1
|
Wang S, Hu Y, Deng Z, Liu R, Lv Y. CRISPR/Cas12a-enhanced DNA nanomachine for multiple respiratory pathogens detection. Chem Commun (Camb) 2024; 60:14814-14817. [PMID: 39584421 DOI: 10.1039/d4cc05639f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Respiratory infection caused by pathogens is among the most prevalent health issues affecting people worldwide. Accurate and rapid screening of respiratory pathogens is crucial for selecting appropriate treatments to control epidemics. However, it is often challenged by two aspects: first, the low concentration of pathogens in the early stages of infection; second, the difficulty of analyzing multiple pathogens. Herein, we report a mass spectrometry strategy combining the CRISPR/Cas12a system with DNA nanomachines for respiratory pathogens detection. Thanks to the high sensitivity of the CRISPR/Cas12a-enhanced DNA nanomachine and the multiple analysis of elemental mass spectrometry, the proposed method was successfully applied for clinical sample analysis with a low detection limit of 28 amol, 30 amol, and 38 amol for SARS-CoV-2, influenza A virus subtype H1N1, and Mycoplasma pneumoniae, respectively.
Collapse
Affiliation(s)
- Siyi Wang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| | - Yueli Hu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| | - Ziqiang Deng
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| | - Rui Liu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| | - Yi Lv
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
- Analytical & Testing Centre, Sichuan University, Chengdu 610064, P. R. China
| |
Collapse
|
2
|
Li X, Li X, Chen J, Tan Z, Wang C. ICP-MS based detection method combined with Au NP and Ag NP labeling for bacteremia diagnosis. Anal Biochem 2024; 692:115559. [PMID: 38723993 DOI: 10.1016/j.ab.2024.115559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/14/2024] [Accepted: 05/07/2024] [Indexed: 06/16/2024]
Abstract
Bacteremia, as a serious infectious disease, has an increasing incidence and a high mortality rate. Early diagnosis and early treatment are crucial for improving the cure rate. In this work, we proposed an inductively coupled plasma mass spectrometry (ICP-MS)-based detection method combined with gold nanoparticle (Au NP) and silver nanoparticle (Ag NP) labeling for the simultaneous detection of Salmonella and Escherichia coli (E. coli O157:H7) in human blood samples. Salmonella and E. coli O157:H7 were captured by magnetic beads coupled with anti-8G3 and anti-7C2, and then specifically labeled by Au NP-anti-5H12 and Ag NP-anti-8B1 respectively, which were used as signal probes for ICP-MS detection. Under the optimal experimental conditions, the limits of detection of 164 CFU mL-1 for Salmonella, 220 CFU mL-1for E. coli O157:H7 and the linear ranges of 400-80,000 CFU mL-1Salmonella, 400-60,000 CFU mL-1 E. coli O157:H7 were obtained. The proposed method can realize the simultaneous detection of two types of pathogenic bacteria in human whole blood in 3.5 h, showing great potential for the rapid diagnosis of bacteremia in clinic.
Collapse
Affiliation(s)
- Xiaoting Li
- Department of Food and Drug, ShenZhen Polytechnic University, Liuxian Avenue, Nanshan District, Shenzhen, Guangdong, 518055, China.
| | - Xin Li
- Department of Food and Drug, ShenZhen Polytechnic University, Liuxian Avenue, Nanshan District, Shenzhen, Guangdong, 518055, China
| | - Jiayi Chen
- Department of Food and Drug, ShenZhen Polytechnic University, Liuxian Avenue, Nanshan District, Shenzhen, Guangdong, 518055, China
| | - Zuomin Tan
- Department of Food and Drug, ShenZhen Polytechnic University, Liuxian Avenue, Nanshan District, Shenzhen, Guangdong, 518055, China
| | - Chuan Wang
- Department of Science and Education Division, Public Health Clinical Center of Chengdu, 377 Jingming Road, Jinjiang District, Chengdu, Sichuan, 610061, China.
| |
Collapse
|
3
|
Wei Y, Hu Y, Zhang C, Liu R, Lv Y. Single Particle Analysis-Enhanced DNA Walking Machine for Sensitive miRNA Detection. Anal Chem 2024; 96:11566-11571. [PMID: 38940610 DOI: 10.1021/acs.analchem.4c02404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
DNA walking machines have achieved significant breakthroughs in areas such as biosensing, bioimaging, and early cancer diagnosis, facilitated by the self-assembly of DNA or its combination with other materials, such as magnetic beads and metal nanoparticles. However, current DNA walking machine strategies are constantly challenged by inadequate analytical sensitivity, while sophisticated signal amplification procedures are often indispensable. Single-particle inductively coupled plasma mass spectrometry (SP-ICPMS) provides superior sensitivity and can effectively discriminate between background noise and detected signals due to the large number of metal atoms in a nanoparticle and the concentrating effect of single nanoparticle detection. In this study, we present a novel approach utilizing single nanoparticle counting and duplex-specific nuclease (DSN)-assisted signal amplification to construct a 3D DNA walking machine for detecting the aggressive prostate cancer (PCa) biomarker miRNA-200c. The proposed strategy showed an improvement in sensitivity with a detection limit (LOD) of 0.93 pM (28 amol) and was successfully applied in human serum samples. To the best of our knowledge, this is the first report of the DNA walking machine with single nanoparticle counting study.
Collapse
Affiliation(s)
- Yanxue Wei
- Analytical & Testing Center, Sichuan University, Chengdu 610064, PR China
| | - Yueli Hu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Chengchao Zhang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Rui Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Yi Lv
- Analytical & Testing Center, Sichuan University, Chengdu 610064, PR China
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| |
Collapse
|
4
|
Zhang XW, Qi GX, Chen S, Yu YL, Wang JH. Ultrasensitive and Wash-Free Detection of Tumor Extracellular Vesicles by Aptamer-Proximity-Ligation-Activated Rolling Circle Amplification Coupled to Single Particle ICP-MS. Anal Chem 2024; 96:10800-10808. [PMID: 38904228 DOI: 10.1021/acs.analchem.4c02066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Tumor-derived extracellular vesicles (TEVs) are rich in cellular information and hold great promise as a biomarker for noninvasive cancer diagnosis. However, accurate measurement of TEVs presents challenges due to their low abundance and potential interference from a high number of EVs derived from normal cells. Herein, an aptamer-proximity-ligation-activated rolling circle amplification (RCA) method for EV membrane recognition, coupled with single particle inductively coupled plasma mass spectrometry (sp-ICP-MS) for the quantification of TEVs, is developed. When DNA-labeled ultrasmall gold nanoparticle (AuNP) probes bind to the long chains formed by RCA, they aggregate to form large particles. Notably, small AuNPs scarcely produce pulse signals in sp-ICP-MS, thereby detecting TEVs in a wash-free manner. By leveraging the strong binding affinity of aptamers, dual aptamers for EpCAM and PD-L1 recognition, and the sp-ICP-MS technique, this method offers remarkable sensitivity and selectivity in tracing TEVs. Under optimized conditions, the present method shows a favorable linear relationship between the pulse signal frequency of sp-ICP-MS and TEV concentration within the range of 105-107 particles/mL, along with a detection limit of 1.1 × 104 particles/mL. The pulse signals from sp-ICP-MS combined with machine learning algorithms are used to discriminate cancer patients from healthy donors with 100% accuracy. Due to its simple and fast operation and excellent sensitivity and accuracy, this approach holds significant potential for diverse applications in life sciences and personalized medicine.
Collapse
Affiliation(s)
- Xue-Wei Zhang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Gong-Xiang Qi
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Shuai Chen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Yong-Liang Yu
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Jian-Hua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| |
Collapse
|
5
|
Chen J, Yang D, Zhu G, Zhang R, Wang B, Chang Z, Dai J, Wu W, Rotenberg MY, Fang Y. Automated and ultrasensitive point-of-care glycoprotein detection using boronate-affinity enhanced organic electrochemical transistor patch. Biosens Bioelectron 2024; 255:116229. [PMID: 38554574 DOI: 10.1016/j.bios.2024.116229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/29/2024] [Accepted: 03/14/2024] [Indexed: 04/01/2024]
Abstract
Quantifying trace glycoproteins in biofluids requires ultrasensitive components, but feedback is not available in the current portable platforms of point-of-care (POC) diagnosis technologies. A compact and ultrasensitive bioelectrochemical patch was based on boronate-affinity amplified organic electrochemical transistors (BAAOECTs) for POC use was developed to overcome this dilemma. Benefit from the cascading signal enhancement deriving from boronate-affinity targeting multiple regions of glycoprotein and OECTs' inherent signal amplification capability, the BAAOECTs achieved a detection limit of 300 aM within 25 min, displaying about 3 orders of magnitude improvement in sensitivity compared with the commercial electrochemical luminescence (ECL) kit. By using a microfluidic chip, a microcontroller module, and a wireless sensing system, the testing workflows of the above patch was automated, allowing for running the sample-to-answer pipeline even in a resource-limited environment. The reliability of such portable biosensing platform is well recognized in clinical diagnostic applications of heart failure. Overall, the remarkable enhanced sensitivity and automated workflow of BAAOECTs biosensing platform provide a prospective and generalized design policy for expanding the POC diagnosis capabilities of glycoproteins.
