1
|
Zhao Z, Liao M, Hu G, Zeng S, Ge L, Yang K. Enantioselective adsorption of ibuprofen enantiomers using chiral-active carbon nanoparticles induced S-α-methylbenzylamine. Chirality 2024; 36:e23628. [PMID: 37926465 DOI: 10.1002/chir.23628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/11/2023] [Accepted: 10/17/2023] [Indexed: 11/07/2023]
Abstract
The chiral media is crucial to the chiral recognition and separation of enantiomers. In this study, we report the preparation of novel chiral carbon nanoparticles (CCNPs) via surface passivation using glucose as the carbon source and S-(-)-α-methylbenzylamine as the chiral ligand. The structures of the obtained CCNPs are characterized via FT-IR, Raman spectroscopy, DLS, XPS, XRD, TEM, and zeta potential analysis. These CCNPs could be employed as the chiral adsorbent and used for the enantioselective adsorption of the ibuprofen enantiomers. The results demonstrated that the CCNPs could selectively adsorb R-enantiomer from ibuprofen racemate solution and give an enantiomeric excess (e.e.) of about 50% under an optimal adsorption condition. Moreover, the regeneration efficiency of the CCNPs remained above e.e. of 43% after the fifth cycle. The present work confirmed that the prepared CCNPs show great potential in the enantioselective separation of ibuprofen racemate.
Collapse
Affiliation(s)
- Zhenbo Zhao
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, China
| | - Min Liao
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, China
| | - Gang Hu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, China
| | - Siwen Zeng
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, China
| | - Li Ge
- Medical College of Guangxi University, Nanning, China
| | - Kedi Yang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, China
- Medical College of Guangxi University, Nanning, China
| |
Collapse
|
2
|
de Paula Lima I, Polycarpo Valle S, de Oliveira MAL, de Carvalho Marques FF, Antonio Simas Vaz F. Monolithic stationary phases preparation for use in chromatographic and electromigration techniques: the state-of-the-art. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
3
|
Neequaye T, El Rassi Z. Poly(carboxyethyl acrylate-co-ethylene glycol dimethacrylate) precursor monolith with bonded (S)-(-)-1-(2-naphthyl) ethylamine ligands for use in chiral and achiral separations by capillary electrochromatography. J Chromatogr A 2023; 1688:463713. [PMID: 36535112 DOI: 10.1016/j.chroma.2022.463713] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/26/2022] [Accepted: 12/10/2022] [Indexed: 12/14/2022]
Abstract
In this research report, the previously developed poly(carboxyethyl acrylate-co-ethylene glycol dimethacrylate) precursor monolith (referred to as carboxy monolith) is further exploited in the preparation of a chiral stationary phase for enantiomeric separations. The carboxy monolith precursor was subjected to post polymerization functionalization (PPF) with the chiral selector (S)-(-)-1-(2-naphthyl) ethylamine (NAS) at room temperature in the presence of N, N´-dicyclohexylcarbodiimide (DCC) in chloroform. The DCC, which is an organic soluble carbodiimide, permits the linkage for the amine functionality of the chiral ligand NAS to the carboxy group of the monolithic surface forming a stable amide linkage. The NAS column thus obtained allowed not only enantiomeric separations in the RP mode via its chiral site but also the separation of nonpolar species via its achiral functionality offering both hydrophobic and π-π interactions for aromatic compounds such toluene derivatives and polyaromatic hydrocarbons. The dual interaction sites (e.g., chiral, and achiral) of the NAS present a convenient column for the separations of slightly polar and nonpolar chiral and achiral solutes in the RP mode.
Collapse
Affiliation(s)
- Theophilus Neequaye
- Department of Chemistry, Oklahoma State University, Stillwater, OK 74078, United States
| | - Ziad El Rassi
- Department of Chemistry, Oklahoma State University, Stillwater, OK 74078, United States.
