1
|
Jamrógiewicz M, Bray A, Gołuński G, Bełdzińska P, Zakrzewski M. Photodegradation of indomethacin and naproxen contained within commercial products for skin - RAP. J Pharm Biomed Anal 2024; 246:116201. [PMID: 38788621 DOI: 10.1016/j.jpba.2024.116201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/29/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024]
Abstract
Patient can be exposed to the photodegradation products of a drug after skin application of topical formulations. NSAIDs, with analgesic and anti-inflammatory properties, are known for the potential photoinstability, and are applied often in the form of creams, gels or liquids, commonly used among athletes, elderly people, geriatric patients and patients treated with multidrug therapies. Susceptibility to photodegradation hazard of those group arises the need for development of a new approach, with the ability to evaluate the patient safety. We planned to use a rapid assessment procedure (RAP) of safety by testing the photostability of popular skin medicinal products. This method, proposed many years ago by WHO, is now reintroduced to analytical applications in industry, when emergency drugs (e.g. for Covid) are implemented to the market in accelerated procedures. In the health care system, qualitative evaluation of drugs is extremely valuable, therefore we have planned to identify photodegradation using the FTIR method - infrared spectroscopy and DSC - differential scanning calorimetry, whilst the risk of formation of genotoxic products using the Ames test. We have successfully demonstrated that changes in the chemical structure and physical form of both pure APIs and drug products containing the API be assessed in a short time. Another advantage of our work is the combination of the developed results from FTIR/NIR spectra with statistical analysis. As a result, full and quick qualitative assessment of the effects of photoexposure of selected NSAIDs is performed, fortunately showing no mutagenicity. Due to the popularity of NSAIDs applied to the skin, a gel containing naproxen and spray with indomethacin were selected for testing. The analysis carried out for various formulations of both preparations allows us to demonstrate the universality of the applied RAP methods in assessing the risk of hazard to the patient, thus we present research results that expand or widen the knowledge and assessment of risks related to the use of drugs on the skin.
Collapse
Affiliation(s)
- Marzena Jamrógiewicz
- Medical University of Gdansk, Faculty of Pharmacy, Department of Physical Chemistry, 80-416 Gdansk, Al. Gen, Hallera 107, Poland.
| | - Adam Bray
- Medical University of Gdansk, Faculty of Pharmacy, Department of Physical Chemistry, 80-416 Gdansk, Al. Gen, Hallera 107, Poland
| | - Grzegorz Gołuński
- Laboratory of Biophysics, Intercollegiate Faculty of Biotechnology UG-MUG, Abrahama 58, Gdansk 80-822, Poland
| | - Patrycja Bełdzińska
- Laboratory of Biophysics, Intercollegiate Faculty of Biotechnology UG-MUG, Abrahama 58, Gdansk 80-822, Poland
| | - Marcin Zakrzewski
- Laboratory of Biophysics, Intercollegiate Faculty of Biotechnology UG-MUG, Abrahama 58, Gdansk 80-822, Poland
| |
Collapse
|
2
|
Huang Y, Xu Q, Lu H, Li Z, Wu Y. A rapid and sensitive UPLC-MS/MS method for simultaneous determination of four potential mutagenic impurities at trace levels in ripretinib drug substance. RSC Adv 2022; 12:25617-25622. [PMID: 36199346 PMCID: PMC9455223 DOI: 10.1039/d2ra04505b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/02/2022] [Indexed: 11/21/2022] Open
Abstract
In the synthesis of ripretinib, a new oral tyrosine kinase inhibitor, impurities could arise directly from starting materials, reagents and intermediates. Among these process impurities, four specific intermediate impurities were found to contain the structural alerts of primary aromatic amine and aldehyde groups, triggering the concern of potential mutagenic impurities (PMIs). Two complementary (quantitative) structure-activity relationship [(Q)SAR] evaluation systems (expert rule-based and statistics-based) were subsequently employed to assess and classify the mutagenic risk of the four known impurities. The Sarah prediction results of these four impurities were all positive and they were categorized as class 3, where the threshold of toxicological concern (TTC) of 1.5 μg d-1 would apply. Hereby, a rapid and sensitive UPLC-MS/MS method was developed for the simultaneous and trace level quantification of the four PMIs in ripretinib drug substance. The separation was achieved on a C18 column under the optimized gradient elution program consuming only nine minutes and the four PMIs were all well separated from ripretinib so that they could be easily diverted to waste via a switch valve. The time-segmented multiple reaction monitoring (MRM) mode further improved the sensitivity and allowed for the quantification of the four PMIs as low as 10% of the acceptable limit. The method was fully validated, and proved sufficient in terms of selectivity, sensitivity, linearity, precision and accuracy. The factors involved in the method development and pathways for fragment ions of the four PMIs were also discussed and the study will contribute to risk management of PMIs present in ripretinib.
