1
|
Tao X, Su M, Chen P, Yan M, Wang D, Xia L, Rao L, Xia Z, Fu Q. Zirconium(IV) coordination-mediated rapid and versatile post-modification of polydopamine coating as stationary phase for open-tubular capillary electrochromatography. J Chromatogr A 2024; 1736:465415. [PMID: 39378618 DOI: 10.1016/j.chroma.2024.465415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/10/2024]
Abstract
In recent years, mussel-inspired polydopamine (PDA)-based materials have attracted significant attention in the field of open-tubular capillary electrochromatography (OT-CEC) owing to their diverse and appealing properties. However, previously established functionalized PDA coating-based CEC stationary phases predominantly relied on the latent reactivity of PDA with amine/thiol-containing molecules, limiting the types of applicable modifiers and requiring time-consuming reaction processes. Herein, we presented a versatile and efficient method for the facile and rapid fabrication of diverse functionalized PDA coatings as OT-CEC stationary phases through a Zr(IV) coordination-mediated post-modification strategy. Different kinds of modifiers, including octadecylamine (ODA), lauric acid (LA), and perfluorooctanoic acid (PFOA), were rapidly and robustly grafted onto the PDA coating, verified through multiple characterization techniques. The influences of preparation parameters on the grafting efficiency of the functionalized PDA coating were systematically investigated. Utilizing the Zr(IV)-mediated ODA-, LA- and PFOA-functionalized PDA-based OT-CEC columns, we achieved high-efficiency baseline separation of a series of neutral analytes with excellent repeatability, good stability, and long lifetime. Given the strong universality of the Zr(IV) coordination-mediated post-modification approach, our study provides an effective pathway for advancing the development of a wider range of functional PDA-based chromatographic stationary phases.
Collapse
Affiliation(s)
- Xueping Tao
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Mengting Su
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Panpan Chen
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Meiting Yan
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Dan Wang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Lan Xia
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China
| | - Li Rao
- Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing Medical and Pharmaceutical College, Chongqing, 401331, China.
| | - Zhining Xia
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China.
| | - Qifeng Fu
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
2
|
Zhang Y, Zhao C, Picchetti P, Zheng K, Zhang X, Wu Y, Shen Y, De Cola L, Shi J, Guo Z, Zou X. Quantitative SERS sensor for mycotoxins with extraction and identification function. Food Chem 2024; 456:140040. [PMID: 38878539 DOI: 10.1016/j.foodchem.2024.140040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/15/2024] [Accepted: 06/07/2024] [Indexed: 07/24/2024]
Abstract
The development of new sensors for on-site food toxin monitoring that combine extraction, analytes distinction and detection is important in resource-limited environments. Surface-enhanced Raman scattering (SERS)-based signal readout features fast response and high sensitivity, making it a powerful method for detecting mycotoxins. In this work, a SERS-based assay for the detection of multiple mycotoxins is presented that combines extraction and subsequent detection, achieving an analytically relevant detection limit (∼ 1 ng/mL), which is also tested in corn samples. This sensor consists of a magnetic-core and mycotoxin-absorbing polydopamine-shell, with SERS-active Au nanoparticles on the outer surface. The assay can concentrate multiple mycotoxins, which are identified through multiclass partite least squares analysis based on their SERS spectra. We developed a strategy for the analysis of multiple mycotoxins with minimal sample pretreatment, enabling in situ analytical extraction and subsequent detection, displaying the potential to rapidly identify lethal mycotoxin contamination on site.
Collapse
Affiliation(s)
- Yang Zhang
- International Joint Research Laboratory of Intelligent Agriculture and Agriproducts Processing, China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Chuping Zhao
- International Joint Research Laboratory of Intelligent Agriculture and Agriproducts Processing, China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Pierre Picchetti
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, 76131 Karlsruhe, Germany
| | - Kaiyi Zheng
- International Joint Research Laboratory of Intelligent Agriculture and Agriproducts Processing, China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xinai Zhang
- International Joint Research Laboratory of Intelligent Agriculture and Agriproducts Processing, China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yanling Wu
- International Joint Research Laboratory of Intelligent Agriculture and Agriproducts Processing, China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Ye Shen
- International Joint Research Laboratory of Intelligent Agriculture and Agriproducts Processing, China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Luisa De Cola
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, 76131 Karlsruhe, Germany; Department DISFARM, University of Milano, via Camillo Golgi 19, 20133 Milano, Italy; Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRRCCS, 20156 Milano, Italy
| | - Jiyong Shi
- International Joint Research Laboratory of Intelligent Agriculture and Agriproducts Processing, China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Zhiming Guo
- International Joint Research Laboratory of Intelligent Agriculture and Agriproducts Processing, China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiaobo Zou
- International Joint Research Laboratory of Intelligent Agriculture and Agriproducts Processing, China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
3
|
Li F, Lv H, Zhu F, Zhang Q, Xu Q, Ji W. High throughput detection of veterinary drug residues in chicken and eggs. Food Chem 2024; 463:141267. [PMID: 39288463 DOI: 10.1016/j.foodchem.2024.141267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/20/2024] [Accepted: 09/11/2024] [Indexed: 09/19/2024]
Abstract
Co-extraction of multiple types of target substances is the key to achieve high throughput detection. In this work, PDA@MOF-808/PAN NFsM was prepared by co-modified polyacrylonitrile nanofiber membrane (PAN NFsM) with polydopamine (PDA) and metal-organic framework-808 (MOF-808), and its potential as a solid-phase extraction (SPE) adsorbent was investigated by using the most typical nine veterinary drug residues in eggs and chicken as model target substances. The results show that PDA@MOF-808/PAN NFsM could effectively co-extract all the target substances (adsorption efficiency ranged from 81.46 % to 96.78 %), and had good capability of sample matrix purification (matrix effect was lower than -15.26 %), so a new SPE method has been established. Combined with UPLC-MS/MS, the detection limits were 0.3 to 3.1 μg/kg, the recoveries were between 71.02 % and 106.48 %, and the relative standard deviations were lower than 12.03 %, indicating that the method has considerable good sensitivity, accuracy and precision.
Collapse
Affiliation(s)
- Feng Li
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Huijie Lv
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Feng Zhu
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, China
| | - Qiuping Zhang
- Suzhou Municipal Center for Disease Prevention and Control, Suzhou 215004, China
| | - Qian Xu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Wenliang Ji
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, China.
| |
Collapse
|
4
|
Yang K, Kang Y, Zhang Q, Wu D, Shen J, Wei Y, Wang C. Nitrogen-doped magnetic porous carbon nanospheres derived from dual templates-induced mesoporous polydopamine coated Fe 3O 4 for efficient extraction and sensitive determination of volatile nitrosamines by gas chromatography-mass spectroscopy. Talanta 2024; 276:126235. [PMID: 38761654 DOI: 10.1016/j.talanta.2024.126235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/23/2024] [Accepted: 05/08/2024] [Indexed: 05/20/2024]
Abstract
N-nitrosamines (NAs) are highly carcinogenic compounds commonly found in food, beverages, and consumer products. Due to their wide polarity range, it is challenging to find a suitable carbon adsorbent that can simultaneously adsorb and enrich both polar and nonpolar NAs with good recovery. In this study, nitrogen-doped magnetic mesoporous carbon nanospheres (M-MCN) were prepared and employed as an adsorbent for magnetic solid-phase extraction (MSPE) to extract and concentrate four NAs. The introduction of nitrogen functional groups enhanced the hydrophilicity of the carbon material, allowing M-MCN to achieve a balance between hydrophilicity and hydrophobicity, resulting in good recovery for both polar and nonpolar NAs. A method combining MSPE with gas chromatography-mass spectrometry (GC-MS) was developed for the determination of NAs in processed meat and alcoholic beverages. The method exhibited a good linear range (1-100 ng g-1, r2 > 0.9967) and trace-level detection (0.53-6.6 ng g-1). The recovery rates for the four NAs ranged between 85.7 and 110.7 %, with intra-day precision expressed as relative standard deviation (RSD) between 4.1 and 10.7 %, and inter-day precision between 4.8 and 12.9 %. The results demonstrated not only good accuracy and precision but also provided a new adsorbent for the enrichment of trace-level NAs in processed meat and alcoholic beverage samples.
Collapse
Affiliation(s)
- Kai Yang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Material Science, Northwest University, Xi'an, Shaanxi, 710127, PR China
| | - Yingying Kang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Material Science, Northwest University, Xi'an, Shaanxi, 710127, PR China
| | - Qinming Zhang
- Shaanxi Environmental Monitoring Centre, Shaanxi Key Laboratory for Environmental Monitoring and Forewarning of Trace Pollutants, Xi'an, Shaanxi, 710054, PR China
| | - Dan Wu
- Sunresin New Materials Co., Ltd., Xi'an, Shaanxi, 710076, PR China
| | - Jiwei Shen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Material Science, Northwest University, Xi'an, Shaanxi, 710127, PR China
| | - Yinmao Wei
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Material Science, Northwest University, Xi'an, Shaanxi, 710127, PR China
| | - Chaozhan Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Material Science, Northwest University, Xi'an, Shaanxi, 710127, PR China.
| |
Collapse
|
5
|
Millán-Santiago J, Lucena R, Cárdenas S. Bioinspired composite packed in blunt needles, integrated microextraction and determination of oxycodone and naloxone in saliva by substrate spray mass spectrometry. Anal Chim Acta 2024; 1297:342376. [PMID: 38438230 DOI: 10.1016/j.aca.2024.342376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/02/2024] [Accepted: 02/13/2024] [Indexed: 03/06/2024]
Abstract
BACKGROUND Opioids are effective painkillers used for medical purposes. Their prolonged ingestion can provoke some side effects (including overdose or constipation) that are minimized by using opioid antagonists (e.g., naloxone). The rapid determination of opioids and their antagonists in biosamples is essential for an effective medical treatment. The direct combination of sample preparation and mass spectrometry (MS) fits well in this scenario. It can speed up the analysis achieving a good selectivity, which relies on the sample preparation and MS, and sensitivity levels. RESULTS This article presents a novel substrate-spray mass spectrometry interface based on a polydopamine-cotton (PDA-Cel) composite hosted inside the inner diameter of a 14-gauge blunt needle to determine oxycodone and naloxone in saliva samples. The needle is used as a microextraction device and a substrate for mass spectrometric analysis. The lack of sharpness of the 14-gauge (14G) blunt needles challenges the formation of the electrospray (ESI), and a commercial 10 μL pipette tip is proposed as a simple solution to this shortcoming. Under the optimum parameters, the proposed method was validated, obtaining limits of detection lower than 0.6 μg L-1, linear range up to 200 μg L-1, and linearity better than 0.9915. Relative standard deviation (RSD) and relative recoveries (RR) were studied at three different concentration levels (2, 40, and 200 μg L-1). RSD values were better than 20.7 %, and RR ranged from 90 to 114 %. Finally, a positive sample from a patient under medical treatment was analyzed. SIGNIFICANCE AND NOVELTY 14G blunt needles have been demonstrated as effective extraction devices due to their low price (<0.15 € per extraction unit), their better safety (avoiding finger pricking), and their higher hosting capacity (up to 8 mg of sorbent). The conductivity of stainless steel permits their use as electrospray emitters, making their direct combination to MS easier. The large variety of fibrous sorbents makes this approach versatile enough to be adapted to other analytical problems.
