1
|
Zhu Z, Fu H, Zhao Y, Yan Q. Progress in Core-Shell Magnetic Mesoporous Materials for Enriching Post-Translationally Modified Peptides. J Funct Biomater 2024; 15:158. [PMID: 38921532 PMCID: PMC11205187 DOI: 10.3390/jfb15060158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/24/2024] [Accepted: 05/31/2024] [Indexed: 06/27/2024] Open
Abstract
Endogenous peptides, particularly those with post-translational modifications, are increasingly being studied as biomarkers for diagnosing various diseases. However, they are weakly ionizable, have a low abundance in biological samples, and may be interfered with by high levels of proteins, peptides, and other macromolecular impurities, resulting in a high limit of detection and insufficient amounts of post-translationally modified peptides in real biological samples to be examined. Therefore, separation and enrichment are necessary before analyzing these biomarkers using mass spectrometry. Mesoporous materials have regular adjustable pores that can eliminate large proteins and impurities, and their large specific surface area can bind more target peptides, but this may result in the partial loss or destruction of target peptides during centrifugal separation. On the other hand, magnetic mesoporous materials can be used to separate the target using an external magnetic field, which improves the separation efficiency and yield. Core-shell magnetic mesoporous materials are widely utilized for peptide separation and enrichment due to their biocompatibility, efficient enrichment capability, and excellent recoverability. This paper provides a review of the latest progress in core-shell magnetic mesoporous materials for enriching glycopeptides and phosphopeptides and compares their enrichment performance with different types of functionalization methods.
Collapse
Affiliation(s)
- Zhenyu Zhu
- Isotopomics in Chemical Biology (ICB), College of Chemistry & Chemical Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (H.F.); (Y.Z.); (Q.Y.)
- Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Weiyang University Park, Xi’an 710021, China
| | - Hang Fu
- Isotopomics in Chemical Biology (ICB), College of Chemistry & Chemical Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (H.F.); (Y.Z.); (Q.Y.)
| | - Yu Zhao
- Isotopomics in Chemical Biology (ICB), College of Chemistry & Chemical Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (H.F.); (Y.Z.); (Q.Y.)
| | - Qiulin Yan
- Isotopomics in Chemical Biology (ICB), College of Chemistry & Chemical Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (H.F.); (Y.Z.); (Q.Y.)
| |
Collapse
|
2
|
Xu Z, Zhang W, Deng C, Sun N. Zwitterionic mesoporous engineering aids peptide-dependent pattern profiling for identification of different liver diseases. Chem Commun (Camb) 2023; 59:11081-11084. [PMID: 37641812 DOI: 10.1039/d3cc03231k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Liver disease remains a global health challenge, with its incidence steadily increasing worldwide. Herein, zwitterionic mesoporous engineering was developed for the identification of different liver diseases including liver cirrhosis and liver cancer. Based on this engineering, a total of 2633 m/z signals were observed to be enriched. Notably, three key peptides were identified and showed high accuracy and precision for distinguishing the healthy and disease states, propelling the field of nanomedicine toward genuine personalized medicine.
Collapse
Affiliation(s)
- Zixing Xu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, and Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Wantong Zhang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, and Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Chunhui Deng
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, and Department of Chemistry, Fudan University, Shanghai, 200433, China
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Nianrong Sun
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, and Department of Chemistry, Fudan University, Shanghai, 200433, China
- Shanghai Institute of Liver Diseases, Shanghai 200032, China
| |
Collapse
|
3
|
A combination of surface-initiated atom transfer radical polymerization and photo-initiated "thiol-ene" click chemistry: Fabrication of functionalized macroporous adsorption resins for enrichment of glycopeptides. J Chromatogr A 2023; 1689:463774. [PMID: 36630850 DOI: 10.1016/j.chroma.2023.463774] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/06/2023]
Abstract
A hydrophilic adsorbent (Cys@poly(AMA)@MAR) was successfully prepared for the enrichment of N-glycopeptides via surface-initiated atom transfer radical polymerization (SI-ATRP) and photo-initiated "thiol-ene" reaction using monodisperse macroporous adsorbent resin (MAR) as adsorption matrix. Due to the presence of electron-deficient acrylic groups and electron-rich vinyl groups in allyl methacrylate (AMA), both of them can participate in free radical reaction. Therefore, the polymerization time of SI-ATRP was optimized. The resulting poly(AMA)@MAR was modified with l-cysteine (L-Cys) via photo-initiated "thiol-ene" reaction, and the amount of vinyl retained was determined by measuring the adsorption of Cu2+. The Cys@poly(AMA)@MAR pendant brushes with high density of amine and carboxyl groups could capture N-glycopeptides from IgG digest and human serum digest by hydrophilic interaction. The 22 N-glycopeptides were identified from IgG digest and the limit of detection reached 10 fmol. The 319 N-glycosylation sites and 583 N-glycopeptides were identified from 2 μL human serum digest and mapped to 147 glycoproteins. It demonstrates great potential and commercialization prospects for the enrichment of N-glycopeptides.