Collapse
Affiliation(s)
- Yiwen Huang
- Suzhou Institute for Drug Control Suzhou Jiangsu Province 215104 China
| | - Qi Xu
- Suzhou Institute for Drug Control Suzhou Jiangsu Province 215104 China
| | - Hui Lu
- Suzhou Institute for Drug Control Suzhou Jiangsu Province 215104 China
| | - Zhong Li
- Yantai Institute of Materia Medica, Yantai Branch, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Yantai Shangdong Province 264000 China
| | - Yang Wu
- Suzhou Institute for Drug Control Suzhou Jiangsu Province 215104 China
| |
Collapse
|
3
|
Determination of Methyl Methanesulfonate and Ethyl Methylsulfonate in New Drug for the Treatment of Fatty Liver Using Derivatization Followed by High-Performance Liquid Chromatography with Ultraviolet Detection. Molecules 2022; 27:molecules27061950. [PMID: 35335314 PMCID: PMC8951586 DOI: 10.3390/molecules27061950] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/13/2022] [Accepted: 03/14/2022] [Indexed: 02/05/2023] Open
Abstract
A new derivatization high-performance liquid chromatography method with ultraviolet detection was developed and validated for the quantitative analysis of methanesulfonate genotoxic impurities in an innovative drug for the treatment of non-alcoholic fatty liver disease. In this study, sodium dibenzyldithiocarbamate was used as a derivatization reagent for the first time to enhance the sensitivity of the analysis, and NaOH aqueous solution was chosen as a pH regulator to avoid the interference of the drug matrix. Several key experimental parameters of the derivatization reaction were investigated and optimized. In addition, specificity, linearity, precision, stability, and accuracy were validated. The determined results of the samples were consistent with those obtained from the derivatization gas chromatography–mass spectrometry analysis. Thus, the proposed method is a reliable and practical protocol for the determination of trace methanesulfonate genotoxic impurities in drugs containing mesylate groups.
Collapse
|
4
|
Sussman EM, Oktem B, Isayeva IS, Liu J, Wickramasekara S, Chandrasekar V, Nahan K, Shin HY, Zheng J. Chemical Characterization and Non-targeted Analysis of Medical Device Extracts: A Review of Current Approaches, Gaps, and Emerging Practices. ACS Biomater Sci Eng 2022; 8:939-963. [PMID: 35171560 DOI: 10.1021/acsbiomaterials.1c01119] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The developers of medical devices evaluate the biocompatibility of their device prior to FDA's review and subsequent introduction to the market. Chemical characterization, described in ISO 10993-18:2020, can generate information for toxicological risk assessment and is an alternative approach for addressing some biocompatibility end points (e.g., systemic toxicity, genotoxicity, carcinogenicity, reproductive/developmental toxicity) that can reduce the time and cost of testing and the need for animal testing. Additionally, chemical characterization can be used to determine whether modifications to the materials and manufacturing processes alter the chemistry of a patient-contacting device to an extent that could impact device safety. Extractables testing is one approach to chemical characterization that employs combinations of non-targeted analysis, non-targeted screening, and/or targeted analysis to establish the identities and quantities of the various chemical constituents that can be released from a device. Due to the difficulty in obtaining a priori information on all the constituents in finished devices, information generation strategies in the form of analytical chemistry testing are often used. Identified and quantified extractables are then assessed using toxicological risk assessment approaches to determine if reported quantities are sufficiently low to overcome the need for further chemical analysis, biological evaluation of select end points, or risk control. For extractables studies to be useful as a screening tool, comprehensive and reliable non-targeted methods are needed. Although non-targeted methods have been adopted by many laboratories, they are laboratory-specific and require expensive analytical instruments and advanced technical expertise to perform. In this Perspective, we describe the elements of extractables studies and provide an overview of the current practices, identified gaps, and emerging practices that may be adopted on a wider scale in the future. This Perspective is outlined according to the steps of an extractables study: information gathering, extraction, extract sample processing, system selection, qualification, quantification, and identification.