Collapse
Affiliation(s)
- Jaime Millán-Santiago
- Affordable and Sustainable Sample Preparation (AS(2)P) Research Group, Analytical Chemistry Department, Instituto Químico para la Energía y el Medioambiente (IQUEMA), University of Córdoba, Campus of Rabanales, Marie Curie Building, E-14071, Córdoba, Spain
| | - Rafael Lucena
- Affordable and Sustainable Sample Preparation (AS(2)P) Research Group, Analytical Chemistry Department, Instituto Químico para la Energía y el Medioambiente (IQUEMA), University of Córdoba, Campus of Rabanales, Marie Curie Building, E-14071, Córdoba, Spain
| | - Soledad Cárdenas
- Affordable and Sustainable Sample Preparation (AS(2)P) Research Group, Analytical Chemistry Department, Instituto Químico para la Energía y el Medioambiente (IQUEMA), University of Córdoba, Campus of Rabanales, Marie Curie Building, E-14071, Córdoba, Spain.
| |
Collapse
|
6
|
de Sousa DVM, Orlando RM, Pereira FV. Layer-by-layer assembly of PDDA/MWCNTs thin films as an efficient strategy for extraction of organic compounds from complex samples. J Chromatogr A 2024; 1717:464705. [PMID: 38310702 DOI: 10.1016/j.chroma.2024.464705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/06/2024]
Abstract
This article presents the assembly and characterization of poly(diallyldimethylammonium chloride)/multi-walled carbon nanotubes (PDDA/MWCNTs) thin films on borosilicate bottles using a layer-by-layer (LBL) approach. The thin films, consisting of 10 bilayers of coating materials, were thoroughly characterized using UV-VIS spectroscopy, scanning electron microscopy (SEM), and zeta potential measurements. The modified bottles were then utilized for the extraction of analytes with diverse acid-base characteristics, including drugs, illicit drugs, and pesticides, from saliva, urine, and surface water samples. The studied analytes can be adsorbed on the surface of the LBL film mainly through hydrogen bonding and/or hydrophobic interactions. Remarkably high extraction percentages of up to 92 % were achieved, accompanied by an impressive enhancement in the analytical signal of up to 12 times when the sample volume was increased from 0.7 to 10 mL. These results highlight the outstanding extraction and sorption capabilities of the developed material. Additionally, the (PDDA/MWCNTs)10 films exhibited notable resistance to extraction and desorption processes, enabling their reuse for at least 5 cycles. The straightforward and cost-effective fabrication of these sorbent materials using the LBL technique, combined with the ability to extract target compounds during sample transportation and/or storage, renders this sample preparation method a promising alternative.
Collapse
Affiliation(s)
- Denise V Monteiro de Sousa
- Department of Chemistry, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG CEP 31270-901, Brazil
| | - Ricardo Mathias Orlando
- Department of Chemistry, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG CEP 31270-901, Brazil
| | - Fabiano Vargas Pereira
- Department of Chemistry, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG CEP 31270-901, Brazil.
| |
Collapse
|
7
|
Zhang S, You Q, Zhuo X, Shi Z, Yao W, Lü T, Zhang D. Rapid and simple determination of organophosphorus pesticides in urine using polydopamine-modified monolithic spin column extraction combined with liquid chromatography–mass spectrometry. J Chromatogr A 2023; 1696:463959. [PMID: 37028207 DOI: 10.1016/j.chroma.2023.463959] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/03/2023]
Abstract
The determination of organophosphorus pesticides in urine is useful for evaluating human exposure. In this study, a simple micro-solid-phase extraction method based on a polydopamine-modified monolithic spin column combined with liquid chromatography-mass spectrometry (LC-MS) was developed for the determination of six organophosphorus pesticides (dimethoate, dichlorvos, carbofuran, methidathion, phosalone, and chlorpyrifos) in urine samples. A methacrylate polymer monolithic support was prepared in situ in the spin column, and dopamine solution was repeatedly passed through the monolith matrix via centrifugation to generate a polydopamine layer in the polymeric network. All extraction steps were performed via centrifugation. The monolith exhibited good permeability, which enabled high-flow-rate sample loading and significantly reduced the sample pre-treatment time. The addition of polydopamine significantly improved the extraction efficiency of the monolithic spin column owing to the catechol and amine groups in dopamine, which can enhance hydrogen bonding and π-π stacking. Factors affecting the extraction, including the solution pH, centrifugation speed, and desorption solvent, were investigated to determine the optimal extraction conditions. Under the optimal conditions, the OPP detection limits were 0.02-1.32 µg/L. The relative standard deviations of the single column (n = 5) and column-to-column (n = 3) precision for the extraction method were <11%. The monolithic spin column exhibited high stability and could be used for more than 40 extraction cycles. The recoveries for spiked urine samples were 72.1-109.3% (RSDs: 1.6-7.9%). The developed method was successfully applied to the simple and rapid analysis of organophosphorus pesticides in urine samples.
Collapse
|
8
|
Soares S, Rosado T, Barroso M, Gallardo E. Solid Phase-Based Microextraction Techniques in Therapeutic Drug Monitoring. Pharmaceutics 2023; 15:pharmaceutics15041055. [PMID: 37111541 PMCID: PMC10142207 DOI: 10.3390/pharmaceutics15041055] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/18/2023] [Accepted: 03/22/2023] [Indexed: 04/29/2023] Open
Abstract
Therapeutic drug monitoring is an established practice for a small group of drugs, particularly those presenting narrow therapeutic windows, for which there is a direct relationship between concentration and pharmacological effects at the site of action. Drug concentrations in biological fluids are used, in addition to other clinical observation measures, to assess the patient's status, since they are the support for therapy individualization and allow assessing adherence to therapy. Monitoring these drug classes is of great importance, as it minimizes the risk of medical interactions, as well as toxic effects. In addition, the quantification of these drugs through routine toxicological tests and the development of new monitoring methodologies are extremely relevant for public health and for the well-being of the patient, and it has implications in clinical and forensic situations. In this sense, the use of new extraction procedures that employ smaller volumes of sample and organic solvents, therefore considered miniaturized and green techniques, is of great interest in this field. From these, the use of fabric-phase extractions seems appealing. Noteworthy is the fact that SPME, which was the first of these miniaturized approaches to be used in the early '90s, is still the most used solventless procedure, providing solid and sound results. The main goal of this paper is to perform a critical review of sample preparation techniques based on solid-phase microextraction for drug detection in therapeutic monitoring situations.
Collapse
Affiliation(s)
- Sofia Soares
- Centro de Investigação em Ciências da Saúde, Faculdade de Ciências da Saúde, Universidade da Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal
- Laboratório de Fármaco-Toxicologia, Ubimedical, Universidade da Beira Interior, 6200-284 Covilhã, Portugal
| | - Tiago Rosado
- Centro de Investigação em Ciências da Saúde, Faculdade de Ciências da Saúde, Universidade da Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal
- Laboratório de Fármaco-Toxicologia, Ubimedical, Universidade da Beira Interior, 6200-284 Covilhã, Portugal
| | - Mário Barroso
- Serviço de Química e Toxicologia Forenses, Instituto de Medicina Legal e Ciências Forenses-Delegação do Sul, 1169-201 Lisboa, Portugal
| | - Eugenia Gallardo
- Centro de Investigação em Ciências da Saúde, Faculdade de Ciências da Saúde, Universidade da Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal
- Laboratório de Fármaco-Toxicologia, Ubimedical, Universidade da Beira Interior, 6200-284 Covilhã, Portugal
| |
Collapse
|
9
|
Zheng J, Kuang Y, Zhou S, Gong X, Ouyang G. Latest Improvements and Expanding Applications of Solid-Phase Microextraction. Anal Chem 2023; 95:218-237. [PMID: 36625125 DOI: 10.1021/acs.analchem.2c03246] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Juan Zheng
- Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry/School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Yixin Kuang
- Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry/School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Suxin Zhou
- Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry/School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Xinying Gong
- Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry/School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Gangfeng Ouyang
- Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry/School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
10
|
Wang J, Feng J, Lian Y, Sun X, Wang M, Sun M. Advances of the functionalized covalent organic frameworks for sample preparation in food field. Food Chem 2022. [DOI: 10.1016/j.foodchem.2022.134818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
11
|
Hagarová I, Nemček L, Šebesta M, Zvěřina O, Kasak P, Urík M. Preconcentration and Separation of Gold Nanoparticles from Environmental Waters Using Extraction Techniques Followed by Spectrometric Quantification. Int J Mol Sci 2022; 23:ijms231911465. [PMID: 36232767 PMCID: PMC9570491 DOI: 10.3390/ijms231911465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
The quantification of gold nanoparticles (AuNP) in environmental samples at ultratrace concentrations can be accurately performed by sophisticated and pricey analytical methods. This paper aims to challenge the analytical potential and advantages of cheaper and equally reliable alternatives that couple the well-established extraction procedures with common spectrometric methods. We discuss several combinations of techniques that are suitable for separation/preconcentration and quantification of AuNP in complex and challenging aqueous matrices, such as tap, river, lake, brook, mineral, and sea waters, as well as wastewaters. Cloud point extraction (CPE) has been successfully combined with electrothermal atomic absorption spectrometry (ETAAS), inductively coupled plasma mass spectrometry (ICP-MS), chemiluminescence (CL), and total reflection X-ray fluorescence spectrometry (TXRF). The major advantage of this approach is the ability to quantify AuNP of different sizes and coatings in a sample with a volume in the order of milliliters. Small volumes of sample (5 mL), dispersive solvent (50 µL), and extraction agent (70 µL) were reported also for surfactant-assisted dispersive liquid–liquid microextraction (SA-DLLME) coupled with electrothermal vaporization inductively coupled plasma mass spectrometry (ETV-ICP-MS). The limits of detection (LOD) achieved using different combinations of methods as well as enrichment factors (EF) varied greatly, being 0.004–200 ng L−1 and 8–250, respectively.