| |
Collapse
|
4
|
Liu B, Li H, Quan K, Chen J, Qiu H. Periodic mesoporous organosilica for chromatographic stationary phases: From synthesis strategies to applications. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2022.116895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
5
|
Chromatographic supports for enantioselective liquid chromatography: Evolution and innovative trends. J Chromatogr A 2022; 1684:463555. [DOI: 10.1016/j.chroma.2022.463555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 09/29/2022] [Accepted: 10/06/2022] [Indexed: 11/21/2022]
|
6
|
Miao P, Xi Y, Feng Z, Zhang J, Du Y, Chen C. Enhanced enantioseparation of drugs by capillary electrochromatography with a L-cysteine functionalized gold nanoparticle based stationary phase. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:1982-1987. [PMID: 35531858 DOI: 10.1039/d2ay00414c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nanoparticles, which have unique properties, have attracted growing attention in enantiomeric separation nowadays. In this paper, an L-cysteine functionalized gold nanoparticle (L-Cys-GNP) based capillary column was prepared and applied in separating drug enantiomers in capillary electrochromatography (CEC) with lactobionic acid (LA) as a chiral selector. Compared with bare fused-silica capillary columns, the capillary columns modified with L-Cys-GNPs showed excellent chiral separation performance. A series of parameters affecting the enantiomeric separation were systematically investigated.
Collapse
Affiliation(s)
- Pandeng Miao
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, No. 24 Tongjiaxiang, Nanjing 210009, Jiangsu, P. R. China.
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Ying Xi
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, No. 24 Tongjiaxiang, Nanjing 210009, Jiangsu, P. R. China.
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Zijie Feng
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, No. 24 Tongjiaxiang, Nanjing 210009, Jiangsu, P. R. China.
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Jian Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, No. 24 Tongjiaxiang, Nanjing 210009, Jiangsu, P. R. China.
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Yingxiang Du
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, No. 24 Tongjiaxiang, Nanjing 210009, Jiangsu, P. R. China.
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Cheng Chen
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, No. 24 Tongjiaxiang, Nanjing 210009, Jiangsu, P. R. China.
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| |
Collapse
|
7
|
A visual chiroptical system with chiral assembly graphene quantum dots for D-phenylalanine detection. Anal Bioanal Chem 2022; 414:4885-4896. [PMID: 35562570 DOI: 10.1007/s00216-022-04113-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/09/2022] [Accepted: 05/02/2022] [Indexed: 11/01/2022]
Abstract
Chirality is a fundamental phenomenon of nature, and the enantioselective recognition of amino acids isomers is especially important for life science. In this study, chiroptical system based on chiral assembly graphene quantum dots (GQDs) was developed for visual testing of D-phenylalanine (D-Phe). Here, GQDs were used as the fluorescent element, and chiral functional moieties of 1,3,5-triformylphloroglucinol-functionalized chiral ( +)-diacetyl-L-tartaric anhydride (TPTA) were used as the chiral recognition elements. Based on the formed chiral microenvironment, the fluorescence intensity of TPTA-assembled GQDs had a good linear relationship with D-Phe in the concentration range of 0.1-5 μM, and the detection limit was 0.023 μM. According to the variation in luminance of TPTA-assembled GQDs, visual testing to D-Phe was realized using a smartphone-assisted chiroptical system with a detection limit of 0.050 μM. The spiked recoveries of both chiroptical sensing methods based on TPTA-assembled GQDs from the food matrix ranged from 86.20 to 110.0%. Furthermore, TPTA-assembled GQDs were successfully applied to intracellular chiroptical imaging in response to D-Phe in vitro. The developed chiral nanomaterial TPTA-assembled GQDs with excellent photochemical stability, optical properties, and bioimaging capabilities provide a promising technique for the visual detection of amino acid isomers in the field of smart devices.
Collapse
|
8
|
Practical Evaluation of Chitosan-Based Chiral Stationary Phase for Pharmaceutical Analysis by High-Performance Liquid Chromatography. Chromatographia 2022. [DOI: 10.1007/s10337-022-04128-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
9
|
Preparation and applications of cellulose-functionalized chiral stationary phases: A review. Talanta 2021; 225:121987. [DOI: 10.1016/j.talanta.2020.121987] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/28/2020] [Accepted: 12/05/2020] [Indexed: 12/12/2022]
|
10
|
Moein MM. Advancements of chiral molecularly imprinted polymers in separation and sensor fields: A review of the last decade. Talanta 2020; 224:121794. [PMID: 33379023 DOI: 10.1016/j.talanta.2020.121794] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/16/2020] [Accepted: 10/19/2020] [Indexed: 01/01/2023]
Abstract
Since chiral recognition mechanism based on molecularly imprinted polymers immerged, it has assisted countless chemical and electrochemical analytical sample preparation techniques. It has done this by enhancing the enatioseparation abilities of these techniques. The preparation and optimization of chiral molecularly imprinted polymers (CMIPs) are two favored methods in the separation and sensor fields. This review aims to present an overview of advances in the preparation and application of CMIPs in analytical approaches in different available formats (eg. column, monolithic column, cartridge, membrane, nanomaterials, pipette tip and stir bar sorptive) over the last decade. In addition, progress in the preparation and development of CMIPs-based sensor fields have been also discussed. Finally, the main application challenges of CMIPs are also summarily explained, as well as upcoming prospects in the field.
