. R. China . ; ; Tel: +86 0451 5519 0685
| | - Anshan Shan
- Institute of Animal Nutrition , Northeast Agricultural University , Harbin , 150030 , P. R. China . ; ; Tel: +86 0451 5519 0685
| |
Collapse
|
40
|
Ultrasensitive Determination of Malathion Using Acetylcholinesterase Immobilized on Chitosan-Functionalized Magnetic Iron Nanoparticles. BIOSENSORS-BASEL 2018; 8:bios8010016. [PMID: 29438301 PMCID: PMC5872064 DOI: 10.3390/bios8010016] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/07/2018] [Accepted: 02/07/2018] [Indexed: 01/19/2023]
Abstract
A renewable, disposable, low cost, and sensitive sensor for the detection of organophosphorus pesticides was constructed by immobilizing the acetylcholinesterase enzyme (AChE), via glutaraldehyde, on magnetic iron nanoparticles (Fe3O4) previously synthesized and functionalized with chitosan (CS). The sensor was denoted AChE/CS/Fe3O4. The magnetic nanoparticles were characterized by Fourier transform infrared spectroscopy and transmission electron microscopy. Acetylthiocholine (ATCh) was incubated with AChE/CS/Fe3O4 and attached to a screen-printed electrode using a magnet. The oxidation of thiocholine (from ATCh hydrolysis) was monitored at an applied potential of +0.5 V vs. Ag/AgCl(KClsat) in 0.1 mol L−1 phosphate buffer solution (pH 7.5) as the supporting electrolyte. A mixture of the pesticide malathion and ATCh was investigated using the same procedure, and the results were compared and expressed as inhibition percentages. For determination of malathion, the proposed sensor presented a linear response in the range from 0.5 to 20 nmol L−1 (R = 0.9942). The limits of detection (LOD) and quantification (LOQ) were 0.3 and 0.8 nmol L−1, respectively. Real samples were also investigated, with recovery values of 96.0% and 108.3% obtained for tomato and pond water samples, respectively. The proposed sensor is a feasible option for malathion detection, offering a linear response, good sensitivity, and a low detection limit.
Collapse
|