Collapse
Affiliation(s)
- Ingrid Hagarová
- Faculty of Natural Sciences, Institute of Laboratory Research on Geomaterials, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 845 15 Bratislava, Slovakia
| | - Lucia Nemček
- Faculty of Natural Sciences, Institute of Laboratory Research on Geomaterials, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 845 15 Bratislava, Slovakia
| | - Martin Šebesta
- Faculty of Natural Sciences, Institute of Laboratory Research on Geomaterials, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 845 15 Bratislava, Slovakia
| | - Ondřej Zvěřina
- Department of Public Health, Faculty of Medicine, Masaryk University in Brno, Kamenice 5, 625 00 Brno, Czech Republic
| | - Peter Kasak
- Center for Advanced Materials, Qatar University, Doha P.O. Box 2713, Qatar
| | - Martin Urík
- Faculty of Natural Sciences, Institute of Laboratory Research on Geomaterials, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 845 15 Bratislava, Slovakia
- Correspondence: ; Tel.: +421-2-9014-9392
| |
Collapse
|
12
|
Potential of sodium dodecyl sulfate micellar solutions as eluents in magnetic dispersive micro-solid phase extraction with polydopamine-coated magnetite nanoparticles. Application to antidepressant drugs. J Chromatogr A 2022; 1680:463430. [PMID: 36030567 DOI: 10.1016/j.chroma.2022.463430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 11/21/2022]
Abstract
In this paper, the potential of micellar solutions of the anionic surfactant sodium dodecyl sulfate (SDS) as eluents in dispersive micro-solid phase extraction (D-μSPE) using polydopamine-coated magnetite nanoparticles (Fe3O4@PDA NPs) for the extraction and preconcentration of seven basic drugs (bupropion, citalopram, fluoxetine, mianserin, nomifensine, trimipramine, and viloxazine) is explored for the first time (to the best to our knowledge) and compared with conventional hydro-organic eluents. The impact of the sample solution pH, Fe3O4@PDA NPs and PDA coating amounts and extraction time on the extraction efficiency (EE), as well as the composition of the eluent on the overall efficiency (OE) are studied. Under the selected experimental conditions (50 mg of Fe3O4@PDA NPs, 100 μL of 1 M NH3, 5 min of extraction time and 0.15 M SDS at pH 2.6 as eluent), EE and OE values were higher than 90% for all compounds and for the most hydrophobic compounds (trimipramine, fluoxetine and mianserin), respectively. The results shown in this paper demonstrate the suitability of Fe3O4@PDA NPs as a sorbent for the extraction of antidepressants as well as the advantages of using SDS micellar solutions over classic hydro-organic eluents containing methanol, acetonitrile or tetrahydrofuran. Finally, the stability and reusability of the Fe3O4@PDA NPs is proven.
Collapse
|
13
|
A critical review of covalent organic frameworks-based sorbents in extraction methods. Anal Chim Acta 2022; 1224:340207. [DOI: 10.1016/j.aca.2022.340207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 07/24/2022] [Accepted: 07/25/2022] [Indexed: 12/15/2022]
|
14
|
Mussel Inspired Polydopamine as Silica Fibers Coating for Solid-Phase Microextraction. SEPARATIONS 2022. [DOI: 10.3390/separations9080194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022] Open
Abstract
Commercial solid-phase microextraction fibers are available in a limited number of expensive coatings, which often contain environmentally harmful substances. Consequently, several different approaches have been used in the attempt to develop new sorbents that should possess intrinsic characteristics such as duration, selectivity, stability, and eco-friendliness. Herein we reported a straightforward, green, and easy coating method of silica fibers for solid-phase microextraction with polydopamine (PDA), an adhesive, biocompatible organic polymer that is easily produced by oxidative polymerization of dopamine in mild basic aqueous conditions. After FT-ATR and SEM characterization, the PDA fibers were tested via chromatographic analyses performed on UHPLC system using biphenyl and benzo(a)pyrene as model compounds, and their performances were compared with those of some commercial fibers. The new PDA fiber was finally used for the determination of selected PAHs in soot samples and the results compared with those obtained using the commercial PA fiber. Good reproducibility, extraction stability, and linearity were obtained using the PDA coating, which proved to be a very promising new material for SPME.
Collapse
|
15
|
ZHANG W, LIU G, MA W, FANG M, ZHANG L. [Application progress of covalent organic framework materials in extraction of toxic and harmful substances]. Se Pu 2022; 40:600-609. [PMID: 35791598 PMCID: PMC9404040 DOI: 10.3724/sp.j.1123.2021.12004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Indexed: 12/03/2022] Open
Abstract
Toxic and hazardous substances constitute a category of compounds that are potentially hazardous to humans, other organisms, and the environment. These substances include pesticides (benzoylureas, pyrethroids, neonicotinoids), persistent organic pollutants (polycyclic aromatic hydrocarbons, polychlorinated biphenyls, perfluorinated compounds), plasticizers (phthalate esters, phenolic endocrine disruptors), medicines (sulfonamides, non-steroid anti-inflammatory drugs, tetracyclines, fluoroquinone antibiotics), heterocyclic aromatic amines, algal toxins, and radioactive substances. Discharge of these toxic and harmful substances, as well as their possible persistence and bioaccumulation, pose a major risk to human health, often to the extent of being life-threatening. Therefore, it is important to analyze and detect toxic and hazardous substances in the environment, drinking water, food, and daily commodities. Sample pretreatment is an imperative step in most of the currently used analytical methods, especially in the analysis of trace toxic and harmful substances in complex samples. An efficient and fast sample pretreatment technology not only helps improve the sensitivity, selectivity, reproducibility, and accuracy of analytical methods, but also avoids contamination of the analytical instruments and even damages the performance and working life of instruments. Sample pretreatment techniques widely used in the extraction of toxic and hazardous substances include solid-phase extraction (SPE), solid-phase microextraction (SPME), and dispersed solid-phase extraction (DSPE). The adsorbent material plays a key role in these pretreatment techniques, thereby determining their selectivity and efficiency. In recent years, covalent organic frameworks (COFs) have attracted increasing attention in sample pretreatment. COFs represent an exciting new class of porous crystalline materials constructed via the strong covalent bonding of organic building units through a reversible condensation reaction. COFs present four advantages: (1) precise control over structure type and pore size by consideration of the target molecular structure based on the connectivity and shape of the building units; (2) post-synthetic modification for chemical optimization of the pore interior toward optimized interaction with the target; (3) straightforward scalable synthesis; (4) feasible formation of composites with magnetic nanoparticles, carbon nanotubes, graphene, silica, etc., which is beneficial to enhance the performance of COFs and meet the requirement of diverse pretreatment technologies. Because of the well-defined crystalline porous structures and tailored functionalities, COFs have excellent potential for use in target extraction. However, some issues need to be addressed for the application of COFs in the extraction of toxic and hazardous substances. (1) For the sample matrix, most of the reported COFs are highly hydrophobic, which limits their dispersibility in water-based samples, leading to poor extraction performance. COFs with good dispersibility in water-based samples are urgently required. (2) Besides, COFs rely on hydrophobic interaction, size repulsion, π-π stacking, and Van der Waals forces to extract target substances, but they are not effective for some polar targets. Thus, it is necessary to develop COFs with high affinity for polar toxic and hazardous substances. (3) Methods for the synthesis of COFs have evolved from solvothermal methods to room-temperature methods, mechanical grinding, microwave-assisted synthesis, ion thermal methods, etc. Most of the existing methods are time-consuming, laborious, and environmentally unfriendly. The starting materials are too expensive to prepare COFs in large quantities. More effort is required to improve the synthesis efficiency and overcome the obstacles in the application of COFs for extraction. This article summarizes and reviews the research progress in COFs toward the extraction of toxic and hazardous substances in recent years. Finally, the application prospects of COFs in this field are summarized, which serves as a reference for further research into pretreatment technologies based on COFs.
Collapse
|
16
|
Karami-Osboo R, Ahmadpoor F, Nasrollahzadeh M, Maham M. Polydopamine-coated magnetic Spirulina nanocomposite for efficient magnetic dispersive solid-phase extraction of aflatoxins in pistachio. Food Chem 2022; 377:131967. [PMID: 34979397 DOI: 10.1016/j.foodchem.2021.131967] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 12/19/2021] [Accepted: 12/26/2021] [Indexed: 11/04/2022]
Abstract
An efficient adsorbent was synthesized and used in magnetic dispersive solid phase extraction (MDSPE) of aflatoxins B1, B2, G1, and G2 at trace levels in pistachio prior to analysis by HPLC equipped with a fluorescence detector. Spirulina (Sp) algae was first magnetized, followed by surface modification with dopamine (Dp). The adsorbent was characterized using FT-IR, XRD, FE-SEM, EDX, VSM, and BET analyses. The effects of different analytical parameters on the extraction performance were evaluated. Under optimal conditions, good limits of detection (LODs) and quantifications (LOQs) were achieved in the ranges of 0.02-0.07 and 0.06-0.21 ng g-1, respectively. The RSDs were 5.9, 6.3, 5.6, and 7.3% for AFB1, G1, B2, and G2, respectively. The proposed method was successfully used to determine AFs in pistachio samples and acceptable recoveries in the range of 72-95% were obtained.