Collapse
Affiliation(s)
- Mohammad Mahdi Moein
- Karolinska Radiopharmacy, Karolinska University Hospital, Akademiska stråket 1, S-171 64, Stockholm, Sweden; Department of Oncology-Pathology, Karolinska Institutet, Akademiska stråket 1, S-171 77, Stockholm, Sweden.
| |
Collapse
|
11
|
Application of chiral chromatography in radiopharmaceutical fields: A review. J Chromatogr A 2020; 1632:461611. [PMID: 33086153 DOI: 10.1016/j.chroma.2020.461611] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 01/20/2023]
Abstract
Chiral column chromatography (CCC) is a revolutionary analytical methodology for the enantioseparation of novel positron emission tomography (PET) tracers in the primary stages of drug development. Due to the different behaviors of tracer enantiomers (e.g. toxicity, metabolism and side effects) in administrated subjects, their separation and purification is a challenging endeavor. Over the last three decades, different commercial chiral columns have been applied for the enantioseparation of PET-radioligand (PET-RL) or radiotracers (PET-RT), using high-performance liquid chromatography (HPLC). The categorization and reviewing of them is a vital topic. This review presents a brief overview of advances, applications, and future prospectives of CCC in radiopharmaceutical approaches. In addition, the effective chromatographic parameters and degravitation trends to enhance enantioseparation resolution are addressed. Moreover, the application and potential of chiral super fluidical chromatography (CSFC) as an alternative for enantioseparation in the field of radiopharmaceutical is discussed. Finally, the crucial application challenges of CCC are explained and imminent tasks are suggested.
Collapse
|
12
|
Chen Y, Lu Z, Li G, Hu Y. β-Cyclodextrin porous polymers with three-dimensional chiral channels for separation of polar racemates. J Chromatogr A 2020; 1626:461341. [DOI: 10.1016/j.chroma.2020.461341] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 12/28/2022]
|
13
|
Song L, Pan M, Zhao R, Deng J, Wu Y. Recent advances, challenges and perspectives in enantioselective release. J Control Release 2020; 324:156-171. [DOI: 10.1016/j.jconrel.2020.05.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 12/20/2022]
|
14
|
Jamshidi A, Zonoz FM, Wei Y, Samie A. A newly synthesized organic–inorganic hybrid in nano-size including [BW12O40]5− anions and hydrolyzed 2-cyanoguanidine cations as a double working green catalyst. RESEARCH ON CHEMICAL INTERMEDIATES 2020. [DOI: 10.1007/s11164-020-04154-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Kim YS, Kim JS, Sun G, An HJ, Cheong WJ. Ground Organic Particles of ca. 3 μm Size as Chromatographic Separation Media in High Performance Liquid Chromatography. Chromatographia 2020. [DOI: 10.1007/s10337-020-03894-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Pinto MM, Fernandes C, Tiritan ME. Chiral Separations in Preparative Scale: A Medicinal Chemistry Point of View. Molecules 2020; 25:E1931. [PMID: 32326326 PMCID: PMC7221958 DOI: 10.3390/molecules25081931] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/18/2020] [Accepted: 04/19/2020] [Indexed: 01/22/2023] Open
Abstract
Enantiomeric separation is a key step in the development of a new chiral drug. Preparative liquid chromatography (LC) continues to be the technique of choice either during the drug discovery process, to achieve a few milligrams, or to a scale-up during the clinical trial, needing kilograms of material. However, in the last few years, instrumental and technical developments allowed an exponential increase of preparative enantioseparation using other techniques. Besides LC, supercritical fluid chromatography (SFC) and counter-current chromatography (CCC) have aroused interest for preparative chiral separation. This overview will highlight the importance to scale-up chiral separations in Medicinal Chemistry, especially in the early stages of the pipeline of drugs discovery and development. Few examples within different methodologies will be selected, emphasizing the trends in chiral preparative separation. The advantages and drawbacks will be critically discussed.
Collapse
Affiliation(s)
- Madalena M.M. Pinto
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia da Universidade do Porto, 4050-313 Porto, Portugal; (C.F.); (M.E.T.)
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, 4050-208 Matosinhos, Portugal
| | - Carla Fernandes
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia da Universidade do Porto, 4050-313 Porto, Portugal; (C.F.); (M.E.T.)