Collapse
Affiliation(s)
- Jing Chen
- Research Center for Translational Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, 200120, PR China
| | - Deqi Yang
- Research Center for Translational Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, 200120, PR China
| | - Guoqi Zhu
- Tongji Hospital, Tongji University School of Medicine, Shanghai, 200120, PR China
| | - Ru Zhang
- Research Center for Translational Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, 200120, PR China
| | - Bingfang Wang
- Research Center for Translational Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, 200120, PR China
| | - Zhiqiang Chang
- Research Center for Translational Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, 200120, PR China
| | - Jing Dai
- Research Center for Translational Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, 200120, PR China
| | - Wenjuan Wu
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200123, PR China
| | - Menahem Y Rotenberg
- Department of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Yin Fang
- Research Center for Translational Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, 200120, PR China; Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital Affiliated to Tongji University, Shanghai, 200120, PR China.
| |
Collapse
|
6
|
Liu Y, Chen B, He M, Hu B. Detection of terminal deoxynucleotidyl transferase activity based on self-mediated nucleic acid elongation and elemental labeling inductively coupled plasma-mass spectrometry. Talanta 2024; 274:125979. [PMID: 38537358 DOI: 10.1016/j.talanta.2024.125979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/29/2024] [Accepted: 03/20/2024] [Indexed: 05/04/2024]
Abstract
Terminal deoxynucleotidyl transferase (TdT), a specialized DNA polymerase, is recognized as a promising biomarker for acute leukemia. Herein, taking the advantage of the self-mediated strand elongation property of TdT, a simple and sensitive method for TdT activity assay was developed based on gold nanoparticles (AuNPs) labeling inductively coupled plasma mass spectrometry (ICP-MS). In the presence of TdT, the primer DNA on magnetic beads is elongated with an adenine-rich single stranded long chain that can label poly-thymine modified AuNPs. After acid elution, the labeled AuNPs were detected by ICP-MS, and the signal intensity of 197Au reflected the TdT activity. Under the optimal conditions, the limit of detection for TdT activity is down to 0.054 U mL-1, along with good selectivity and strong tolerance to other interfering proteins. Furthermore, it achieves a straightforward and accurate detection of TdT activity in acute lymphoblastic leukemia cells without sample pre-processing and tool enzyme addition. Therefore, the proposed method shows great promise as a valuable tool for TdT-related biological research and leukemia therapeutics.
Collapse
Affiliation(s)
- Yuwei Liu
- Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Beibei Chen
- Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Man He
- Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Bin Hu
- Department of Chemistry, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
7
|
Hu J, Yan X, Chris Le X. Label-free detection of biomolecules using inductively coupled plasma mass spectrometry (ICP-MS). Anal Bioanal Chem 2024; 416:2625-2640. [PMID: 38175283 DOI: 10.1007/s00216-023-05106-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024]
Abstract
Bioassays using inductively coupled plasma mass spectrometry (ICP-MS) have gained increasing attention because of the high sensitivity of ICP-MS and the various strategies of labeling biomolecules with detectable metal tags. The classic strategy to tag the target biomolecules is through direct antibody-antigen interaction and DNA hybridization, and requires the separation of the bound from the unbound tags. Label-free ICP-MS techniques for biomolecular assays do not require direct labeling: they generate detectable metal ions indirectly from specific biomolecular reactions, such as enzymatic cleavage. Here, we highlight the development of three main strategies of label-free ICP-MS assays for biomolecules: (1) enzymatic cleavage of metal-labeled substrates, (2) release of immobilized metal ions from the DNA backbone, and (3) nucleic acid amplification-assisted aggregation and release of metal tags to achieve amplified detection. We briefly describe the fundamental basis of these label-free ICP-MS assays and discuss the benefits and drawbacks of various designs. Future research is needed to reduce non-specific adsorption and minimize background and interference. Analytical innovations are also required to confront challenges faced by in vivo applications.
Collapse
Affiliation(s)
- Jianyu Hu
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada
| | - Xiaowen Yan
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China.
| | - X Chris Le
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada.
| |
Collapse
|
8
|
Zeng Q, Xia MC, Yin X, Cheng S, Xue Z, Tan S, Gong X, Ye Z. Recent developments in ionization techniques for single-cell mass spectrometry. Front Chem 2023; 11:1293533. [PMID: 38130875 PMCID: PMC10733462 DOI: 10.3389/fchem.2023.1293533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023] Open
Abstract
The variation among individual cells plays a significant role in many biological functions. Single-cell analysis is advantageous for gaining insight into intricate biochemical mechanisms rarely accessible when studying tissues as a whole. However, measurement on a unicellular scale is still challenging due to unicellular complex composition, minute substance quantities, and considerable differences in compound concentrations. Mass spectrometry has recently gained extensive attention in unicellular analytical fields due to its exceptional sensitivity, throughput, and compound identification abilities. At present, single-cell mass spectrometry primarily concentrates on the enhancement of ionization methods. The principal ionization approaches encompass nanoelectrospray ionization (nano-ESI), laser desorption ionization (LDI), secondary ion mass spectrometry (SIMS), and inductively coupled plasma (ICP). This article summarizes the most recent advancements in ionization techniques and explores their potential directions within the field of single-cell mass spectrometry.
Collapse
Affiliation(s)
- Qingli Zeng
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China
| | - Meng-Chan Xia
- National Anti-Drug Laboratory Beijing Regional Center, Beijing, China
| | - Xinchi Yin
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China
| | - Simin Cheng
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China
| | - Zhichao Xue
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China
| | - Siyuan Tan
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China
| | - Xiaoyun Gong
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China
| | - Zihong Ye
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| |
Collapse
|
9
|
Rodríguez-Penedo A, Costa-Rama E, Fernández B, García-Cabo C, Benavente L, Calleja S, Fernández-Abedul MT, Pereiro R. Palladium nanoclusters as a label to determine GFAP in human serum from donors with stroke by bimodal detection: inductively coupled plasma-mass spectrometry and linear sweep voltammetry. Mikrochim Acta 2023; 190:493. [PMID: 38032374 PMCID: PMC10689531 DOI: 10.1007/s00604-023-06059-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023]
Abstract
Water-soluble, stable, and monodisperse palladium nanoclusters (PdNCs) were synthesized using NaBH4 as a reductant and lipoic acid as a ligand. PdNCs, measured by high-resolution transmission electron microscopy, showed a round shape and a diameter of 2.49 ± 0.02 nm. It was found that each PdNC contains 550 Pd atoms on average. These PdNCs offer high amplification as a label of biochemical reactions when inductively coupled plasma-mass spectrometry (ICP-MS) is used as a detector. In addition, PdNCs have catalytic activity on electrochemical reactions, allowing detection by linear sweep voltammetry (LSV). As a proof of applicability, a competitive immunoassay based on PdNC labels was developed for the determination of glial fibrillary acidic protein (GFAP) in human serum, comparing ICP-MS and LSV detection. GFAP is a biomarker for differentiating between patients with ischemic stroke (IS) and hemorrhagic stroke (HS). The limit of detection (LoD), corresponding to IC10 (4-parameter logistic curve), was 0.03 pM of GFAP, both by ICP-MS and LSV, being lower than the 0.31 pM LoD provided by the ELISA commercial kit. Using the error profile method, 0.03 pM and 0.11 pM LoDs were obtained respectively by ICP-MS and LSV: LoD is lower by ICP-MS due to the better precision of the measurements. The analyses of human serum samples from IS, HS, and control (CT) donors using PdNC labels and detection by ICP-MS and LSV were validated with a commercial ELISA kit (for CT donors only ICP-MS provided enough sensitivity). Results point out toward the future use of PdNCs as a label in other immunoprobes for the determination of specific proteins requiring very low LoDs as well as the development of electrochemical decentralized methodologies.
Collapse
Affiliation(s)
- Alejandro Rodríguez-Penedo
- Department of Physical and Analytical Chemistry, University of Oviedo, Julian Clavería 8, 33006, Oviedo, Spain
| | - Estefanía Costa-Rama
- Department of Physical and Analytical Chemistry, University of Oviedo, Julian Clavería 8, 33006, Oviedo, Spain
| | - Beatriz Fernández
- Department of Physical and Analytical Chemistry, University of Oviedo, Julian Clavería 8, 33006, Oviedo, Spain.
| | - Carmen García-Cabo
- Department of Neurology, Hospital Universitario Central de Asturias (HUCA), Oviedo, Spain
| | - Lorena Benavente
- Department of Neurology, Hospital Universitario Central de Asturias (HUCA), Oviedo, Spain
| | - Sergio Calleja
- Department of Neurology, Hospital Universitario Central de Asturias (HUCA), Oviedo, Spain
| | - M Teresa Fernández-Abedul
- Department of Physical and Analytical Chemistry, University of Oviedo, Julian Clavería 8, 33006, Oviedo, Spain.
| | - Rosario Pereiro
- Department of Physical and Analytical Chemistry, University of Oviedo, Julian Clavería 8, 33006, Oviedo, Spain
| |
Collapse
|
10
|
Wang Q, Shi L, Wang X, Zhou W, Shuang S. Lysosome-targeted dual-emissive carbon dots for ratiometric optical dual-readout and smartphone-assisted visual determination of Hg 2+ and SO 32. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 306:123573. [PMID: 39491924 DOI: 10.1016/j.saa.2023.123573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/13/2023] [Accepted: 10/21/2023] [Indexed: 11/05/2024]
Abstract
Smartphone-assisted visual assay not only expands quantitative analysis but also enhance real-time on-site sensing capabilities. Herein, lysosome-targeted dual-emissive carbon dots (L-CDs) can not only recognize Hg2+ and SO32- by ratiometric fluorescence and ratiometric absorption, but also visually quantify Hg2+ and SO32- by smartphone-assisted method. With monitoring of intrinsic ratiometric fluorescent variation (I580/I468), L-CDs are developed as an effective sensing platform for ratiometric fluorescent successive identification of Hg2+ and SO32- accompanying with continuous fluorescence variation of blue, purplish pink, pink, and light yellow. With detecting of inherent ratiometric absorption change (A538/A206), L-CDs are also constructed as an efficacious sensing terrace for ratiometric absorption consecutive discrimination of Hg2+ and SO32-. More crucially, integrating continuous fluorescence color change and color recognizer APP in the smartphone, visual quantification of Hg2+ and SO32- can be accomplished on the basis of the ratio of red value and blue value (R/B) with linear ranges of 0-130 and 0-850 µM, respectively, as well as LOD of 8.4 and 12.9 nM, respectively. More interestingly, confocal fluorescent imaging of HeLa cells further verifies that L-CDs can be regarded as favorable biosensors for on-site, real-time differentiation of Hg2+ and SO32- in vitro and in vivo with ratiometric manners.