Collapse
Affiliation(s)
- Rouhollah Karami-Osboo
- Mycotoxins Research Laboratory, Agricultural Research Education and Extension Organization (AREEO), Iranian Research Institute of Plant Protection, Iran
| | - Fatemeh Ahmadpoor
- Department of Chemistry, Faculty of Science, University of Qom, Qom 3716146611, Iran
| | | | - Mehdi Maham
- Department of Chemistry, Aliabad Katoul Branch, Islamic Azad University, Aliabad Katoul, Iran.
| |
Collapse
|
17
|
Tang Z, Liu F, Fang F, Ding X, Han Q, Tan Y, Peng C. Solid-phase extraction techniques based on nanomaterials for mycotoxin analysis: An overview for food and agricultural products. J Sep Sci 2022; 45:2273-2300. [PMID: 35389521 DOI: 10.1002/jssc.202200067] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 11/06/2022]
Abstract
Mycotoxin contamination is a globally concerned problem for food and agricultural products since it may directly or indirectly induce severe threats to human health. Sensitive and selective screening is an efficient strategy to prevent or reduce human and animal exposure to mycotoxins. However, enormous challenges exist in the determination of mycotoxins, arising from complex sample matrices, trace-level analytes, and the co-occurrence of diverse mycotoxins. Appropriate sample preparation is essential to isolate, purify, and enrich mycotoxins from complicated matrices, thus decreasing sample matrix effects and lowering detection limits. With the cross-disciplinary development, new solid-phase extraction strategies have been exploited and integrated with nanotechnology to meet the challenges of mycotoxin analysis. This review summarizes the advance and progress of solid-phase extraction techniques as the methodological solutions for mycotoxin analysis. Emphases are paid on nanomaterials fabricated as trapping media of SPE techniques, including carbonaceous nanoparticles, metal/metal oxide-based nanoparticles, and nanoporous materials. Advantages and limitations are discussed, along with the potential prospects. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Zhentao Tang
- Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fei Liu
- Technology Center of Chengdu Customs District P. R. China, Chengdu, China
| | - Fang Fang
- Urumqi Customs District P. R. China, Urumqi, China
| | - Xuelu Ding
- School of Pharmacy, Qingdao University, Qingdao, China
| | - Qingrong Han
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuzhu Tan
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
18
|
Liang S, Dai H, Wang C, Zhang H, Li J, Xu Q, Zhang Q. Application of polydopamine fibers mat for simultaneous detection of multi-class drug residues in various animal-original foods. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108523] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
19
|
Dai H, Liang S, Shan D, Zhang Q, Li J, Xu Q, Wang C. Efficient and simple simultaneous adsorption removal of multiple aflatoxins from various liquid foods. Food Chem 2022; 380:132176. [PMID: 35081476 DOI: 10.1016/j.foodchem.2022.132176] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 01/04/2022] [Accepted: 01/14/2022] [Indexed: 11/04/2022]
Abstract
In this study, a polydopamine modified nanofibers membrane (PDA-PS NFsM) was prepared and evaluated as the adsorbent for simultaneous removal of a variety of aflatoxins in various liquid foods, including edible oil, soy sauce and milk, rice vinegar and liquor. The removal efficiency for every single aflatoxin from all samples involved above was more than 76.5% within 1 h at 25 °C, except the liquors with higher ethanol content, for which the efficiency was lower. Moreover, PDA-PS NFsM can be removed directly after the adsorption process without any subsequent separation. The results suggested that the adsorption mechanism of the aflatoxins onto PDA-PS NFsM was chemisorption-based spontaneous endothermic reaction and aflatoxins were adsorbed by electrostatic interaction, hydrogen bonding and π-π interaction. This study confirmed that the PDA-PS NFsM has a good practical application potential in the simultaneous removal of a variety of aflatoxins from various liquid foods.
Collapse
Affiliation(s)
- Hairong Dai
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Sihui Liang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Dandan Shan
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Qiuping Zhang
- Suzhou Municipal Center for Disease Prevention and Control, Suzhou, China
| | - Jian Li
- Suzhou Municipal Center for Disease Prevention and Control, Suzhou, China
| | - Qian Xu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China.
| | - Chunmin Wang
- Suzhou Municipal Center for Disease Prevention and Control, Suzhou, China.
| |
Collapse
|
20
|
Jian N, Dai Y, Liu LE, Wu D, Wu Y. Preparation of molecularly imprinted resin/polydopamine nanofibers mat for the highly efficient extraction and determination of sulfonamides in environmental water. Mikrochim Acta 2021; 188:405. [PMID: 34731318 DOI: 10.1007/s00604-021-05069-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 10/12/2021] [Indexed: 10/19/2022]
Abstract
With polyacrylonitrile nanofibers mat (PAN NFsM) as a template, molecularly imprinted resin/polydopamine nanofibers mat (MIR/PDA NFsM) was synthesized for the extraction of sulfonamides (SAs) in water. The specific surface area and pore volume were increased obviously due to the functionalization of MIR. The adsorption efficiencies of MIR/PDA NFsM under optimized conditions for SAs were 92.3-99.3%. Possible adsorption mechanisms of imprinting recognition and hydrogen bond interactions were also put forward. Compared with MIR particles, the MIR/PDA NFsM exhibited much superior adsorption performance. Particularly, the outstanding mass transfer efficiency of MIR/PDA NFsM was much higher than the other reported adsorbents for SAs. Finally, a new method based on the solid-phase extraction (SPE) of MIR/PDA NFsM was successfully developed for the detection of five SAs in environmental water with HPLC-MS/MS and applied to the analysis of actual samples. Under the selected conditions, the enrichment factors of MIR/PDA NFsM of SCP, SMT, SMZ, SMR, and SMX were between 23.0 and 25.0. Low detection limits (0.26-0.76 ng L-1), broad linear range (1.0 ng L-1 to 10.0 μg L-1), and satisfactory recoveries (82.8-115.6%) and precisions (RSDs < 7.2%) were obtained. Moreover, the excellent reusability properties and storage stability endowed MIR/PDA NFsM with great value for practical applications.
Collapse
Affiliation(s)
- Ningge Jian
- School of Public Health, Zhengzhou University, Zhengzhou, 450001, China.
| | - Yuanyuan Dai
- School of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Li-E Liu
- School of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Di Wu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yongjun Wu
- School of Public Health, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
21
|
Sharma AS, Ali S, Sabarinathan D, Murugavelu M, Li H, Chen Q. Recent progress on graphene quantum dots-based fluorescence sensors for food safety and quality assessment applications. Compr Rev Food Sci Food Saf 2021; 20:5765-5801. [PMID: 34601802 DOI: 10.1111/1541-4337.12834] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 08/04/2021] [Accepted: 08/08/2021] [Indexed: 12/23/2022]
Abstract
The versatile photophysicalproperties, high surface-to-volume ratio, superior photostability, higher biocompatibility, and availability of active sites make graphene quantum dots (GQDs) an ideal candidate for applications in sensing, bioimaging, photocatalysis, energy storage, and flexible electronics. GQDs-based sensors involve luminescence sensors, electrochemical sensors, optical biosensors, electrochemical biosensors, and photoelectrochemical biosensors. Although plenty of sensing strategies have been developed using GQDs for biosensing and environmental applications, the use of GQDs-based fluorescence techniques remains unexplored or underutilized in the field of food science and technology. To the best of our knowledge, comprehensive review of the GQDs-based fluorescence sensing applications concerning food quality analysis has not yet been done. This review article focuses on the recent progress on the synthesis strategies, electronic properties, and fluorescence mechanisms of GQDs. The various GQDs-based fluorescence detection strategies involving Förster resonance energy transfer- or inner filter effect-driven fluorescence turn-on and turn-off response mechanisms toward trace-level detection of toxic metal ions, toxic adulterants, and banned chemical substances in foodstuffs are summarized. The challenges associated with the pretreatment steps of complex food matrices and prospects and challenges associated with the GQDs-based fluorescent probes are discussed. This review could serve as a precedent for further advancement in interdisciplinary research involving the development of versatile GQDs-based fluorescent probes toward food science and technology applications.