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, 4050-208 Matosinhos, Portugal
| | - Maria E. Tiritan
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia da Universidade do Porto, 4050-313 Porto, Portugal; (C.F.); (M.E.T.)
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, 4050-208 Matosinhos, Portugal
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde (IINFACTS), 4585-116 Gandra PRD, Portugal
| |
Collapse
|
17
|
Xie SM, Chen XX, Zhang JH, Yuan LM. Gas chromatographic separation of enantiomers on novel chiral stationary phases. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115808] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
18
|
|
19
|
Jamróz E, Kulawik P, Kopel P. The Effect of Nanofillers on the Functional Properties of Biopolymer-based Films: A Review. Polymers (Basel) 2019; 11:E675. [PMID: 31013855 PMCID: PMC6523406 DOI: 10.3390/polym11040675] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/09/2019] [Accepted: 04/09/2019] [Indexed: 12/30/2022] Open
Abstract
Waste from non-degradable plastics is becoming an increasingly serious problem. Therefore, more and more research focuses on the development of materials with biodegradable properties. Bio-polymers are excellent raw materials for the production of such materials. Bio-based biopolymer films reinforced with nanostructures have become an interesting area of research. Nanocomposite films are a group of materials that mainly consist of bio-based natural (e.g., chitosan, starch) and synthetic (e.g., poly(lactic acid)) polymers and nanofillers (clay, organic, inorganic, or carbon nanostructures), with different properties. The interaction between environmentally friendly biopolymers and nanofillers leads to the improved functionality of nanocomposite materials. Depending on the properties of nanofillers, new or improved properties of nanocomposites can be obtained such as: barrier properties, improved mechanical strength, antimicrobial, and antioxidant properties or thermal stability. This review compiles information about biopolymers used as the matrix for the films with nanofillers as the active agents. Particular emphasis has been placed on the influence of nanofillers on functional properties of biopolymer films and their possible use within the food industry and food packaging systems. The possible applications of those nanocomposite films within other industries (medicine, drug and chemical industry, tissue engineering) is also briefly summarized.
Collapse
Affiliation(s)
- Ewelina Jamróz
- Institute of Chemistry, University of Agriculture in Cracow, Balicka Street 122, PL-30-149 Kraków, Poland.
| | - Piotr Kulawik
- Department of Animal Products Processing, University of Agriculture, Balicka Street 122, PL-30-149 Kraków, Poland.
| | - Pavel Kopel
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic.
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic.
| |
Collapse
|
20
|
Wide pH range enantioseparation of cyclodextrin silica-based hybrid spheres for high performance liquid chromatography. J Chromatogr A 2019; 1595:73-80. [PMID: 30819436 DOI: 10.1016/j.chroma.2019.02.040] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 02/13/2019] [Accepted: 02/17/2019] [Indexed: 01/30/2023]
Abstract
pH plays an important role in the enantiomeric separation process by changing the polarity of the mobile phase and the conformation and ionization state of the enantiomers. Herein, β-cyclodextrin-silica hybrid spheres with n-propyl groups as hydrophobic linkers and ethyl-silica as a support were prepared using a one-pot approach, and then the hydroxyl group was further modified with 3,5-dimethylphenyl isocyanate. The new β-cyclodextrin-silica hybrid chiral stationary phase (CD-HCSP) was prepared and characterized using techniques including scanning electron microscopy and transmission electron microscopy. The enantioseparation properties of CD-HCSP were evaluated with different solvents over a wide pH range (1-10) in reversed phase. 14 enantiomers were successfully resolved, and favorable chiral resolution and high stability was demonstrated for multiple types of enantiomer under different pH conditions. Compared with commercial columns, CD-HCSP showed better chiral resolution and, more importantly, could be used for chiral resolution over a wide pH range. This work combines the high pH tolerance of the hybrid material and excellent chiral recognition of cyclodextrin for enantioseparation of chiral drugs, which could lead to the development of a new type of chiral separation material.