Collapse
Affiliation(s)
- Qianliang Wang
- College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, PR China
| | - Lihong Shi
- College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, PR China.
| | - Xu Wang
- Shanxi Research Center for Information and Strategy of Science and Technology, Taiyuan 030024, PR China
| | - Wei Zhou
- College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, PR China
| | - Shaomin Shuang
- College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, PR China
| |
Collapse
|
11
|
Yang H, Qi L, Zhou J, Li Q, Yuan X, Zhang M, He Y, Huang K, Chen P. Metal ions-regulated chemical vapor generation of Hg 2+:mechanism and application in miniaturized point discharge atomic emission spectrometry assay of oxalate in clinical urolithiasis samples. Anal Chim Acta 2023; 1262:341223. [PMID: 37179054 DOI: 10.1016/j.aca.2023.341223] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 04/03/2023] [Accepted: 04/15/2023] [Indexed: 05/15/2023]
Abstract
It is well known that the coexisting metal ions could significantly influence the atomic spectroscopy (AS) analysis. In this work, a cation-modulated mercury ions (Hg2+) strategy via chemical vapor generation (CVG) was developed for oxalate assay due to the phenomenon that the Ag + can significantly reduce the Hg2+ signal. The regulation effect was studied in depth via experimental investigations. Since Ag + can be reduced to silver nanoparticles (Ag NPs) by reductant SnCl2, the decrease of the Hg2+ signal is attributed to the formation of a silver-mercury (Ag-Hg) amalgam. Due to the oxalate can react with Ag + to generate Ag2C2O4, which can reduce the generation of Ag-Hg amalgam, a portable and low-power point discharge chemical vapor generation atomic emission spectrometry (PD-CVG-AES) system was constructed to quantify the content of oxalate via monitoring the signal of Hg2+. Under optimal conditions, the limit of detection (LOD) was as low as 40 nM in the range of 0.1-10 μM for oxalate assay, while exhibiting good specificity. This method was applied to quantitative oxalate in 50 clinical urine samples of urinary stones patients. The levels of oxalate detected in clinical samples were consistent with clinical imaging results, which is promising for point-of-care testing in clinical diagnosis.
Collapse
Affiliation(s)
- Haiyan Yang
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan, 610068, China
| | - Liping Qi
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan, 610068, China
| | - Jinrong Zhou
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan, 610068, China
| | - Qian Li
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan, 610068, China
| | - Xin Yuan
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Mei Zhang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Yong He
- Department of Laboratory Medicine, Med+X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Ke Huang
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan, 610068, China; Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu, 610068, China.
| | - Piaopiao Chen
- Department of Laboratory Medicine, Med+X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
12
|
Torregrosa D, Jauset-Rubio M, Serrano R, Svobodová M, Grindlay G, O'Sullivan CK, Mora J. Ultrasensitive determination of β-conglutin food allergen by means an aptamer assay based on inductively coupled plasma mass spectrometry detection. Anal Chim Acta 2023; 1252:341042. [PMID: 36935136 DOI: 10.1016/j.aca.2023.341042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/06/2023]
Abstract
The overall objective of this work is the evaluation of different competitive aptamer assays based on inductively coupled plasma mass spectrometry (ICP-MS) detection for the determination of β-conglutin (food protein allergen from lupin) in flour samples. To this end, two competitive aptamer assay schemes were developed using either thiolated aptamers chemisorbed onto gold nanoparticles (AuNPs) or biotinylated aptamers linked to streptavidin-AuNPs. The influence of ICP-MS detection mode (i.e., conventional vs single particle) on assay performance was explored. In the case of the thiolated aptamer, the limit of detection (LoD) obtained using the single particle mode was improved 2-fold as compared to the LoD provided by the conventional mode. With regards to the biotinylated aptamer, the use of the conventional mode provided a 5-fold improvement of LoD as compared to that obtained for the single particle one. Using the optimized conditions, the best LoD of 2 pM was obtained with the biotinylated aptamer operating with conventional ICP-MS detection. When compared to previous reports using the same aptamer in a competitive assay, the developed method significantly improved the LoD by at least an order of magnitude. Different flour samples containing lupin were successfully analyzed according to European Conformity guidelines for the analysis of food contaminants.
Collapse
Affiliation(s)
- Daniel Torregrosa
- University of Alicante, Department of Analytical Chemistry, Nutrition and Food Sciences, PO Box 99, 03080, Alicante, Spain
| | - Miriam Jauset-Rubio
- INTERFIBIO Consolidated Research Group, Department of Chemical Engineering, Universitat Rovira i Virgili, 43007, Tarragona, Spain
| | - Raquel Serrano
- University of Alicante, Department of Analytical Chemistry, Nutrition and Food Sciences, PO Box 99, 03080, Alicante, Spain
| | - Marketa Svobodová
- INTERFIBIO Consolidated Research Group, Department of Chemical Engineering, Universitat Rovira i Virgili, 43007, Tarragona, Spain
| | - Guillermo Grindlay
- University of Alicante, Department of Analytical Chemistry, Nutrition and Food Sciences, PO Box 99, 03080, Alicante, Spain.
| | - Ciara K O'Sullivan
- INTERFIBIO Consolidated Research Group, Department of Chemical Engineering, Universitat Rovira i Virgili, 43007, Tarragona, Spain; Institució Catalana de Recerca i Estudis Avancats (ICREA), 08010, Barcelona, Spain
| | - Juan Mora
- University of Alicante, Department of Analytical Chemistry, Nutrition and Food Sciences, PO Box 99, 03080, Alicante, Spain
| |
Collapse
|
13
|
Wallimann RH, Schindler P, Hensinger H, Tschan VJ, Busslinger SD, Kneuer R, Müller C, Schibli R. Inductively Coupled Plasma Mass Spectrometry─A Valid Method for the Characterization of Metal Conjugates in View of the Development of Radiopharmaceuticals. Mol Pharm 2023; 20:2150-2158. [PMID: 36826437 DOI: 10.1021/acs.molpharmaceut.2c01092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
This study addresses the question whether inductively coupled plasma mass spectrometry (ICP-MS) can be used as a method for the in vitro and in vivo characterization of non-radioactive metal conjugates to predict the properties of analogous radiopharmaceuticals. In a "proof-of-concept" study, the prostate-specific membrane antigen (PSMA)-targeting [175Lu]Lu-PSMA-617 and [159Tb]Tb-PSMA-617 were compared with their respective radiolabeled analogues, [177Lu]Lu-PSMA-617 (PLUVICTO, Novartis) and [161Tb]Tb-PSMA-617. ICP-MS and conventional γ-counting of the cell samples revealed almost identical results (<6% absolute difference between the two technologies) for the in vitro uptake and internalization of the (radio)metal conjugates, irrespective of the employed methodology. In vivo, an equal uptake in PSMA-positive PC-3 PIP tumor xenografts was determined 1 h after the injection of [175Lu]Lu-/[177Lu]Lu-PSMA-617 (41 ± 6% ID/g and 44 ± 12% IA/g, respectively) and [159Tb]Tb-/[161Tb]Tb-PSMA-617 (44 ± 5% ID/g and 44 ± 5% IA/g, respectively). It was further revealed that it is crucial to use the same ratios of the (radio)metal-labeled and unlabeled ligands for both methodologies to obtain equal data in organs in which receptor saturation was reached such as the kidneys (12 ± 2% ID/g vs 10 ± 1% IA/g, 1 h after injection). The data of this study demonstrate that the use of high-sensitivity ICP-MS allows reliable and predictive quantification of compounds labeled with stable metal isotopes in cell and tissue samples obtained in preclinical studies. It can, hence, be employed as a valid alternative to the state-of-the-art γ-counting methodology to detect radioactive ligands.
Collapse
Affiliation(s)
- Rahel H Wallimann
- Novartis Institutes for Biomedical Research, Novartis, 4056 Basel, Switzerland.,Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Patrick Schindler
- Novartis Institutes for Biomedical Research, Novartis, 4056 Basel, Switzerland
| | - Heloïse Hensinger
- Novartis Institutes for Biomedical Research, Novartis, 4056 Basel, Switzerland
| | - Viviane J Tschan
- Center for Radiopharmaceutical Sciences, ETH-PSI, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Sarah D Busslinger
- Center for Radiopharmaceutical Sciences, ETH-PSI, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Rainer Kneuer
- Novartis Institutes for Biomedical Research, Novartis, 4056 Basel, Switzerland
| | - Cristina Müller
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland.,Center for Radiopharmaceutical Sciences, ETH-PSI, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Roger Schibli
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland.,Center for Radiopharmaceutical Sciences, ETH-PSI, Paul Scherrer Institute, 5232 Villigen, Switzerland
| |
Collapse
|
14
|
Yin H, Chu Y, Wang W, Zhang Z, Meng Z, Min Q. Mass tag-encoded nanointerfaces for multiplexed mass spectrometric analysis and imaging of biomolecules. NANOSCALE 2023; 15:2529-2540. [PMID: 36688447 DOI: 10.1039/d2nr06020e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Revealing multiple biomolecules in the physiopathological environment simultaneously is crucial in biological and biomedical research. Mass spectrometry (MS) features unique technical advantages in multiplexed and label-free analyses. However, owing to comparably low abundance and poor ionization efficiency of target biomolecules, direct MS profiling of these biological species in vitro or in situ remains a challenge. An emerging route to solve this issue is to devise mass tag (MT)-encoded nanointerfaces which specifically convert the abundance or activity of biomolecules into amplified ion signals of mass tags, offering an ideal strategy for synchronous MS assaying and mapping of multiple targets in biofluids, cells and tissues. This review provides a thorough and organized overview of recent advances in MT-encoded nanointerfaces elaborately tailored for several practical applications in multiplexed MS bioanalysis and biomedical research. First, we start with elucidation of the structural characteristics and working principle of MT-encoded nanointerfaces in specific labeling and sensing of multiple biological targets. In addition, we further discuss the application scenarios of MT-encoded nanointerfaces particularly in multiplexed biomarker assays, cell analysis, and tissue imaging. Finally, the current challenges are pointed out and future prospects of these nanointerfaces in MS analysis are forecast.