Collapse
Affiliation(s)
| | - Shujat Ali
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | | | | | - Huanhuan Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China.,College of Food and Biological Engineering, Jimei University, Xiamen, China
| |
Collapse
|
22
|
[Determination of tetracycline and fluoroquinolone residues in fish by polydopamine nanofiber mat based solid phase extraction combined with ultra performance liquid chromatography-tandem mass spectrometry]. Se Pu 2021; 39:624-632. [PMID: 34227323 PMCID: PMC9404201 DOI: 10.3724/sp.j.1123.2020.12026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Tetracyclines and fluoroquinolones are common antibacterial drugs used in aquaculture, and their residues may pose a risk to human health. The low concentration of drug residues and complex matrixes such as fats and proteins in aquatic products necessitate the urgent development of efficient sample pretreatment methods. Solid phase extraction (SPE) is the most common sample pretreatment method, in which the core is an adsorbent. Compared with traditional SPE adsorbents, nanofiber mat (NFsM) has more interaction sites because of their large specific surface area. Furthermore, NFsMs modified with specific functional groups can significantly improve the extraction efficiency of tetracyclines and fluoroquinolones. Polydopamine (PDA) is spontaneously synthesized by the oxidative self-polymerization of dopamine-hydrochloride in alkaline solutions (pH>7.5). Because of its rich amino and catechol groups, PDA can form π-π stacking, electrostatic attraction, hydrophobic interaction, and hydrogen bonding interactions with target molecules. By exploiting the above advantages, polystyrene (PS) NFsM, as a template, was prepared by the electrostatic spinning method, and PDA-PS NFsM was obtained by functional modification of PDA through self-polymerization. Fourier transform infrared spectroscopy (FT-IR) and field-emission scanning electron microscopy (FESEM) were used to characterize the synthesized PS NFsM and PDA-PS NFsM. It was proved that PDA was successfully modified on the PS NFsM, with the SEM images revealing a rough outer core shell structure and an inner honeycomb structure. Subsequently, the handmade SPE column with PDA-PS NFsM was completed. A novel and efficient screening analytical method based on PDA-PS NFsM for the simultaneous determination of three tetracyclines (tetracycline (TET), chlortetracycline (CTC), and oxytetracycline (OTC)) and three fluoroquinolones (enrofloxacin (ENR), ciprofloxacin (CIP), and norfloxacin (NOR)) in fish by ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was established. The SPE procedure was optimized to develop an efficient method for sample preparation. Evaluate parameters including the amount of NFsM usage, ionic strength, flow rate of the sample solution, composition of eluent, and breakthrough volume were investigated. Only (20±0.1) mg of PDA-PS NFsM was sufficient to completely adsorb the targets, and the analytes retained on NFsM could be eluted by 1 mL of formic acid-ethyl acetate (containing 20% methanol) (1∶99, v/v). The residues were redissolved in 0.1 mL 10% methanol aqueous solution containing 0.2% formic acid. In addition, no adjustment of the pH and ionic strength of the sample solutions was required, and the breakthrough volume was 50 mL. The limits of detection (LODs) and limits of quantification (LOQs) of the six target compounds were measured at 3 times and 10 times the signal-to-noise ratio (S/N), respectively. The LODs and LOQs were 0.3-1.5 μg/kg and 1.0-5.0 μg/kg, respectively. The linear ranges of the six target compounds were LOQ-1000 μg/kg, and the coefficient of determination (R2) was greater than 0.999. To evaluate the accuracy and precision, blank spiked samples at three levels (low, medium, and high) were prepared for the recovery experiments, and each level with six parallel samples (n=6). The recoveries ranged from 94.37% to 102.82%, with intra-day and inter-day relative standard deviations of 2.38% to 8.06% and 4.10% to 9.10%, respectively. To evaluate the purification capacity of PDA-PS NFsM, the matrix effects before and after SPE were calculated and compared. Matrix effects before SPE were -12.98% to -38.68%. After the completion of SPEbased on PDA-PS NFsM, the matrix effect of each target analyte was significantly reduced to -2.15% to -7.36%, which proved the significant matrix removal capacity of PDA-PS NFsM. Finally, the practicality of this method was evaluated by using it to analyze real samples. This SPE method based on PDA-PS NFsM is efficient, practical, and environmentally friendly, and it has great potential for use in the routine monitoring of drug residues in fish.
Collapse
|
23
|
Vejar-Vivar C, García-Valverde MT, Mardones C, Lucena R, Cárdenas S. Polydopamine coated hypodermic needles as a microextraction device for the determination of tricyclic antidepressants in oral fluid by direct infusion MS/MS. RSC Adv 2021; 11:22683-22690. [PMID: 35480419 PMCID: PMC9034363 DOI: 10.1039/d1ra02721b] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/22/2021] [Indexed: 01/24/2023] Open
Abstract
In-needle microextraction consists of the confinement of the sorbent, by coating or packing, inside a metallic needle. The size of the needles reduces the eluent requirements providing an efficient preconcentration of the analytes. In this work, hypodermic needles coated with polydopamine (PDA) are presented as microextraction devices to isolate six tricyclic antidepressants from oral fluid samples. The coating consists of the in-surface polymerization of dopamine at pH 8.5 and mild conditions (room temperature and water as solvent). The PDA coating over the stainless-steel surface confers the needles with a high extraction ability towards the target analytes. After the extraction, the eluates were analyzed by direct infusion MS spectrometry, working in multiple reaction monitoring (MRM) mode, which provided a sample throughput of 30 samples per hour. The variables affecting the synthesis (number of coating cycles, the concentration of dopamine, and needle surface pre-treatment) and the extraction (sample salinity, sample loading cycles, and the number of elution strokes) were studied in depth. Under the optimum conditions, a matrix-matched calibration model was built. The limits of quantification are between 2 and 5 ng mL−1 with linear ranges up to 1000 ng mL−1 for all analytes. The precision, expressed as relative standard deviation (RSD), is better than 10% for all analytes. Accuracy was calculated as recovery, and the obtained values are between 84% and 107%. A single-blind assay was also performed to evaluate the suitability of the method for real application. Hypodermic needles coated with polydopamine for the extraction of antidepressants.![]()
Collapse
Affiliation(s)
- Carmina Vejar-Vivar
- Affordable and Sustainable Sample Preparation (AS2P) Research Group, Departamento de Química Analítica, Instituto Universitario de Investigación en Química Fina y Nanoquímica IUNAN, Universidad de Córdoba Campus de Rabanales, Edificio Marie Curie E-14071 Córdoba Spain .,Departamento de Análisis Instrumental, Facultad de Farmacia, Universidad de Concepción Casilla 237, Correo 3 Concepción Chile
| | - María Teresa García-Valverde
- Affordable and Sustainable Sample Preparation (AS2P) Research Group, Departamento de Química Analítica, Instituto Universitario de Investigación en Química Fina y Nanoquímica IUNAN, Universidad de Córdoba Campus de Rabanales, Edificio Marie Curie E-14071 Córdoba Spain
| | - Claudia Mardones
- Departamento de Análisis Instrumental, Facultad de Farmacia, Universidad de Concepción Casilla 237, Correo 3 Concepción Chile
| | - Rafael Lucena
- Affordable and Sustainable Sample Preparation (AS2P) Research Group, Departamento de Química Analítica, Instituto Universitario de Investigación en Química Fina y Nanoquímica IUNAN, Universidad de Córdoba Campus de Rabanales, Edificio Marie Curie E-14071 Córdoba Spain
| | - Soledad Cárdenas
- Affordable and Sustainable Sample Preparation (AS2P) Research Group, Departamento de Química Analítica, Instituto Universitario de Investigación en Química Fina y Nanoquímica IUNAN, Universidad de Córdoba Campus de Rabanales, Edificio Marie Curie E-14071 Córdoba Spain
| |
Collapse
|
24
|
Grau J, Benedé JL, Chisvert A. Polydopamine-coated magnetic nanoparticles for the determination of nitro musks in environmental water samples by stir bar sorptive-dispersive microextraction. Talanta 2021; 231:122375. [PMID: 33965039 DOI: 10.1016/j.talanta.2021.122375] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/28/2021] [Accepted: 03/18/2021] [Indexed: 10/21/2022]
Abstract
Magnetic-based microextraction approaches have gained popularity in recent years due to the magnetic properties of the extraction phases allowing to handle them easier and more efficiently. This work describes a magnetic-based analytical method for the determination of the family of nitro musks in environmental water samples. These compounds have been of great concern due to their environmental impacts and potential health effects. The method is based on stir bar sorptive-dispersive microextraction (SBSDME) as extraction approach, prior to thermal desorption coupled to gas chromatography-mass spectrometry analysis (TD-GC-MS). For this purpose, polydopamine-coated cobalt ferrite magnetic nanoparticles (CoFe2O4@PDA) were used as extraction material. The main parameters involved in the extraction procedure (i.e., sorbent amount, extraction time and ionic strength) as well as in the thermal desorption step (i.e., temperature and desorption time) were evaluated in order to obtain the highest sensitivity. Under the selected conditions, the method showed good linearity, limits of detection and quantification in the low ng L-1 range, intra- and inter-day repeatability with RSD <15%, and high enrichment factors (178-640). Finally, the method was applied to four environmental water samples of different origin. Relative recovery values ranging from 91 to 120% highlighted that the matrices under consideration do not affect the extraction process. This work constitutes the first time in which nitro musks compounds were selectively extracted by taking advantage the high potential that magnetic-based microextraction techniques offer, specially SBSDME.
Collapse
Affiliation(s)
- José Grau
- Department of Analytical Chemistry, University of Valencia, 46100, Burjassot, Valencia, Spain
| | - Juan L Benedé
- Department of Analytical Chemistry, University of Valencia, 46100, Burjassot, Valencia, Spain
| | - Alberto Chisvert
- Department of Analytical Chemistry, University of Valencia, 46100, Burjassot, Valencia, Spain.
| |
Collapse
|
25
|
Musarurwa H, Tawanda Tavengwa N. Extraction and electrochemical sensing of pesticides in food and environmental samples by use of polydopamine-based materials. CHEMOSPHERE 2021; 266:129222. [PMID: 33360614 DOI: 10.1016/j.chemosphere.2020.129222] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 11/15/2020] [Accepted: 12/03/2020] [Indexed: 06/12/2023]
Abstract
Polydopamine has high adsorption capacities for pollutants such as pesticides in food and environmental matrices. Consequently, it has found applications in some sorbent-based micro-extraction techniques such as solid phase micro-extraction and magnetic solid phase extraction. This paper gives a detailed review of the application of polydopamine-based adsorbents for the extraction of pesticides in food and environmental matrices using these techniques. The adhesive properties of polydopamine have made it to be a suitable material for the immobilisation of the components of electrochemical sensors used to detect pesticides in food and environmental matrices. This paper also gives a comprehensive review on the application of polydopamine in electrochemical sensors such as acetylcholinesterase sensors, molecularly imprinted sensors and aptasensors. The use of polydopamine-based adsorbents during the extraction and electrochemical sensing of pesticides in food and environmental matrices is not free of challenges. In this review, the challenges encountered during the use of polydopamine-based adsorbents are also discussed.