Collapse
|
21
|
Tighadouini S, Radi S, Elidrissi A, Zaghrioui M, Garcia Y. Selective Confinement of Cd
II
in Silica Particles Functionalized with β‐Keto‐Enol‐Bisfuran Receptor: Isotherms, Kinetic and Thermodynamic Studies. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201801349] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Said Tighadouini
- Laboratoire de Chimie Appliquée et Environnement (LCAE), Faculté des Sciences Université Mohamed I 60 000 Oujda Morocco
| | - Smaail Radi
- Laboratoire de Chimie Appliquée et Environnement (LCAE), Faculté des Sciences Université Mohamed I 60 000 Oujda Morocco
- Centre de l'Oriental des Sciences et Technologies de l'Eau (COSTE) Université Med I 60000 Oujda Morocco
| | - Abderrahman Elidrissi
- Laboratoire de Chimie Appliquée et Environnement (LCAE), Faculté des Sciences Université Mohamed I 60 000 Oujda Morocco
| | - Mustapha Zaghrioui
- Laboratoire GREMAN CNRS‐UMR 7347 IUT de BLOIS Université François‐Rabelais de Tours 15 Rue de la Chocolaterie 41029 Blois France
| | - Yann Garcia
- Institute of Condensed Matter and Nanosciences Université catholique de Louvain Place Louis Pasteur 1 1348 Louvain‐la‐Neuve Belgium
| |
Collapse
|
22
|
Self-induced recognition of enantiomers (SIRE) and its application in chiral NMR analysis. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.07.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
23
|
Huang XY, Quan KJ, Pei D, Liu JF, Di DL. The development of biphasic chiral recognition in chiral separation. Chirality 2018; 30:974-981. [PMID: 29864196 DOI: 10.1002/chir.22975] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 04/19/2018] [Accepted: 04/20/2018] [Indexed: 12/23/2022]
Abstract
In chiral separation, enantioseparation factor is an important parameter which influences the resolution of enantiomers. In this current overview, a biphasic chiral recognition method is introduced to the readers. This method can significantly improve the enantioseparation factor in two-phase solvent through adding lipophilic and hydrophilic chiral selectors which have opposite chiral recognition ability to organic and aqueous phases, respectively. This overview presents the development and applications of biphasic chiral recognition in liquid-liquid extraction and counter current chromatography. It mainly focuses on the topics of mechanism, advantages and limitations, applications, and key factors of biphasic chiral recognition. In addition, the future outlook on development of biphasic chiral recognition also has been discussed in this overview.
Collapse
Affiliation(s)
- Xin-Yi Huang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, Gansu, China
| | - Kai-Jun Quan
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, Gansu, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Dong Pei
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, Gansu, China
| | - Jian-Fei Liu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, Gansu, China
| | - Duo-Long Di
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, Gansu, China
| |
Collapse
|
24
|
Noel Echevarria R, Carrasco-Correa EJ, Keunchkarian S, Reta M, Herrero-Martinez JM. Photografted methacrylate-based monolithic columns coated with cellulose tris(3,5-dimethylphenylcarbamate) for chiral separation in CEC. J Sep Sci 2018; 41:1424-1432. [PMID: 29385319 DOI: 10.1002/jssc.201701234] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 01/20/2018] [Accepted: 01/20/2018] [Indexed: 11/10/2022]
Abstract
A chiral capillary monolithic column for enantiomer separation in capillary electrochromatography was prepared by coating cellulose tris(3,5-dimethylphenylcarbamate) on porous glycidyl methacrylate-co-ethylene dimethacrylate monolith in capillary format grafted with chains of [2(methacryloyloxy)ethyl] trimethylammonium chloride. The surface modification of the monolith by the photografting of [2(methacryloyloxy)ethyl] trimethylammonium chloride monomer as well as the coating conditions of cellulose tris(3,5-dimethylphenylcarbamate) onto the grafted monolithic scaffold were optimized to obtain a stable and reproducible chiral stationary phase for capillary electrochromatography. The effect of organic modifier (acetonitrile) in aqueous mobile phase for the enantiomer separation by capillary electrochromatography was also investigated. Several pairs of enantiomers including acidic, neutral, and basic analytes were tested and most of them were partially or completely resolved under aqueous mobile phases. The prepared monolithic chiral stationary phases exhibited a good stability, repeatability, and column-to-column reproducibility, with relative standard deviations below 11% in the studied electrochromatographic parameters.
Collapse
Affiliation(s)
- Romina Noel Echevarria
- Laboratorio de Investigación y Desarrollo en Métodos Analíticos (LIDMA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), La Plata, Bs. As., Argentina
| | | | - Sonia Keunchkarian
- Laboratorio de Investigación y Desarrollo en Métodos Analíticos (LIDMA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), La Plata, Bs. As., Argentina
| | - Mario Reta
- Laboratorio de Investigación y Desarrollo en Métodos Analíticos (LIDMA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), La Plata, Bs. As., Argentina
| | | |
Collapse
|