Collapse
Affiliation(s)
- Hao Yin
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
| | - Yanxin Chu
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
| | - Wei Wang
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
| | - Zhenzhen Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
| | - Zhen Meng
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
| | - Qianhao Min
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
| |
Collapse
|
15
|
Li Y, Huang Z, Li Z, Li C, Liu R, Lv Y. Mass Spectrometric Multiplex Detection of MicroRNA and Protein Biomarkers for Liver Cancer. Anal Chem 2022; 94:17248-17254. [PMID: 36448711 DOI: 10.1021/acs.analchem.2c04171] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The occurrence of cancers is often accompanied by the abnormal expression of several sorts of biomarkers (e.g., nucleic acids and proteins). The multiplex assessment of them would substantially aid in the early detection and precise diagnosis, which is often hampered by their different detection schemes, different reaction matrix and reagents, and spectral overlapping. Herein, we propose a simple and sensitive mass spectrometric method for the multiplex detection of nucleic acid and protein, in which liver cancer-related biomarkers miRNA 223 and alpha-fetoprotein (AFP) were selected as model analytes. The self-amplification effect of metal atom-based nanoparticle probes can provide high sensitivity in complex serum samples without any additional amplification procedure. The detection limits for the simultaneous detection of miRNA 223 and AFP were 103 (2.1 pM) and 219 amol (0.15 ng/mL), respectively, with high specificity and selectivity. The proposed method is potentially useful for the rapid screening of cancers.
Collapse
Affiliation(s)
- Yan Li
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064 Sichuan, China
| | - Zili Huang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064 Sichuan, China
| | - Ziyan Li
- Analytical & Testing Center, Sichuan University, Chengdu 610064 Sichuan, China
| | - Caixia Li
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064 Sichuan, China
| | - Rui Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064 Sichuan, China
| | - Yi Lv
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064 Sichuan, China.,Analytical & Testing Center, Sichuan University, Chengdu 610064 Sichuan, China
| |
Collapse
|
16
|
Sun QX, Zhang SQ, Wei X, Yang T, Wang JH, Chen ML. Dual mode assay of glutathione with Tb-doped g-C3N4/MnO2 nanoconjugates as fluorescence probe and Mn as elemental target. Anal Chim Acta 2022; 1221:340100. [DOI: 10.1016/j.aca.2022.340100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/14/2022] [Accepted: 06/14/2022] [Indexed: 11/01/2022]
|
17
|
Xu Y, Xiao G, Chen B, He M, Hu B. Single Particle Inductively Coupled Plasma Mass Spectrometry-Based Homogeneous Detection of HBV DNA with Rolling Circle Amplification-Induced Gold Nanoparticle Agglomeration. Anal Chem 2022; 94:10011-10018. [PMID: 35786853 DOI: 10.1021/acs.analchem.2c00272] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A highly sensitive and simple method based on rolling circle amplification (RCA) and single particle inductively coupled plasma mass spectrometry (spICP-MS) was proposed for the homogeneous detection of hepatitis B virus (HBV) deoxyribonucleic acid (DNA). In the presence of target DNA, long ssDNA possessing a large number of repeating sequence units was generated by RCA. DNA-labeled AuNP probes assembled into long chains based on complementary base pairing, further aggregating into large particles. Small Au NPs hardly produced pulse signals in spICP-MS; obvious pulse signals appeared in spICP-MS after the agglomeration of Au NPs caused by the addition of RCA products and spermidine. On the basis of this, the homogeneous detection of target DNA was realized by spICP-MS with high sensitivity. Under optimal conditions, the proposed method exhibited a good linear relationship between the frequency of the pulse signal of Au in spICP-MS and the concentration of target HBV DNA in the range of 10-2000 fmol L-1 (R = 0.997), the limit of detection was 5.1 fmol L-1, and the relative standard deviation was 3.7-6.8%. Recoveries of 94.2-108% were obtained for target DNA in spiked serum samples, demonstrating a good matrix tolerance ability for the method.
Collapse
Affiliation(s)
- Yan Xu
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Guangyang Xiao
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Beibei Chen
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Man He
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Bin Hu
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| |
Collapse
|
18
|
Cheng Y, Xie Q, He M, Chen B, Chen G, Yin X, Kang Q, Xu Y, Hu B. Sensitive detection of exosomes by gold nanoparticles labeling inductively coupled plasma mass spectrometry based on cholesterol recognition and rolling circle amplification. Anal Chim Acta 2022; 1212:339938. [DOI: 10.1016/j.aca.2022.339938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/10/2022] [Accepted: 05/10/2022] [Indexed: 11/26/2022]
|
19
|
Xu S, Liu H, Bai Y. Highly sensitive and multiplexed mass spectrometric immunoassay techniques and clinical applications. Anal Bioanal Chem 2022; 414:5121-5138. [PMID: 35165779 DOI: 10.1007/s00216-022-03945-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/17/2022] [Accepted: 01/31/2022] [Indexed: 11/29/2022]
Abstract
Immunoassay is one of the most important clinical techniques for disease/pathological diagnosis. Mass spectrometry (MS) has been a popular and powerful readout technique for immunoassays, generating the mass spectrometric immunoassays (MSIAs) with unbeatable channels for multiplexed detection. The sensitivity of MSIAs has been greatly improved with the development of mass labels from element labels to small-molecular labels. MSIAs are also expended from the representative element MS-based methods to the laser-based organic MS and latest ambient MS, improving in both technology and methodology. Various MSIAs present high potential for clinical applications, including the biomarker screening, the immunohistochemistry, and the advanced single-cell analysis. Here, we give an overall review of the development of MSIAs in recent years, highlighting the latest improvement of mass labels and MS techniques for clinical immunoassays.
Collapse
Affiliation(s)
- Shuting Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China.,Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.,Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Huwei Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Yu Bai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
20
|
Wang Q, Liu L, Chen X, Wang T, Zhou H, Huang H, Qing L, Luo P. Noninvasive Prognosis of Postmyocardial Infarction Using Urinary miRNA Ultratrace Detection Based on Single-Target DNA-Functionalized AuNPs. ACS APPLIED MATERIALS & INTERFACES 2022; 14:3633-3642. [PMID: 35018773 DOI: 10.1021/acsami.1c17883] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Urine is the most appropriate body fluid for analysis because it is easily and less-invasively obtained than blood; thus, urinary miRNAs can better represent the local stage of the disease and might grow up to be a new class of noninvasive biomarkers of postmyocardial infarction (MI). Monofunctionalized Au nanoparticles (AuNPs) with only one selective DNA at a specific location are more promising in nanotechnology. This study developed a urinary miRNA ultratrace detection strategy based on single-target DNA-functionalized AuNPs for the noninvasive prognosis of post-MI. The AuNPs were designed with only single-stranded biotinylated DNA complementary to the target miRNA through a ratio-optimized stoichiometric method for the first time. Combined with the duplex specific nuclease-assisted target recycling amplification, the single-target DNA-functionalized AuNPs for the first time were used in inductively coupled plasma-mass spectrometry for the determination of urinary miRNA with high sensitivity. After optimizing the reaction conditions, a linear detection range between 1 fM and 10 pM for miR-155 and a detection limit of 0.47 fM were obtained. Finally, the target miR-155 in urine samples collected from MI rats was quantified and the level of miR-155 in MI groups was 30 times higher than in the control groups. The results suggest that urinary miR-155 could be a novel biomarker for the noninvasive diagnosis of MI.
Collapse
Affiliation(s)
- Qianlong Wang
- State Key Laboratories for Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau 999078, China
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610000, China
- School of Materials Science and Engineering, Tsinghua University, Beijing 100080, China
| | - Lancong Liu
- State Key Laboratories for Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau 999078, China
| | - Xiaoyi Chen
- State Key Laboratories for Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau 999078, China
| | - Tiantian Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610000, China
| | - Hua Zhou
- State Key Laboratories for Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau 999078, China
| | - Hui Huang
- Department of Cardiology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518048, China
| | - Linsen Qing
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610000, China
| | - Pei Luo
- State Key Laboratories for Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau 999078, China
| |
Collapse
|
21
|
Boyraz B, Saatz J, Pompös IM, Gad M, Dernedde J, Maier AKB, Moscovitz O, Seeberger PH, Traub H, Tauber R. Imaging Keratan Sulfate in Ocular Tissue Sections by Immunofluorescence Microscopy and LA-ICP-MS. ACS APPLIED BIO MATERIALS 2022; 5:853-861. [PMID: 35076201 DOI: 10.1021/acsabm.1c01240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Carbohydrate-specific antibodies can serve as valuable tools to monitor alterations in the extracellular matrix resulting from pathologies. Here, the keratan sulfate-specific monoclonal antibody MZ15 was characterized in more detail by immunofluorescence microscopy as well as laser ablation ICP-MS using tissue cryosections and paraffin-embedded samples. Pretreatment with keratanase II prevented staining of samples and therefore demonstrated efficient enzymatic keratan sulfate degradation. Random fluorescent labeling and site-directed introduction of a metal cage into MZ15 were successful and allowed for a highly sensitive detection of the keratan sulfate landscape in the corneal stroma from rats and human tissue.