Collapse
Affiliation(s)
- Herbert Musarurwa
- Department of Chemistry, School of Mathematical and Natural Sciences, University of Venda, Private Bag X5050, Thohoyandou, 0950, South Africa
| | - Nikita Tawanda Tavengwa
- Department of Chemistry, School of Mathematical and Natural Sciences, University of Venda, Private Bag X5050, Thohoyandou, 0950, South Africa.
| |
Collapse
|
26
|
Lin L, Guo H, Lin S, Chen Y, Yan L, Zhu E, Li K. Selective extraction of perfluorooctane sulfonate in real samples by superparamagnetic nanospheres coated with a polydopamine‐based molecularly imprinted polymer. J Sep Sci 2021; 44:1015-1025. [DOI: 10.1002/jssc.202000824] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 12/27/2022]
Affiliation(s)
- Like Lin
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle School of Environmental and Chemical Engineering Nanchang Hangkong University Nanchang P. R. China
| | - Huiqin Guo
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle School of Environmental and Chemical Engineering Nanchang Hangkong University Nanchang P. R. China
| | - Sen Lin
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle School of Environmental and Chemical Engineering Nanchang Hangkong University Nanchang P. R. China
| | - Yanfei Chen
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle School of Environmental and Chemical Engineering Nanchang Hangkong University Nanchang P. R. China
| | - Liushui Yan
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle School of Environmental and Chemical Engineering Nanchang Hangkong University Nanchang P. R. China
| | - Enze Zhu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle School of Environmental and Chemical Engineering Nanchang Hangkong University Nanchang P. R. China
| | - Kexin Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle School of Environmental and Chemical Engineering Nanchang Hangkong University Nanchang P. R. China
| |
Collapse
|
27
|
Chen J, Gong Z, Tang W, Row KH, Qiu H. Carbon dots in sample preparation and chromatographic separation: Recent advances and future prospects. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2020.116135] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
28
|
Kataoka H. In-tube solid-phase microextraction: Current trends and future perspectives. J Chromatogr A 2020; 1636:461787. [PMID: 33359971 DOI: 10.1016/j.chroma.2020.461787] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/02/2020] [Accepted: 12/04/2020] [Indexed: 01/01/2023]
Abstract
In-tube solid-phase microextraction (IT-SPME) was developed about 24 years ago as an effective sample preparation technique using an open tubular capillary column as an extraction device. IT-SPME is useful for micro-concentration, automated sample cleanup, and rapid online analysis, and can be used to determine the analytes in complex matrices simple sample processing methods such as direct sample injection or filtration. IT-SPME is usually performed in combination with high-performance liquid chromatography using an online column switching technology, in which the entire process from sample preparation to separation to data analysis is automated using the autosampler. Furthermore, IT-SPME minimizes the use of harmful organic solvents and is simple and labor-saving, making it a sustainable and environmentally friendly green analytical technique. Various operating systems and new sorbent materials have been developed to improve its extraction efficiency by, for example, enhancing its sorption capacity and selectivity. In addition, IT-SPME methods have been widely applied in environmental analysis, food analysis and bioanalysis. This review describes the present state of IT-SPME technology and summarizes its current trends and future perspectives, including method development and strategies to improve extraction efficiency.
Collapse
Affiliation(s)
- Hiroyuki Kataoka
- School of Pharmacy, Shujitsu University, Nishigawara, Okayama 703-8516, Japan.
| |
Collapse
|
29
|
Chen J, Li N, Liu J, Zheng F. Facile preparation of novel COFs functionalized magnetic core-shell structured nanocomposites and used for rapid detection of trace polycyclic aromatic hydrocarbons in food. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105460] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
30
|
Háková M, Chocholouš P, Valachovič A, Erben J, Chvojka J, Solich P, Švec F, Šatínský D. On-line polydopamine coating as a new way to functionalize polypropylene fiber sorbent for solid phase extraction. Talanta 2020; 219:121189. [PMID: 32887106 DOI: 10.1016/j.talanta.2020.121189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/12/2020] [Accepted: 05/14/2020] [Indexed: 10/24/2022]
Abstract
Effective process, including a cartridge packing polypropylene fiber sorbent modified by following on-line polydopamine coating, for on-line solid phase extraction in 2D UHPLC system has been developed. Hydrophobic surface of mechanically stable polypropylene fibers was hydrophilized using an automated and reproducible in situ coating process to enable good wettability and effective extraction of polar compounds. Polymerization mixture consisting dopamine and TRIS buffer was circulated through the cartridge containing polypropylene fibers using a peristaltic pump to achieve polymerization. This process was optimized in terms of dopamine amount in the polymerization mixture, its flow rate, and polymerization time. Best results were obtained with 25 mL polymerization mixture containing 20 mg dopamine circulated through the cartridge at a flow rate of 2.07 mL min-1 for 60 min. Prepared cartridges were evaluated via measurement of the recovery and reproducibility using chlorogenic acid as a model compound. Overall reproducibility of our multistep process including eight cartridges in 2D UHPLC system, each measured in triplicate, was 3.61% (n = 24).
Collapse
Affiliation(s)
- Martina Háková
- Charles University, Faculty of Pharmacy, The Department of Analytical Chemistry, Ak. Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Petr Chocholouš
- Charles University, Faculty of Pharmacy, The Department of Analytical Chemistry, Ak. Heyrovského 1203, 500 05, Hradec Králové, Czech Republic.
| | - Adam Valachovič
- Charles University, Faculty of Pharmacy, The Department of Analytical Chemistry, Ak. Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Jakub Erben
- Technical University of Liberec, Faculty of Textile Engineering, Department of Nonwovens and Nanofibrous Materials, Studentská 1402/2, 46001, Liberec 1, Czech Republic
| | - Jiří Chvojka
- Technical University of Liberec, Faculty of Textile Engineering, Department of Nonwovens and Nanofibrous Materials, Studentská 1402/2, 46001, Liberec 1, Czech Republic
| | - Petr Solich
- Charles University, Faculty of Pharmacy, The Department of Analytical Chemistry, Ak. Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - František Švec
- Charles University, Faculty of Pharmacy, The Department of Analytical Chemistry, Ak. Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Dalibor Šatínský
- Charles University, Faculty of Pharmacy, The Department of Analytical Chemistry, Ak. Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| |
Collapse
|
31
|
Xin J, Wang X, Li N, Liu L, Lian Y, Wang M, Zhao RS. Recent applications of covalent organic frameworks and their multifunctional composites for food contaminant analysis. Food Chem 2020; 330:127255. [DOI: 10.1016/j.foodchem.2020.127255] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 12/19/2022]
|
32
|
Hagarová I. Magnetic Solid Phase Extraction as a Promising Technique for Fast Separation of Metallic Nanoparticles and Their Ionic Species: A Review of Recent Advances. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2020; 2020:8847565. [PMID: 32963882 PMCID: PMC7502132 DOI: 10.1155/2020/8847565] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 09/01/2020] [Indexed: 06/11/2023]
Abstract
The widespread use of silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs) in a wide variety of industrial as well as medical sectors is indisputable. This leads to a new concern about their presence in various environmental compartments. Since their negative effect and potential toxicity impact have been confirmed, analytical chemists focus on the development of different procedures for their reliable detection, identification, characterization, and quantification, not only in homogenous and simple matrices but also in complex environmental matrices. However, nanoparticles and their ionic species can coexist and their toxicity may differ; therefore, novel analytical approaches are necessary to monitor not only the nanoparticles but also their ionic species. The aim of this article is to bring a review of recent works where magnetic solid-phase extraction (MSPE) procedures in connection with spectrometric methods were used for separation/preconcentration and quantification of (1) silver and gold ions in various environmental samples, (2) AgNPs and AuNPs in real water samples in the presence of various coexisting ions, and (3) both species (it means Ag ions and AgNPs; Au ions and AuNPs) in real water samples. The results presented herein show the great analytical potential of MSPE procedures in connection with spectrometric methods used in these fields and can be helpful in guiding analytical chemists who aim to work on this subject.
Collapse
Affiliation(s)
- Ingrid Hagarová
- Comenius University in Bratislava, Faculty of Natural Sciences, Institute of Laboratory Research on Geomaterials, Mlynská Dolina, Ilkovičova 6, 842 15 Bratislava, Slovakia
| |
Collapse
|
33
|
Guo PF, Gong HY, Zheng HW, Chen ML, Wang JH, Ye L. Iron-chelated thermoresponsive polymer brushes on bismuth titanate nanosheets for metal affinity separation of phosphoproteins. Colloids Surf B Biointerfaces 2020; 196:111282. [PMID: 32763792 DOI: 10.1016/j.colsurfb.2020.111282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/23/2020] [Accepted: 07/26/2020] [Indexed: 01/07/2023]
Abstract
Separation of phosphoproteins plays an important role for identification of biomarkers in life science. In this work, bismuth titanate supported, iron-chelated thermoresponsive polymer brushes were prepared for selective separation of phosphoproteins. The iron-chelated thermoresponsive polymer brushes were synthesized by surface-initiated atom transfer radical polymerization of N-isopropylacrylamide and glycidyl methacrylate, followed by a ring opening reaction of epoxy group, and chelation of the obtained cis-diols with Fe3+ ions. The composite material was characterized to determine the size and thickness, the content of the organic polymer and the metal loading. The bismuth titanate supported, iron-chelated thermoresponsive polymer brushes showed selective binding for phosphoproteins in the presence of abundant interfering proteins, and a high binding capacity for phosphoproteins by virtue of the metal affinity between the metal ions on the polymer brushes and the phosphate groups in the phosphoproteins (664 mg β-Casein per g sorbent). The thermoresponsive property of the polymer brushes made it possible to adjust phosphoprotein binding by changing temperature. Finally, separation of phosphoproteins from a complex biological sample (i.e. milk) was demonstrated using the nanosheet-supported thermoresponsive polymer brushes.