Collapse
Affiliation(s)
- Eric M Sussman
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Berk Oktem
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Irada S Isayeva
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Jinrong Liu
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Samanthi Wickramasekara
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Vaishnavi Chandrasekar
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Keaton Nahan
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Hainsworth Y Shin
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Jiwen Zheng
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, United States
| |
Collapse
|
5
|
Ferguson P, Hicks M. The state-of-the-art and future perspectives for SFC. SEP SCI TECHNOL 2022. [DOI: 10.1016/b978-0-323-88487-7.00013-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
6
|
Volta e Sousa L, Gonçalves R, Menezes JC, Ramos A. Analytical Method Lifecycle Management in Pharmaceutical Industry: a Review. AAPS PharmSciTech 2021; 22:128. [PMID: 33835304 DOI: 10.1208/s12249-021-01960-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/08/2021] [Indexed: 01/16/2023] Open
Abstract
The adoption of Quality by Design (QbD) and Analytical Method Lifecycle Management (AMLM) concepts to ensure the quality of pharmaceutical products has been applied and proposed over the last few years. These concepts are based on knowledge gained from the application of scientific and quality risk management approaches, throughout method lifecycle to assure continuous improvement and high reliability of analytical results. The overall AMLM starts with the definition of the method's intended use through the Analytical Target Profile definition, including three stages: (1) Method Design, taking advantage of the well-known concept of QbD; (2) Method Performance Qualification; (3) Continued Method Performance Verification. This is intended to holistically align method variability with product requirements, increasing confidence in the data generated, a regulatory requirement that the pharmaceutical industry must follow. This approach views all method-related activities, such as development, validation, transfer, and routine use as a continuum and interrelated process, where knowledge and risk management are the key enablers. An increase in method robustness, cost reduction, and decreased risk failures are some of the intrinsic benefits from this lifecycle management. This approach is clearly acknowledged both by regulators and industry. The roadmap of the regulatory and industry events that mark the evolution of these concepts helps to capture the current and future expectation of the pharmaceutical framework.
Collapse
|
7
|
Shamirian A, Foti C, Mitchell SS. Selective quantitation of B 2Pin 2 and B 2(OH) 4 in active pharmaceutical ingredients by gas chromatography- mass spectrometry. J Pharm Biomed Anal 2021; 198:113987. [PMID: 33684830 DOI: 10.1016/j.jpba.2021.113987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/17/2021] [Accepted: 02/19/2021] [Indexed: 11/17/2022]
Abstract
This paper describes a sensitive and selective method for the simultaneous determination of bispinacolato diboron (B2Pin2) and tetrahydroxy diboron (B2(OH)4) in a small molecule Active Pharmaceutical Ingredient (API) by gas chromatography - mass spectrometry (GC-MS). These reagents are commonly used in the Suzuki-Miyaura coupling reaction and analytical methods are typically required to monitor these reagents at the Threshold of Toxicological Concern (TTC) level since they are Class II impurities based on ICH M7 guideline. In this study, hexylene glycol was added to derivatize B2(OH)4 before direct injection to the GC-MS, and B2Pin2 is analyzed in the same analysis without derivatization. Under the optimal conditions, the limit of detection (LOD) and the limit of quantitation (LOQ) were 65 ng/mL and 130 ng/mL respectively. Average recoveries of the analytes spiked in the drug substance at the 13 ppm (LOQ) and 104 ppm (TTC) levels were in the range of 77.9 %-85.3 % with relative standard deviations (RSDs) of 2.8 %-6.8 %. The linearity for both analytes was established in the range of 0.130-2.080 μg/mL with a correlation coefficient (r) of 0.9998 and the derivatization reaction is very rapid and complete within 15 minutes.
Collapse
Affiliation(s)
- Armen Shamirian
- Gilead Sciences, 333 Lakeside Drive, Foster city, CA, 94404, United States
| | - Christopher Foti
- Gilead Sciences, 333 Lakeside Drive, Foster city, CA, 94404, United States.