Collapse
Affiliation(s)
- Burak Boyraz
- Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Augustenburger Platz 1, Berlin 13353, Germany.,Freie Universität Berlin, Fachbereich Biologie, Chemie, Pharmazie, Arnimallee 22, Berlin 14195, Germany
| | - Jessica Saatz
- Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Strasse, 11, Berlin 12489, Germany
| | - Inga-Marie Pompös
- Klinik für Augenheilkunde, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Augustenburger Platz 1, Berlin 13353, Germany
| | - Michel Gad
- Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Strasse, 11, Berlin 12489, Germany.,Department Chemie und Biologie, Universität Siegen, Adolf-Reichwein-Strasse 2, Siegen 57076, Germany
| | - Jens Dernedde
- Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Augustenburger Platz 1, Berlin 13353, Germany
| | - Anna-Karina B Maier
- Klinik für Augenheilkunde, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Augustenburger Platz 1, Berlin 13353, Germany
| | - Oren Moscovitz
- Biomolecular Systems Department, Max-Planck-Institute for Colloids and Interfaces, Am Mühlenberg 1, Potsdam 14476, Germany
| | - Peter H Seeberger
- Biomolecular Systems Department, Max-Planck-Institute for Colloids and Interfaces, Am Mühlenberg 1, Potsdam 14476, Germany
| | - Heike Traub
- Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Strasse, 11, Berlin 12489, Germany
| | - Rudolf Tauber
- Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Augustenburger Platz 1, Berlin 13353, Germany
| |
Collapse
|
22
|
Wang C, Song H, Zhao X, Liu R, Lv Y. Multiplex DNA Walking Machines for Lung Cancer-Associated miRNAs. Anal Chem 2022; 94:1787-1794. [PMID: 35018772 DOI: 10.1021/acs.analchem.1c04557] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Biomimetic DNA walking machines have gained great success in scrutinizing the microscopic world and sensitive biosensing of disease biomarkers. Despite superb achievements, the research on DNA walking machines for simultaneous detection of multiple analytes is still rare, while the design and realization of multiplexing are considered as an important bottleneck. The multiplex detection of biomarkers can not only improve the specificity of bioassays but also avoid the squander of valuable biological specimens. Herein, we reported multiplex three-dimensional (3D) DNA walking machines based on high-resolution inductively coupled plasma mass spectrometry (HR-ICPMS) for lung cancer-associated miRNA detection. In the presence of lung cancer-associated target miRNAs (miR-21, miR-141, and miR-125b), DNA walking machines were stimulated and operated to liberate a large number of lanthanide elements (Tb, Ho, and Tm), and then the signals were collected simultaneously by HR-ICPMS. The recovery test of target miRNAs in human serum and the simultaneous monitoring experiment of three miRNAs in human lung cancer cell line (A549) and normal cell line (HBE) specimens display satisfactory analysis capabilities for complex biological samples. Thanks to the vast potential of lanthanide tags and the modular design, the proposed bioassay might flexibly detect different miRNA combinations with corresponding sets of DNA walking machines to meet the requirements of various tasks.
Collapse
Affiliation(s)
- Chaoqun Wang
- Analytical & Testing Center, Sichuan University, Chengdu 610064, P. R. China
| | - Hongjie Song
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Xin Zhao
- Department of Clinical Laboratory, Chengdu 7th People's Hospital, Chengdu 610041, Sichuan, P. R. China
| | - Rui Liu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Yi Lv
- Analytical & Testing Center, Sichuan University, Chengdu 610064, P. R. China.,Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| |
Collapse
|
23
|
Hu J, Liu F, Chen Y, Shangguan G, Ju H. Mass Spectrometric Biosensing: A Powerful Approach for Multiplexed Analysis of Clinical Biomolecules. ACS Sens 2021; 6:3517-3535. [PMID: 34529414 DOI: 10.1021/acssensors.1c01394] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Rapid and sensitive detection of clinical biomolecules in a multiplexed fashion is of great importance for accurate diagnosis of diseases. Mass spectrometric (MS) approaches are exceptionally suitable for clinical analysis due to its high throughput, high sensitivity, and reliable qualitative and quantitative capabilities. To break through the bottleneck of MS technique for detecting high-molecular-weight substances with low ionization efficiency, the concept of mass spectrometric biosensing has been put forward by adopting mass spectrometric chips to recognize the targets and mass spectrometry to detect the signals switched by the recognition. In this review, the principle of mass spectrometric sensing, the construction of different mass tags used for biosensing, and the typical combination mode of mass spectrometric imaging (MSI) technique are summarized. Future perspectives including the design of portable matching platforms, exploitation of novel mass tags, development of effective signal amplification strategies, and standardization of MSI methodologies are proposed to promote the advancements and practical applications of mass spectrometric biosensing.
Collapse
Affiliation(s)
- Junjie Hu
- College of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining 272067, China
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Fei Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yunlong Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Guoqiang Shangguan
- College of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining 272067, China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
24
|
Hu J, Liu R, Zhou J, Lv Y. Element coding based accurate evaluation of CRISPR/Cas9 initial cleavage. Chem Sci 2021; 12:13404-13412. [PMID: 34777759 PMCID: PMC8528026 DOI: 10.1039/d1sc03599a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/06/2021] [Indexed: 12/26/2022] Open
Abstract
As a powerful gene editing tool, the kinetic mechanism of CRISPR/Cas9 has been the focus for its further application. Initial cleavage events as the first domino followed by nuclease end trimming significantly affect the final on-target rate. Here we propose EC-CRISPR, element coding CRISPR, an accurate evaluation platform for initial cleavage that directly characterizes the cleavage efficiency and breaking sites. We benchmarked the influence of 19 single mismatch and 3 multiple mismatch positions of DNA-sgRNA on initial cleavage, as well as various reaction conditions. Results from EC-CRISPR demonstrate that the PAM-distal single mismatch is relatively acceptable compared to the proximal one. And multiple mismatches will not only affect the cleavage efficiency, but also generate more non-site #3 cleavage. Through in-depth research of kinetic behavior, we uncovered an abnormally higher non-#3 proportion at the initial stage of cleavage by using EC-CRISPR. Together, our results provided insights into cleavage efficiency and breaking sites, demonstrating that EC-CRISPR as a novel quantitative platform for initial cleavage enables accurate comparison of efficiencies and specificities among multiple CRISPR/Cas enzymes. Initial cleavage events as the first domino of CRISPR/Cas9 kinetic behaviors. To accurately evaluate the initial cleavage of Cas9, element coding CRISPR platform-enabled direct characterization of the cleavage efficiency and cleavage sites was proposed.![]()
Collapse
Affiliation(s)
- Jianyu Hu
- Analytical & Testing Center, Sichuan University Chengdu 610064 PR China
| | - Rui Liu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University 29 Wangjiang Road Chengdu 610064 PR China
| | - Jing Zhou
- Analytical & Testing Center, Sichuan University Chengdu 610064 PR China
| | - Yi Lv
- Analytical & Testing Center, Sichuan University Chengdu 610064 PR China .,Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University 29 Wangjiang Road Chengdu 610064 PR China
| |
Collapse
|
25
|
Li Z, Chen X, Huang Z, Zhou J, Liu R, Lv Y. Multiplex Nucleic Acid Assay of SARS-CoV-2 via a Lanthanide Nanoparticle-Tagging Strategy. Anal Chem 2021; 93:12714-12722. [PMID: 34494424 PMCID: PMC8442555 DOI: 10.1021/acs.analchem.1c02657] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Indexed: 01/28/2023]
Abstract
Early diagnosis, early isolation, and early treatment are efficient solutions to control the COVID-19 pandemic. To achieve the accurate early diagnosis of SARS-CoV-2, a multiplex detection strategy is required for the cross-validation to solve the problem of "false negative" of the existing gold standard assay. Here, we present a multicomponent nucleic acid assay platform for SARS-CoV-2 detection based on lanthanide nanoparticle (LnNP)-tagging strategy. For targeting SARS-CoV-2's RNA fragments ORF1ab gene, RdRp gene, and E gene, three LnNP probes can be used simultaneously to identify three sites in one sample through elemental mass spectrometry detection with limits of detection of 1.2, 1.3, and 1.3 fmol, respectively. With the multisite cross-validation, we envision that this multiplex and sensitive detection platform may provide an effective strategy for SARS-CoV-2 fast screening with a high accuracy.
Collapse
Affiliation(s)
- Ziyan Li
- Analytical
& Testing Center, Sichuan University, Chengdu 610064, Sichuan, China
| | - Xue Chen
- Key
Laboratory of Green Chemistry & Technology, Ministry of Education,
College of Chemistry, Sichuan University, Chengdu 610064, Sichuan, China
| | - Zili Huang
- Key
Laboratory of Green Chemistry & Technology, Ministry of Education,
College of Chemistry, Sichuan University, Chengdu 610064, Sichuan, China
| | - Jing Zhou
- Analytical
& Testing Center, Sichuan University, Chengdu 610064, Sichuan, China
| | - Rui Liu
- Key
Laboratory of Green Chemistry & Technology, Ministry of Education,
College of Chemistry, Sichuan University, Chengdu 610064, Sichuan, China
| | - Yi Lv
- Analytical
& Testing Center, Sichuan University, Chengdu 610064, Sichuan, China
| |
Collapse
|
26
|
Recent Development of Nanomaterials-Based Cytosensors for the Detection of Circulating Tumor Cells. BIOSENSORS-BASEL 2021; 11:bios11080281. [PMID: 34436082 PMCID: PMC8391755 DOI: 10.3390/bios11080281] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 12/12/2022]
Abstract
The accurate analysis of circulating tumor cells (CTCs) holds great promise in early diagnosis and prognosis of cancers. However, the extremely low abundance of CTCs in peripheral blood samples limits the practical utility of the traditional methods for CTCs detection. Thus, novel and powerful strategies have been proposed for sensitive detection of CTCs. In particular, nanomaterials with exceptional physical and chemical properties have been used to fabricate cytosensors for amplifying the signal and enhancing the sensitivity. In this review, we summarize the recent development of nanomaterials-based optical and electrochemical analytical techniques for CTCs detection, including fluorescence, colorimetry, surface-enhanced Raman scattering, chemiluminescence, electrochemistry, electrochemiluminescence, photoelectrochemistry and so on.