Collapse
Affiliation(s)
- Peng-Fei Guo
- Division of Pure and Applied Biochemistry, Department of Chemistry, Lund University, Box 124, Lund 221 00, Sweden; Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Hai-Yue Gong
- Division of Pure and Applied Biochemistry, Department of Chemistry, Lund University, Box 124, Lund 221 00, Sweden
| | - Hong-Wei Zheng
- Division of Pure and Applied Biochemistry, Department of Chemistry, Lund University, Box 124, Lund 221 00, Sweden
| | - Ming-Li Chen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China.
| | - Jian-Hua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Lei Ye
- Division of Pure and Applied Biochemistry, Department of Chemistry, Lund University, Box 124, Lund 221 00, Sweden.
| |
Collapse
|
34
|
Kanao E, Kubo T, Otsuka K. Carbon-Based Nanomaterials for Separation Media. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20190372] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Eisuke Kanao
- Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Takuya Kubo
- Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Koji Otsuka
- Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
35
|
Qin SB, Li XS, Fan YH, Mou XX, Qi SH. Facile synthesis of polydivinylbenzene coated magnetic polydopamine coupled with pressurized liquid extraction for the extraction and cleanup of polycyclic aromatic hydrocarbons in soils. J Chromatogr A 2020; 1613:460676. [PMID: 31727351 DOI: 10.1016/j.chroma.2019.460676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/20/2019] [Accepted: 11/03/2019] [Indexed: 01/03/2023]
Abstract
Due to the trace levels of polycyclic aromatic hydrocarbons (PAHs) in soil and the complexity of soil matrices, effective sample pretreatment methods are of great significance to obtain accurate analytical results. In this paper, polydopamine (PDA) encapsulated Fe3O4 particles were used as seeds for in situ polymerization of divinylbenzene (DVB) to derive magnetic hybrid material Fe3O4@PDA@PDVB. Coupled with pressurized liquid extraction, Fe3O4@PDA@PDVB was investigated as a selective adsorbent for the extraction and cleanup of PAHs in soil. The prepared magnetic material was characterized and demonstrated to possess strong hydrophobicity and superparamagnetism. Under optimal conditions, Fe3O4@PDA@PDVB can effectively extract 15 PAHs from a 30% methanol solution within 2 min, and it is more selective for PAHs than for n-alkane in soil extracts. The matrix effect significantly decreased after extraction by the prepared material, which showed superiority to a silica gel column method (EPA 3630C Method). The developed method was linear (5-1000 ng g-1) with coefficient of determination (R2) ranging from 0.9986-0.9998, and the limits of detection were 0.13-0.54 ng g-1. Additionally, repetitive experiments indicated that the prepared material was reproducible and reusable with relative standard deviations below 8.4% and 8.6%, respectively. Finally, the new method was successfully employed to determine the concentrations of PAHs in genuine soil and standard reference material, and the results were comparable to those of widely utilized EPA methodology.
Collapse
Affiliation(s)
- Shi-Bin Qin
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Xiao-Shui Li
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China.
| | - Yu-Han Fan
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Xiao-Xuan Mou
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Shi-Hua Qi
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China.
| |
Collapse
|
36
|
Sun T, Wang M, Wang D, Du Z. Solid-phase microextraction based on nickel-foam@polydopamine followed by ion mobility spectrometry for on-site detection of Sudan dyes in tomato sauce and hot-pot sample. Talanta 2020; 207:120244. [DOI: 10.1016/j.talanta.2019.120244] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 08/06/2019] [Accepted: 08/07/2019] [Indexed: 12/28/2022]
|
37
|
Zhou T, Che G, Ding L, Sun D, Li Y. Recent progress of selective adsorbents: From preparation to complex sample pretreatment. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.115678] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
38
|
Recent advances in emerging nanomaterials based food sample pretreatment methods for food safety screening. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.115669] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
39
|
Xiong YB, Lu ZH, Wang DD, Yang MNO, Guo HM, Yang ZH. Application of polydopamine functionalized magnetic graphene in triazole fungicides residue analysis. J Chromatogr A 2019; 1614:460725. [PMID: 31767260 DOI: 10.1016/j.chroma.2019.460725] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/30/2019] [Accepted: 11/17/2019] [Indexed: 12/31/2022]
Abstract
In this work, a new analytical method based on polydopamine functionalized magnetic graphene (PDA@MG) adsorbent material has been developed to determine three triazole fungicides in water samples. As previous step, a novel polydopamine functionalized PDA@MG adsorbent material has been successfully prepared, which was characterized by fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), transmission electron microscope (TEM), and vibrating sample magnetometer (VSM). Based on this novel material, a new magnetic solid phase extraction (MSPE) method coupled with high performance liquid chromatography (HPLC) has been established for the determination of triazole fungicides in water samples. The main factors which could affect the experimental results were optimized. Under the optimal conditions, good linarites has been achieved in the range of 0.2-50 µg L-1, with the correlation coefficients (R2) were between 0.9962 and 0.9996. The limits of detections (LODs) were 0.0048-0.0084 µg L-1, and the relative standard deviations (RSDs) were between 1.7% and 4.8%. In addition, enrichment factors (EFs) were 572-916 times, which showed triazole fungicides residues could be accurately extracted and analyzed in this way. In the final experiment, the established method was applied to the detection of target analyzes in water samples. Satisfied results could be obtained for tebuconazole, propiconazole, and flusilazole. The recoveries of five water samples were between 69.4% and 106.4%, and the RSD were between 1.0% and 6.5%. The development method is more easy, effective, green and environmental-friendly, and has potential for application.
Collapse
Affiliation(s)
- Ya-Bing Xiong
- College of Plant Science and Technology, Department of Plant Protection, Huazhong Agriculture University, Wuhan 430070, China.
| | - Zhi-Heng Lu
- College of Plant Science and Technology, Department of Plant Protection, Huazhong Agriculture University, Wuhan 430070, China
| | - Dan-Dan Wang
- College of Plant Science and Technology, Department of Plant Protection, Huazhong Agriculture University, Wuhan 430070, China
| | - Mei-Nan Ou Yang
- College of Plant Science and Technology, Department of Plant Protection, Huazhong Agriculture University, Wuhan 430070, China
| | - Hao-Ming Guo
- College of Plant Science and Technology, Department of Plant Protection, Huazhong Agriculture University, Wuhan 430070, China
| | - Zhong-Hua Yang
- College of Plant Science and Technology, Department of Plant Protection, Huazhong Agriculture University, Wuhan 430070, China.
| |
Collapse
|
40
|
Recent review on carbon nanomaterials functionalized with ionic liquids in sample pretreatment application. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.115641] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
41
|
Li W, Zhang J, Zhu W, Qin P, Zhou Q, Lu M, Zhang X, Zhao W, Zhang S, Cai Z. Facile preparation of reduced graphene oxide/ZnFe 2O 4 nanocomposite as magnetic sorbents for enrichment of estrogens. Talanta 2019; 208:120440. [PMID: 31816803 DOI: 10.1016/j.talanta.2019.120440] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 09/18/2019] [Accepted: 10/03/2019] [Indexed: 12/18/2022]
Abstract
Reduced graphene oxide/ZnFe2O4 (rGO/ZnFe2O4) nanocomposite was facile prepared and applied as magnetic sorbent for the extraction of estrogens including 17β-estradiol, 17α-estradiol, estrone and hexestrol from water, soil, and fish samples prior to HPLC analysis. The rGO/ZnFe2O4 nanocomposite was characterized by scanning electron microscope, Fourier transform-infrared spectroscopy, X-ray diffraction, and vibrating sample magnetometer. The experimental parameters affecting the efficiency of magnetic solid-phase extraction (MSPE) including the amount of material, extraction time, pH, temperature, desorption solvents, desorption time, and desorption solvent volume were investigated respectively. With the developed method, good linearity was observed in the range of 0.05-500 ng/mL with the correlation coefficients (R2) between 0.9978 and 0.9993. The limits of detection (S/N = 3) and limits of quantification (S/N = 10) were achieved at 0.01-0.02 ng/mL and 0.05 ng/mL, respectively. The enrichment factors were calculated as the range of 241-288. Using rGO/ZnFe2O4 nanocomposite as the sorbent, the developed MSPE followed by HPLC analysis, was applied to analysis of estrogens in river water, soil and fish samples. The method has the potential application in the extraction and preconcentration ultra trace compounds in complex matrices, such as environmental and biological samples.
Collapse
Affiliation(s)
- Wenqi Li
- Henan International Joint Laboratory of Medicinal Plants Utilization, School of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, Henan, China
| | - Jing Zhang
- Henan International Joint Laboratory of Medicinal Plants Utilization, School of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, Henan, China
| | - Wenli Zhu
- Henan International Joint Laboratory of Medicinal Plants Utilization, School of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, Henan, China
| | - Peige Qin
- Henan International Joint Laboratory of Medicinal Plants Utilization, School of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, Henan, China
| | - Qian Zhou
- Henan International Joint Laboratory of Medicinal Plants Utilization, School of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, Henan, China
| | - Minghua Lu
- Henan International Joint Laboratory of Medicinal Plants Utilization, School of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, Henan, China.
| | - Xuebin Zhang
- Center for Multi-Omics Research, Institute of Plant Stress Biology, Henan University, Kaifeng, 475004, Henan, China
| | - Wuduo Zhao
- Center for Advanced Analysis and Computational Science, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Shusheng Zhang
- Center for Advanced Analysis and Computational Science, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China.
| |
Collapse
|
42
|
Hou X, Tang S, Wang J. Recent advances and applications of graphene-based extraction materials in food safety. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.07.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
43
|
Zhou DD, Zhang Q, Zhang H, Wang YZ, Yang FQ, Wang SP, Wang YT. Cupric ion functionalized polydopamine coated magnetic microspheres as solid-phase adsorbent for the extraction of purines in plasma. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1120:95-103. [DOI: 10.1016/j.jchromb.2019.04.054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 04/29/2019] [Accepted: 04/30/2019] [Indexed: 01/08/2023]
|
44
|
Huang X, Qiao K, Li L, Liu G, Xu X, Lu R, Gao H, Xu D. Preparation of a magnetic graphene/polydopamine nanocomposite for magnetic dispersive solid-phase extraction of benzoylurea insecticides in environmental water samples. Sci Rep 2019; 9:8919. [PMID: 31222032 PMCID: PMC6586854 DOI: 10.1038/s41598-019-45186-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 06/03/2019] [Indexed: 12/11/2022] Open
Abstract
A magnetic graphene/polydopamine (MG/PDA) nanocomposite has been prepared and used as sorbent for magnetic dispersive solid-phase extraction (MDSPE) of four benzoylurea insecticides in environmental water samples. The obtained nanocomposites were characterized by transmission electron microscopy, scanning electron microscopy, vibrating sample magnetometry, powder X-ray diffraction, fourier transform infrared spectroscopy, surface area and porosity analysis and thermogravimetric analysis. To investigate the adsorption performance of MG/PDA for target analytes, various parameters affecting the MG/PDA-based MDSPE procedure were optimized. Under the optimal conditions, the established method exhibits good linearity (R2 ≥ 0.9988) in the concentration range 2.5-500 µg L-1. A low limit of detection (0.75 µg L-1, signal/noise = 3:1), a low limit of quantification (2.50 µg L-1, signal/noise = 10:1), and good precision (intraday relative standard deviation ≤3.6%, interday relative standard deviation ≤4.5%) are also achieved. Finally, the simple, fast, and sensitive sample preparation technique was successfully used to determine benzoylurea insecticides in environmental water samples.