| | - Scott S Mitchell
- Gilead Sciences, 333 Lakeside Drive, Foster city, CA, 94404, United States
| |
Collapse
|
8
|
Snodin DJ. A Primer for Pharmaceutical Process Development Chemists and Analysts in Relation to Impurities Perceived to Be Mutagenic or “Genotoxic”. Org Process Res Dev 2020. [DOI: 10.1021/acs.oprd.0c00343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- David J. Snodin
- Xiphora Biopharma Consulting, 9 Richmond Apartments, Redland Court Road, Bristol BS6 7BG, U.K
| |
Collapse
|
9
|
Easterling LF, Yerabolu R, Kumar R, Alzarieni KZ, Kenttämaa HI. Factors Affecting the Limit of Detection for HPLC/Tandem Mass Spectrometry Experiments Based on Gas-Phase Ion–Molecule Reactions. Anal Chem 2020; 92:7471-7477. [PMID: 32352782 DOI: 10.1021/acs.analchem.9b05369] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Leah F. Easterling
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ravikiran Yerabolu
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Rashmi Kumar
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Kawthar Z. Alzarieni
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Hilkka I. Kenttämaa
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
10
|
Jin B, Guo K, Zhang T, Li T, Ma C. Simultaneous Determination of 15 Sulfonate Ester Impurities in Phentolamine Mesylate, Amlodipine Besylate, and Tosufloxacin Tosylate by LC-APCI-MS/MS. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2019; 2019:4059765. [PMID: 31687249 PMCID: PMC6800909 DOI: 10.1155/2019/4059765] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/11/2019] [Accepted: 08/21/2019] [Indexed: 06/10/2023]
Abstract
Sulfonate esters have been recognized as potential genotoxic impurities (PGIs) in pharmaceuticals. An LC-MS/MS method was developed and validated for the simultaneous determination of 15 sulfonate esters, including methyl, ethyl, propyl, isopropyl, and n-butyl esters of methanesulfonate, benzenesulfonate, and p-toluenesulfonate in drug products. The method utilized atmospheric pressure chemical ionization (APCI) in multiple reaction monitoring (MRM) mode for the quantitation of impurities. The method employed an ODS column as the stationary phase and water-acetonitrile as the solvents for gradient elution without derivatization steps. The method was specific, linear, accurate, precise, and robust. Recoveries of the sulfonic esters from three drug matrices were observed in the range of 91.6∼109.0% with an RSD of not greater than 17.9% at the concentration of the LOQ and in the range of 90.4%∼105.2% with an RSD of not greater than 7.1% at the concentration of 50 ng/mL for the methanesulfonates and 10 ng/mL for the benzenesulfonates and p-toluenesulfonates. The LOD was not greater than 15 ng/mL, 2 ng/mL, and 1 ng/mL for the methanesulfonate, benzenesulfonate, and p-toluenesulfonate esters, respectively. This method was sufficiently sensitive to detect the 15 PGIs in the phentolamine mesylate tablet, amlodipine besylate tablet, and tosufloxacin tosylate tablet. This analytical method is a direct, specific, rapid, and accurate quality control tool for the determination of the 15 sulfonate esters that are most likely to exist in drug products.
Collapse
Affiliation(s)
- Bo Jin
- Institute of Material Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Kaijing Guo
- Institute of Material Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Tingting Zhang
- Institute of Material Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Tong Li
- Institute of Material Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Chen Ma
- Institute of Material Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
11
|
Niyonsaba E, Easton MW, Liu JK, Yu Z, Sheng H, Kong JY, Zhang Z, Easterling LF, Milton J, Kenttämaa HI. Identification of Protonated Primary Carbamates by Using Gas-Phase Ion–Molecule Reactions Followed by Collision-Activated Dissociation in Tandem Mass Spectrometry Experiments. Org Process Res Dev 2019. [DOI: 10.1021/acs.oprd.9b00080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Edouard Niyonsaba
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Mckay W. Easton
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Judy K.Y. Liu
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Zaikuan Yu
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Huaming Sheng
- Department of Analytical Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - John Y. Kong
- Department of Analytical Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Zhoupeng Zhang
- Department of Pharmacokinetics, Pharmacodynamics & Drug Metabolism, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Leah F. Easterling
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jacob Milton
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Hilkka I. Kenttämaa
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
12
|
Jamrógiewicz M, Pieńkowska K. Recent breakthroughs in the stability testing of pharmaceutical compounds. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2018.12.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
13
|
Liu XW, Zhang WP, Han HY, Sun L, Chen DY. Trace determination of mutagenic alkyl toluenesulfonate impurities via derivatization headspace–GC/MS in an active pharmaceutical ingredient of a candidate drug. J Pharm Biomed Anal 2018; 155:104-108. [DOI: 10.1016/j.jpba.2018.03.054] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 03/27/2018] [Accepted: 03/28/2018] [Indexed: 01/06/2023]
|
14
|
Teasdale A. Regulatory Highlights. Org Process Res Dev 2017. [DOI: 10.1021/acs.oprd.7b00372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|