Collapse
|
27
|
Zhang Y, Wei Y, Liu P, Zhang X, Xu Z, Tan X, Chen M, Wang J. ICP-MS and Photothermal Dual-Readout Assay for Ultrasensitive and Point-of-Care Detection of Pancreatic Cancer Exosomes. Anal Chem 2021; 93:11540-11546. [PMID: 34369746 DOI: 10.1021/acs.analchem.1c02004] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Pancreatic cancer is known to have a high mortality rate, and its early diagnosis remains challenging due to the occult location of the pancreas. Exosomes derived from pancreatic cancer cells specifically express glypican-1, which may provide a liquid biopsy opportunity for the early diagnosis of pancreatic cancer. Herein, an inductively coupled plasma mass spectrometry (ICP-MS) and photothermal dual-readout platform was proposed for the ultrasensitive and point-of-care analysis of pancreatic cancer exosomes. In our design, exosomes were specifically captured by the sandwich immunoassay, and simultaneously, alkaline phosphatase was introduced in a low-background manner. The alkaline phosphatase triggered the hydrolysis of l-ascorbic acid 2-phosphate to produce ascorbic acid, followed by the etching of Fe3O4@MnO2 nanoflowers. As a result, the Mn2+ generated by etching stripped off the Fe3O4 and was quantified using ICP-MS. Meanwhile, the reduced Fe3O4@MnO2 was applied for the photothermal assay by oxidizing dopamine with MnO2. The protocol exhibits a detection limit down to 19.1 particles mL-1, which is the most sensitive protocol reported so far. To our knowledge, this is the first endeavor for exosome quantification using ICP-MS and photothermal methods. The developed dual-readout platform not only is capable of distinguishing pancreatic cancer patients from healthy people, but also shows excellent discernibility of individual differences at low concentrations of exosomes. This dual-readout assay is a promising platform for the ultrasensitive and point-of-care detection of exosomes in liquid biopsy-based early cancer diagnosis.
Collapse
Affiliation(s)
- Yingzhi Zhang
- Research Center for Analytical Sciences, Northeastern University, Shenyang 110819, People's Republic of China
| | - Yunyun Wei
- Research Center for Analytical Sciences, Northeastern University, Shenyang 110819, People's Republic of China
| | - Peng Liu
- First Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Xuan Zhang
- Research Center for Analytical Sciences, Northeastern University, Shenyang 110819, People's Republic of China
| | - Zhangrun Xu
- Research Center for Analytical Sciences, Northeastern University, Shenyang 110819, People's Republic of China
| | - Xiaodong Tan
- First Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Mingli Chen
- Research Center for Analytical Sciences, Northeastern University, Shenyang 110819, People's Republic of China
| | - Jianhua Wang
- Research Center for Analytical Sciences, Northeastern University, Shenyang 110819, People's Republic of China
| |
Collapse
|
28
|
Liu X, Wu W, Cui D, Chen X, Li W. Functional Micro-/Nanomaterials for Multiplexed Biodetection. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2004734. [PMID: 34137090 DOI: 10.1002/adma.202004734] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 11/08/2020] [Indexed: 05/24/2023]
Abstract
When analyzing biological phenomena and processes, multiplexed biodetection has many advantages over single-factor biodetection and is highly relevant to both human health issues and advancements in the life sciences. However, many key problems with current multiplexed biodetection strategies remain unresolved. Herein, the main issues are analyzed and summarized: 1) generating sufficient signal to label targets, 2) improving the signal-to-noise ratio to ensure total detection sensitivity, and 3) simplifying the detection process to reduce the time and labor costs of multiple target detection. Then, available solutions made possible by designing and controlling the properties of micro- and nanomaterials are introduced. The aim is to emphasize the role that micro-/nanomaterials can play in the improvement of multiplexed biodetection strategies. Through analyzing existing problems, introducing state-of-the-art developments regarding relevant materials, and discussing future directions of the field, it is hopeful to help promote necessary developments in multiplexed biodetection and associated scientific research.
Collapse
Affiliation(s)
- Xinyi Liu
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Weijie Wu
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Daxiang Cui
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Xiaoyuan Chen
- Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 117597, Singapore
| | - Wanwan Li
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| |
Collapse
|
29
|
Torregrosa D, Grindlay G, Gras L, Mora J. Immunoassays based on inductively coupled plasma mass spectrometry detection: So far so good, so what? Microchem J 2021. [DOI: 10.1016/j.microc.2021.106200] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
30
|
Chen B, Xiao G, He M, Hu B. Elemental Mass Spectrometry and Fluorescence Dual-Mode Strategy for Ultrasensitive Label-Free Detection of HBV DNA. Anal Chem 2021; 93:9454-9461. [PMID: 34181411 DOI: 10.1021/acs.analchem.1c01180] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This work reported a simple and ultrasensitive label-free method for the detection of hepatitis B virus (HBV) DNA by combining hyperbranched rolling circle amplification (HRCA) with dual-mode detection by inductively coupled plasma mass spectrometry (ICP-MS) and fluorescence using ruthenium complex [Ru(bpy)2dppz]2+ (bpy = 2,2'-bipyridine, dppz = dipyrido [3,2-a:2',3'-c] phenazine) as a dual functional probe. An HBV DNA-initiated HRCA system was designed to realize the highly efficient amplification of HBV DNA with the generation of a mass of dsDNA. Also, the [Ru(bpy)2dppz]2+ probe was then added to intercalate into the dsDNA products, resulting in strong fluorescence recovery of the probe for fluorescence detection. Meanwhile, using a biotin-modified primer in HRCA, the dsDNA-[Ru(bpy)2dppz]2+ complexes could be captured by the avidin-coated 96-well plates, and the captured [Ru(bpy)2dppz]2+ probe was later desorbed by acid for ICP-MS detection. The linear range of the proposed method was 3.5-200 amol L-1 and the limit of detection (LOD) was 1 amol L-1 for ICP-MS detection, while the linear range was 20-500 amol L-1 and the LOD was 9.6 amol L-1 for fluorescence detection. The developed method was applied to human serum sample analysis, and the analytical results coincided very well with those obtained by the real-time polymerase chain reaction (PCR) method. The developed dual-mode label-free detection method was ultrasensitive, simple, and accurate, showing great potential for therapeutic monitoring of HBV infection.
Collapse
Affiliation(s)
- Beibei Chen
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Guangyang Xiao
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Man He
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Bin Hu
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| |
Collapse
|
31
|
Li X, Chen B, He M, Hu B. A dual-functional magnetic microsphere for ICP-MS quantification and fluorescence imaging of matrix metalloproteinase 2 in cell secretion. Anal Chim Acta 2021; 1161:338479. [PMID: 33896561 DOI: 10.1016/j.aca.2021.338479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/27/2021] [Accepted: 03/31/2021] [Indexed: 11/30/2022]
Abstract
Matrix metalloproteinase 2 (MMP2) plays an important role in tumor growth, invasion and metastasis. In this work, a dual-functional magnetic microsphere probe was designed for ICP-MS quantification and fluorescence imaging of MMP2 in cell secretion. In the designed probe, a NH2-peptide (-FAM)-biotin was used as a bridge for the combination of carboxylated magnetic beads (MBs-COOH) and streptavidin functionalized gold nanoparticle (Au NP-SA). Initially, the fluorescence of FAM was quenched by Au NP. Since the NH2-peptide (-FAM)-biotin had a MMP2-specifically recognized sequence, the peptide was specifically cleaved in the presence of MMP2, thus releasing Au NP for the ICP-MS quantification of MMP2 and turning on the fluorescence of FAM for the fluorescence imaging of MMP2. Under the optimal experimental conditions, a linear range of 0.05-50 ng mL-1 and a limit of detection of 0.02 ng mL-1 were obtained for MMP2. The relative standard deviation (n = 7, c = 0.1 ng mL-1) of the proposed method was 5.4%. With good sensitivity and good accuracy, the proposed method realized the quantification and imaging of MMP2 in A549 cell secretion. The proposed method was applied to monitor the expression of MMP2 in the A549 cell secretion under the stimulation of Cd2+, providing a new detection strategy in the study of MMP2-related life process.
Collapse
Affiliation(s)
- Xiaoting Li
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Beibei Chen
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Man He
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Bin Hu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
32
|
Sun QX, Wei X, Zhang SQ, Chen ML, Yang T, Yu YL, Wang JH. Dual-mode imaging of copper transporter 1 in HepG2 cells by hyphenating confocal laser scanning microscopy with laser ablation ICPMS. Anal Bioanal Chem 2021; 413:1353-1361. [PMID: 33404748 DOI: 10.1007/s00216-020-03097-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/05/2020] [Accepted: 11/25/2020] [Indexed: 11/29/2022]
Abstract
Copper transporter 1 (CTR1) is a transport protein involved in copper and cisplatin uptake. The visualization of cellular CTR1 migration and its redistribution is highly important in copper/cisplatin exposure/transport. However, to the best of our knowledge, this is a highly challenging task. Herein, a dual-mode imaging strategy for CTR1 is developed by hyphenating confocal laser scanning microscopy (CLSM) and laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) with a fluorescent/elemental bifunctional tag conjugated with anti-CTR1 antibody. The tag consists of rhodamine B and zirconium metal-organic frameworks (Zr-MOF) for CLSM fluorescence imaging and LA-ICPMS element imaging for a same group of HepG2 cells in a designated visual zone. This dual-mode imaging strategy facilitates visualization of CTR1 migration and meanwhile provides information of CTR1 redistribution in HepG2 cells by uptake of divalent copper or cisplatin. The present dual-mode imaging strategy provides in-depth information for the elucidation of CTR1 involved biological processes. Graphical abstract.