Collapse
Affiliation(s)
- Xiaodong Huang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing, 100081, China
- Department of Applied Chemistry, China Agricultural University, Beijing, 100193, China
| | - Kexin Qiao
- Department of Applied Chemistry, China Agricultural University, Beijing, 100193, China
| | - Lingyun Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing, 100081, China
| | - Guangyang Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing, 100081, China
| | - Xiaomin Xu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing, 100081, China
| | - Runhua Lu
- Department of Applied Chemistry, China Agricultural University, Beijing, 100193, China
| | - Haixiang Gao
- Department of Applied Chemistry, China Agricultural University, Beijing, 100193, China.
| | - Donghui Xu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing, 100081, China.
| |
Collapse
|
45
|
Feng J, Sun M, Han S, Ji X, Li C, Wang X, Tian Y. Polydopamine‐coated cotton fibers as the adsorbent for in‐tube solid‐phase microextraction. J Sep Sci 2019; 42:2163-2170. [DOI: 10.1002/jssc.201801333] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 03/30/2019] [Accepted: 04/15/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Juanjuan Feng
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of ShandongSchool of Chemistry and Chemical EngineeringUniversity of Jinan Jinan P. R. China
| | - Min Sun
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of ShandongSchool of Chemistry and Chemical EngineeringUniversity of Jinan Jinan P. R. China
| | - Sen Han
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of ShandongSchool of Chemistry and Chemical EngineeringUniversity of Jinan Jinan P. R. China
| | - Xiangping Ji
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of ShandongSchool of Chemistry and Chemical EngineeringUniversity of Jinan Jinan P. R. China
| | - Chunying Li
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of ShandongSchool of Chemistry and Chemical EngineeringUniversity of Jinan Jinan P. R. China
| | - Xiuqin Wang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of ShandongSchool of Chemistry and Chemical EngineeringUniversity of Jinan Jinan P. R. China
| | - Yu Tian
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of ShandongSchool of Chemistry and Chemical EngineeringUniversity of Jinan Jinan P. R. China
| |
Collapse
|
46
|
Capriotti AL, Cavaliere C, La Barbera G, Montone CM, Piovesana S, Laganà A. Recent Applications of Magnetic Solid-phase Extraction for Sample Preparation. Chromatographia 2019. [DOI: 10.1007/s10337-019-03721-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
47
|
Polydopamine: surface coating, molecular imprinting, and electrochemistry—successful applications and future perspectives in (bio)analysis. Anal Bioanal Chem 2019; 411:4327-4338. [DOI: 10.1007/s00216-019-01665-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/25/2019] [Accepted: 01/31/2019] [Indexed: 01/01/2023]
|
48
|
Lin J, Daboss S, Blaimer D, Kranz C. Micro-Structured Polydopamine Films via Pulsed Electrochemical Deposition. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E242. [PMID: 30754722 PMCID: PMC6409672 DOI: 10.3390/nano9020242] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/04/2019] [Accepted: 02/09/2019] [Indexed: 12/16/2022]
Abstract
Polydopamine (PDA) films are interesting as smart functional materials, and their controlled structured formation plays a significant role in a wide range of applications ranging from cell adhesion to sensing and catalysis. A pulsed deposition technique is reported for micro-structuring polydopamine films using scanning electrochemical microscopy (SECM) in direct mode. Thereby, precise and reproducible film thicknesses of the deposited spots could be achieved ranging from 5.9 +/- 0.48 nm (1 pulse cycle) to 75.4 nm +/- 2.5 nm for 90 pulse cycles. The obtained morphology is different in comparison to films deposited via cyclic voltammetry or films formed by autooxidation showing a cracked blister-like structure for high pulse cycle numbers. The obtained polydopamine spots were investigated in respect to their electrochemical properties using SECM approach curves. Quantitative kinetic data in dependence of the film thickness, the substrate potential, and the used redox species were obtained.
Collapse
Affiliation(s)
- Jing Lin
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
| | - Sven Daboss
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
| | - Dominik Blaimer
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
| | - Christine Kranz
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
| |
Collapse
|
49
|
Yu Y, You J, Sun Z, Ji Z, Hu N, Zhou W, Zhou X. HPLC determination of γ-aminobutyric acid and its analogs in human serum using precolumn fluorescence labeling with 4-(carbazole-9-yl)-benzyl chloroformate. J Sep Sci 2019; 42:826-833. [PMID: 30593727 DOI: 10.1002/jssc.201801108] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/09/2018] [Accepted: 12/09/2018] [Indexed: 11/08/2022]
Abstract
In this study, a simple analytical method for the determination of γ-aminobutyric acid, gabapentin, and baclofen by using high-performance liquid chromatography with fluorescence detection was developed. An amidogen-reactive fluorescence labeling reagent, 4-(carbazole-9-yl)-benzyl chloroformate was first used to sensitively label these analytes. The completed labeling of these analytes can be finished rapidly only within 5 min at the room temperature (25°C) to form 4-(carbazole-9-yl)-benzyl chloroformate labeled fluorescence derivatives. These labeled derivatives expressed strong fluorescence property with the maximum excitation and emission wavelengths of 280 and 380 nm, respectively. The labeled derivatives were analyzed using a reversed-phase Eclipse SB-C18 column within 10 min with satisfactory shapes. Excellent linearity (R2 > 0.995) for all analytes was achieved with the limits of detection and the limits of quantitation in the range of 0.25-0.35 and 0.70-1.10 μg/L, respectively. The proposed method was used for the simultaneous determination of γ-aminobutyric acid and its analogs in human serum with satisfactory recoveries in the range of 94.5-97.5%.
Collapse
Affiliation(s)
- Yanxin Yu
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, P. R. China.,Key Laboratory of Life-Organic Analysis of Shandong Province, Qufu Normal University, Qufu, P. R. China
| | - Jinmao You
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, P. R. China.,Key Laboratory of Life-Organic Analysis of Shandong Province, Qufu Normal University, Qufu, P. R. China
| | - Zhiwei Sun
- Key Laboratory of Life-Organic Analysis of Shandong Province, Qufu Normal University, Qufu, P. R. China
| | - Zhongyin Ji
- Key Laboratory of Tibetan Medicine Research & Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining, P. R. China
| | - Na Hu
- Key Laboratory of Tibetan Medicine Research & Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining, P. R. China
| | - Wu Zhou
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, P. R. China
| | - Xuxia Zhou
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P. R. China
| |
Collapse
|
50
|
Wang R, Cui Y, Hu F, Liu W, Du Q, Zhang Y, Zha J, Huang T, Fizir M, He H. Selective recognition and enrichment of carbamazepine in biological samples by magnetic imprinted polymer based on reversible addition-fragmentation chain transfer polymerization. J Chromatogr A 2019; 1591:62-70. [PMID: 30712819 DOI: 10.1016/j.chroma.2019.01.057] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 01/14/2019] [Accepted: 01/18/2019] [Indexed: 01/01/2023]
Abstract
A well-defined molecularly imprinted polymer (Fe3O4@CS@MIP) was synthesized via reversible addition-fragmentation chain transfer polymerization for magnetic solid-phase extraction coupled with high-performance liquid chromatography-diode array detector to detect carbamazepine (CBZ) in biological samples. The composition of Fe3O4@CS@MIP was selected by a two-step screening method. 4-vinyl pyridine, divinylbenzene and dimethylformamide were chosen as the functional monomer, cross-linker and porogen, respectively. The imprinted layer was coated on the surface of the chain transfer agent-modified magnetic chitosan nanoparticles. The prepared Fe3O4@CS@MIP was characterized by scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, Brunauer-Emmett-Teller measurement and vibrating sample magnetometer. The results indicated that Fe3O4@CS@MIP had a large surface area (265.8 m2/g), high saturation magnetization (19.88 emu/g) and uniform structure. Besides, the binding property of the Fe3O4@CS@MIP was studied in detail. The Fe3O4@CS@MIP showed high imprinting factor (IF = 4.83) and desirable adsorption capacity (323.10 μmol/g) to CBZ. Under the optimum conditions, the developed method exhibited excellent linearity (R2>0.999) in the range of 0.01-0.5 mg/L and 1.0-30.0 mg/L, and the limits of detection were 1.0 μg/L and 9.6 μg/L for the urine and serum samples, respectively. Good recoveries (88.22%-101.18%) were obtained with relative standard deviations less than 4.83%. This work provided a practical approach for the selective extraction and detection of CBZ in real samples.
Collapse
Affiliation(s)
- Ruya Wang
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 211198, China
| | - Yanru Cui
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 211198, China
| | - Fan Hu
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 211198, China
| | - Wei Liu
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 211198, China
| | - Qiuzheng Du
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 211198, China
| | - Yan Zhang
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 211198, China
| | - Jun Zha
- Vocational and Technical College of Guizhou Minzu University, Guiyang, Guizhou, 550025, China
| | - Tao Huang
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 211198, China
| | - Meriem Fizir
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 211198, China.
| | - Hua He
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 211198, China; Vocational and Technical College of Guizhou Minzu University, Guiyang, Guizhou, 550025, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|