Collapse
Affiliation(s)
- Qi-Xuan Sun
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, Liaoning, China
| | - Xing Wei
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, Liaoning, China
| | - Shang-Qing Zhang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, Liaoning, China
| | - Ming-Li Chen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, Liaoning, China.
| | - Ting Yang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, Liaoning, China
| | - Yong-Liang Yu
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, Liaoning, China
| | - Jian-Hua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, Liaoning, China.
| |
Collapse
|
33
|
Zhang J, Zhou R, Jin Y, Cheng N. Magnetic immunoassay for tumor clinical diagnosis based on rolling circular amplification (RCA) coupled with ICP-MS. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105541] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
34
|
Kang Q, He M, Chen B, Xiao G, Hu B. MNAzyme-Catalyzed Amplification Assay with Lanthanide Tags for the Simultaneous Detection of Multiple microRNAs by Inductively Coupled Plasma–Mass Spectrometry. Anal Chem 2020; 93:737-744. [DOI: 10.1021/acs.analchem.0c02455] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Qi Kang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Man He
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Beibei Chen
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Guangyang Xiao
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Bin Hu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China
| |
Collapse
|
35
|
Yu X, He M, Chen B, Hu B. Recent advances in single-cell analysis by inductively coupled plasma-mass spectrometry: A review. Anal Chim Acta 2020; 1137:191-207. [DOI: 10.1016/j.aca.2020.07.041] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 12/13/2022]
|
36
|
Nanoparticles as labels of specific-recognition reactions for the determination of biomolecules by inductively coupled plasma-mass spectrometry. Anal Chim Acta 2020; 1128:251-268. [DOI: 10.1016/j.aca.2020.07.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 02/08/2023]
|
37
|
Xiao G, Chen B, He M, Hu B. Dual-mode detection of avian influenza virions (H9N2) by ICP-MS and fluorescence after quantum dot labeling with immuno-rolling circle amplification. Anal Chim Acta 2019; 1096:18-25. [PMID: 31883585 DOI: 10.1016/j.aca.2019.10.063] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/19/2019] [Accepted: 10/26/2019] [Indexed: 11/15/2022]
Abstract
Avian influenza virus (AIVs), hosted in poultry, are the pathogens of many poultry diseases and human infections, which bring huge losses to the poultry breeding industry and huge panic to society. Therefore, it is of great significance to establish accurate and sensitive detection methods for AIVs. In this work, a dual-mode detection method based on immuno-rolling circle amplification (immuno-RCA) and quantum dots (QDs) labeling for inductively coupled plasma mass spectrometry (ICP-MS) and fluorescence detection of H9N2 AIV was developed. The dual-mode detection of the QDs by ICP-MS and fluorescence is used to achieve mutual verification within the analysis results, thus improving the accuracy of the method. With the immuno-RCA, the sensitivity of the method was increased by two orders of magnitude. The limit of detection of the proposed method is 17 ng L-1 and 61 ng L-1, and the linear range of the proposed method is 0.05-5 ng mL-1 and 0.1-5 ng mL-1 with ICP-MS and fluorescence detection, respectively. The relative standard deviation (n = 7) is 4.9% with ICP-MS detection and 3.1% with fluorescence detection. Furthermore, the proposed method was applied to the analysis of chicken serum samples, no significant different was found for two modes detection and the recoveries of the spiking experiments are acceptable, indicating that the method has good practical potential for real sample analysis.
Collapse
Affiliation(s)
- Guangyang Xiao
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Beibei Chen
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Man He
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Bin Hu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
38
|
Lores-Padín A, Cruz-Alonso M, González-Iglesias H, Fernández B, Pereiro R. Bimodal determination of immunoglobulin E by fluorometry and ICP-MS by using platinum nanoclusters as a label in an immunoassay. Mikrochim Acta 2019; 186:705. [DOI: 10.1007/s00604-019-3868-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 09/20/2019] [Indexed: 12/18/2022]
|
39
|
Xiao G, Chen B, He M, Li X, Hu B. A highly sensitive assay of DNA based on inductively coupled plasma mass spectrometry detection with gold nanoparticle amplification and isothermal circular strand-displacement polymerization reaction. Talanta 2019; 202:207-213. [DOI: 10.1016/j.talanta.2019.05.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/29/2019] [Accepted: 05/02/2019] [Indexed: 01/14/2023]
|
40
|
Liang Y, Liu Q, Zhou Y, Chen S, Yang L, Zhu M, Wang Q. Counting and Recognizing Single Bacterial Cells by a Lanthanide-Encoding Inductively Coupled Plasma Mass Spectrometric Approach. Anal Chem 2019; 91:8341-8349. [DOI: 10.1021/acs.analchem.9b01130] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Yong Liang
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Qian Liu
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Yang Zhou
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Shi Chen
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Limin Yang
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Min Zhu
- PerkinElmer Instruments (Shanghai) Co. Ltd., Shanghai 201203, China
| | - Qiuquan Wang
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
- State Key Lab of Marine Environmental Science, Xiamen University, Xiamen, Fujian 361005, China
| |
Collapse
|
41
|
Liu R, Hu J, Chen Y, Jiang M, Lv Y. Label-Free Nuclease Assay with Long-Term Stability. Anal Chem 2019; 91:8691-8696. [DOI: 10.1021/acs.analchem.9b02467] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Rui Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Jianyu Hu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yongxin Chen
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Min Jiang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yi Lv
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
- Analytical & Testing Center, Sichuan University, Chengdu 610064, China
| |
Collapse
|
42
|
Ren C, Bobst CE, Kaltashov IA. Exploiting His-Tags for Absolute Quantitation of Exogenous Recombinant Proteins in Biological Matrices: Ruthenium as a Protein Tracer. Anal Chem 2019; 91:7189-7198. [PMID: 31083917 DOI: 10.1021/acs.analchem.9b00504] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Metal labeling and ICP MS detection offer an alternative to commonly accepted techniques that are currently used to quantitate exogenous proteins in vivo, but modifying the protein surface with metal-containing groups inevitably changes its biophysical properties and is likely to affect trafficking and biodistribution. The approach explored in this work takes advantage of the presence of hexa-histidine tags in many recombinant proteins, which have high affinity toward a range of metals. While many divalent metals bind to poly histidine sequences reversibly, oxidation of imidazole-bound CoII or RuII is known to result in a dramatic increase of the binding strength. In order to evaluate the feasibility of using imidazole-bound metal oxidation as a means of attaching permanent tags to polyhistidine segments, a synthetic peptide YPDFEDYWMKHHHHHH was used as a model. RuII can be oxidized under ambient (aerobic) conditions, allowing any oxidation damage to the peptide beyond the metal-binding site to be avoided. The resulting peptide-RuIII complex is very stable, with the single hexa-histidine segment capable of accommodating up to three metal ions. Localization of RuIII within the hexa-histidine segment of the peptide was confirmed by tandem mass spectrometry. The RuIII/peptide binding appears to be irreversible, with both low- and high-molecular weight biologically relevant scavengers failing to strip the metal from the peptide. Application of this protocol to labeling a recombinant form of an 80 kDa protein transferrin allowed RuIII to be selectively placed within the His-tag segment. The metal label remained stable in the presence of ubiquitous scavengers and did not interfere with the receptor binding, while allowing the protein to be readily detected in serum at sub-nM concentrations. The results of this work suggest that ruthenium lends itself as an ideal metal tag for selective labeling of His-tag containing recombinant proteins to enable their sensitive detection and quantitation with ICP MS.
Collapse
Affiliation(s)
- Chengfeng Ren
- Department of Chemistry , University of Massachusetts-Amherst , Amherst , Massachusetts 01003 , United States
| | - Cedric E Bobst
- Department of Chemistry , University of Massachusetts-Amherst , Amherst , Massachusetts 01003 , United States
| | - Igor A Kaltashov
- Department of Chemistry , University of Massachusetts-Amherst , Amherst , Massachusetts 01003 , United States
| |
Collapse
|
43
|
Ji C, Liang Y, Ge F, Yang L, Wang Q. Inhibitory Covalent Labeling and Clickable-Eu-Tagging-Based ICPMS: Measurement of pH-Dependent Absolute Activities of the Cathepsins in Hepatocyte Lysosomes. Anal Chem 2019; 91:7032-7038. [PMID: 31072096 DOI: 10.1021/acs.analchem.9b01662] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We report an inhibitory covalent labeling and clickable-element-tagging strategy for measuring the absolute activity of a protease in cells using inductively coupled plasma mass spectrometry (ICPMS). Epoxysuccinyl-leucine-tyrosine-6-aminocaproic-lysine-amino-Boc-alkyne (epoxysuccinyl-LYK-alkyne) was designed and synthesized to achieve irreversibly labeling of the cysteine cathepsins, recording their momentary activities. L and Y assisted epoxysuccinyl-LYK-alkyne in accessing the deprotonated -S- of Cys25, located at the bottom of the long cathepsin active domain. Quantitative Eu-tagging was followed using azido-DOTA-Eu through a bioorthogonal 1:1 copper-catalyzed azide-alkyne-cycloaddition click reaction. The Eu tag could be absolutely quantified using 153Eu-species-nonspecific-isotope-dilution ICPMS coupled with HPLC, serving as a Eu ruler and allowing us to simultaneously measure the pH-dependent activities of cathepsins B, L, and S as well as the pH in the lysosomal microenvironment of liver cancerous C7721 and paracancerous C7701 cells. As long as suitable labeling molecules and elemental tags are designed and synthesized, we believe that such a tandem labeling and tagging ICPMS approach can be applied to the measurement of the activities of other proteases in cells, providing more accurate information on the proteases' biofunctions and thus implementing precise clinical diagnoses.
Collapse
Affiliation(s)
- Caixia Ji
- Department of Chemistry & the MOE Key Lab of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| | - Yong Liang
- Department of Chemistry & the MOE Key Lab of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| | - Fuchun Ge
- Department of Chemistry & the MOE Key Lab of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| | - Limin Yang
- Department of Chemistry & the MOE Key Lab of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| | - Qiuquan Wang
- Department of Chemistry & the MOE Key Lab of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China.,State Key Lab of Marine Environmental Science , Xiamen University , Xiamen 361005 , China
| |
Collapse
|
44
|
Hu Z, Sun G, Jiang W, Xu F, Zhang Y, Xia M, Pan X, Xing Z, Zhang S, Zhang X. Chemical-Modified Nucleotide-Based Elemental Tags for High-Sensitive Immunoassay. Anal Chem 2019; 91:5980-5986. [PMID: 30973226 DOI: 10.1021/acs.analchem.9b00405] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Multiplex biomolecular analysis with inductively coupled plasma mass spectrometry (ICP-MS) becomes increasingly important in clinical diagnosis and single cell analysis. However, the sensitivity of ICP-MS-based immunoassay is only comparable or lower than those of fluorescence methods at the present stage. Therefore, designing elemental tags with a large number of metal atoms is necessary to achieve high-sensitive detection. In this work, we proposed a new strategy to build up elemental tag loading with hundreds of rare earth ions by coupling alkyne-DNA chains with rare earth element (REE)-DOTA complexes a click chemistry reaction. There are about 2 orders of magnitude improvement in sensitivity compared with single metal-ion tags. DNA chains with multialkynyl groups were facilely prepared by PCR synthesis. Moreover, the DNA-based elemental tags own excellent water-solubility and biocompatibility. The tags would be potentially applied to mass cytometry and clinical diagnosis.
Collapse
Affiliation(s)
- Zhian Hu
- Department of Chemistry Tsinghua University , Beijing 100084 , China
| | - Gongwei Sun
- Department of Chemistry Tsinghua University , Beijing 100084 , China
| | - Wencan Jiang
- Department of Clinical Laboratory Medicine , Chinese People's Liberation Army General Hospital & Postgraduate Medical School , Beijing 100853 , China
| | - Fujian Xu
- Department of Chemistry Tsinghua University , Beijing 100084 , China
| | - Yuqing Zhang
- Department of Chemistry Tsinghua University , Beijing 100084 , China
| | - Mengchan Xia
- Department of Chemistry Tsinghua University , Beijing 100084 , China
| | - Xingyu Pan
- Department of Chemistry Tsinghua University , Beijing 100084 , China
| | - Zhi Xing
- Department of Chemistry Tsinghua University , Beijing 100084 , China
| | - Sichun Zhang
- Department of Chemistry Tsinghua University , Beijing 100084 , China
| | - Xinrong Zhang
- Department of Chemistry Tsinghua University , Beijing 100084 , China
| |
Collapse
|
45
|
Alonso-García FJ, Blanco-González E, Montes-Bayón M. An inductively coupled plasma-mass spectrometry (ICP-MS) linked immunoassay by means of iodinated antibodies for transferrin quantitative analysis in breast cancer cell lines. Talanta 2019; 194:336-342. [DOI: 10.1016/j.talanta.2018.10.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 10/04/2018] [Accepted: 10/08/2018] [Indexed: 12/31/2022]
|
46
|
Advanced methods for microRNA biosensing: a problem-solving perspective. Anal Bioanal Chem 2019; 411:4425-4444. [PMID: 30710205 DOI: 10.1007/s00216-019-01621-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/07/2019] [Accepted: 01/16/2019] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) present several features that make them more difficult to analyze than DNA and RNA. For this reason, efforts have been made in recent years to develop innovative platforms for the efficient detection of microRNAs. The aim of this review is to provide an overview of the sensing strategies able to deal with drawbacks and pitfalls related to microRNA detection. With a critical perspective of the field, we identify the main challenges to be overcome in microRNA sensing, and describe the areas where several innovative approaches are likely to come for managing those issues that put limits on improvement to the performances of the current methods. Then, in the following sections, we critically discuss the contribution of the most promising approaches based on the peculiar properties of nanomaterials or nanostructures and other hybrid strategies which are envisaged to support the adoption of these new methods useful for the detection of miRNA as biomarkers of practical clinical utility. Graphical abstract ᅟ.
Collapse
|
47
|
Grasso G. Mass spectrometry is a multifaceted weapon to be used in the battle against Alzheimer's disease: Amyloid beta peptides and beyond. MASS SPECTROMETRY REVIEWS 2019; 38:34-48. [PMID: 29905953 DOI: 10.1002/mas.21566] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 03/09/2018] [Indexed: 06/08/2023]
Abstract
Amyloid-β peptide (Aβ) accumulation and aggregation have been considered for many years the main cause of Alzheimer's disease (AD), and therefore have been the principal target of investigation as well as of the proposed therapeutic approaches (Grasso [2011] Mass Spectrom Rev. 30: 347-365). However, the amyloid cascade hypothesis, which considers Aβ accumulation the only causative agent of the disease, has proven to be incomplete if not wrong. In recent years, actors such as metal ions, oxidative stress, and other cofactors have been proposed as possible co-agents or, in some cases, main causative factors of AD. In this scenario, MS investigation has proven to be fundamental to design possible diagnostic strategies of this elusive disease, as well as to understand the biomolecular mechanisms involved, in the attempt to find a possible therapeutic solution. We review the current applications of MS in the search for possible Aβ biomarkers of AD to help the diagnosis of the disease. Recent examples of the important contributions that MS has given to prove or build theories on the molecular pathways involved with such terrible disease are also reviewed.
Collapse
Affiliation(s)
- Giuseppe Grasso
- Department of Chemical Sciences, University of Catania, Catania, Italy
| |
Collapse
|
48
|
He Y, Chen S, Huang L, Wang Z, Wu Y, Fu F. Combination of Magnetic-Beads-Based Multiple Metal Nanoparticles Labeling with Hybridization Chain Reaction Amplification for Simultaneous Detection of Multiple Cancer Cells with Inductively Coupled Plasma Mass Spectrometry. Anal Chem 2018; 91:1171-1177. [DOI: 10.1021/acs.analchem.8b05085] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ye He
- Key Laboratory for Analytical Science of Food Safety and Biology of MOE, Fujian Provincial Key Lab of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Shilong Chen
- Key Laboratory for Analytical Science of Food Safety and Biology of MOE, Fujian Provincial Key Lab of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Lin Huang
- Key Laboratory for Analytical Science of Food Safety and Biology of MOE, Fujian Provincial Key Lab of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Zongwen Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yongning Wu
- China National Center for Food Safety Risk Assessment, Beijing 100022, China
| | - FengFu Fu
- Key Laboratory for Analytical Science of Food Safety and Biology of MOE, Fujian Provincial Key Lab of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| |
Collapse
|
49
|
Müller-Bomke S, Sperling M, Hayen H, Karst U. Biolabeling with cobaltocinium tags. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION B-A JOURNAL OF CHEMICAL SCIENCES 2018. [DOI: 10.1515/znb-2018-0093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
A label for amino and thiol functionalities of peptides and proteins based on the activated cobaltocinium hexafluorophosphate succinimide ester (CoS) is presented. Despite the known selectivity of a succinimide ester towards amines, CoS also modifies cysteine residues under the same reaction conditions. The derivatized biomolecules were investigated using liquid chromatography with subsequent electrospray-mass spectrometric detection (LC/ESI-MS). In combination with their remarkable stability under physiological conditions, easy handling and good spectroscopic properties, cobaltocinium ions provide all requirements for a powerful labeling reagent. Furthermore, in direct comparison to the isoelectronic well-established ferrocene reagents, the higher redox potential and the chemical stability of the cobaltocinium moiety add to the benefits as a derivatizing agent for bioanalysis.
Collapse
Affiliation(s)
- Susanne Müller-Bomke
- Westfälische Wilhelms-Universität Münster, Institute of Inorganic and Analytical Chemistry , Corrensstraße 30 , 48149 Münster , Germany
| | - Michael Sperling
- Westfälische Wilhelms-Universität Münster, Institute of Inorganic and Analytical Chemistry , Corrensstraße 30 , 48149 Münster , Germany
| | - Heiko Hayen
- Westfälische Wilhelms-Universität Münster, Institute of Inorganic and Analytical Chemistry , Corrensstraße 30 , 48149 Münster , Germany
| | - Uwe Karst
- Westfälische Wilhelms-Universität Münster, Institute of Inorganic and Analytical Chemistry , Corrensstraße 30 , 48149 Münster , Germany
| |
Collapse
|
50
|
Quantitative mapping of specific proteins in biological tissues by laser ablation-ICP-MS using exogenous labels: aspects to be considered. Anal Bioanal Chem 2018; 411:549-558. [PMID: 30310944 DOI: 10.1007/s00216-018-1411-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/17/2018] [Accepted: 09/27/2018] [Indexed: 12/21/2022]
Abstract
Laser ablation (LA) coupled with inductively coupled plasma mass spectrometry (ICP-MS) is a versatile tool for direct trace elemental and isotopic analysis of solids. The development of new strategies for quantitative elemental mapping of biological tissues is one of the growing research areas in LA-ICP-MS. On the other hand, the latest advances are related to obtaining not only the elemental distribution of heteroatoms but also molecular information. In this vein, mapping of specific proteins in biological tissues can be done with LA-ICP-MS by use of metal-labelled immunoprobes. However, although LA-ICP-MS is, in principle, a quantitative technique, critical requirements should be met for absolute quantification of protein distribution. In this review, progress based on the use of metal-labelled antibodies for LA-ICP-MS mapping of specific proteins is reported. Critical requirements to obtain absolute quantitative mapping of specific proteins by LA-ICP-MS are highlighted. Additionally, illustrative examples of the advances made so far with LA-ICP-MS are provided. Graphical abstract In the proposed critical review, last advances based on the use of metal-labelled antibodies and critical requirements for LA-ICP-MS quantitative mapping of specific proteins are tackled.
Collapse
|