Collapse
|
4
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2017-2018. MASS SPECTROMETRY REVIEWS 2023; 42:227-431. [PMID: 34719822 DOI: 10.1002/mas.21721] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
This review is the tenth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization mass spectrometry (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2018. Also included are papers that describe methods appropriate to glycan and glycoprotein analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, new methods, matrices, derivatization, MALDI imaging, fragmentation and the use of arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Most of the applications are presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and highlights the impact that MALDI imaging is having across a range of diciplines. MALDI is still an ideal technique for carbohydrate analysis and advancements in the technique and the range of applications continue steady progress.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
| |
Collapse
|
5
|
Recent advances in metal oxide affinity chromatography materials for phosphoproteomics. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
6
|
Adsorptive carbon-based materials for biomedical applications. ENGINEERED REGENERATION 2022. [DOI: 10.1016/j.engreg.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
7
|
Materials, workflows and applications of IMAC for phosphoproteome profiling in the recent decade: A review. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Jiang-Long DU, Meng-Yao FU, Ying-Hua YAN, Chuan-Fan DING. A complementary bimetal synergized with polyethyleneimine functionalized affinity chromatography nanosphere for enrichment of global phosphopeptides. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1016/j.cjac.2021.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
9
|
Synthesis of a metal oxide affinity chromatography magnetic mesoporous nanomaterial and development of a one-step selective phosphopeptide enrichment strategy for analysis of phosphorylated proteins. Anal Chim Acta 2022; 1195:339430. [DOI: 10.1016/j.aca.2022.339430] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/05/2021] [Accepted: 01/01/2022] [Indexed: 11/23/2022]
|
10
|
Kumari M, Tetala KKR. A review on recent advances in the enrichment of glycopeptides and glycoproteins by liquid chromatographic methods: 2016-Present. Electrophoresis 2021; 43:388-402. [PMID: 34757643 DOI: 10.1002/elps.202100172] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 11/05/2021] [Accepted: 11/06/2021] [Indexed: 01/06/2023]
Abstract
Among various protein post-translational modifications (PTMs), glycosylation has received special attention due to its immense role in molecular interactions, cellular signal transduction, immune response, etc. Aberration in glycan moieties of a glycoprotein is associated with cancer, diabetes, and bacterial and viral infections. In biofluids (plasma, saliva, urine, milk, etc.), glycoproteins are low in abundance and are masked by the presence of high abundant proteins. Hence, prior to their identification using mass spectrometry methods, liquid chromatography (LC)-based approaches were widely used. A general enrichment strategy involves a protein digestion step, followed by LC-based enrichment and desorption of glycopeptides, and enzymatic excision of the glycans. The focus of this review article is to highlight the articles published since 2016 that dealt with different LC-based approaches for glycopeptide and glycoprotein enrichment. The preparation of stationary phases, their surface activation, and ligand immobilization strategies have been discussed in detail. Finally, the major developments and future trends in the field have been summarized.
Collapse
Affiliation(s)
- Mona Kumari
- Centre for Bioseparation Technology (CBST), Vellore Institute of Technology (VIT), Vellore, Tamilnadu, India
| | - Kishore K R Tetala
- Centre for Bioseparation Technology (CBST), Vellore Institute of Technology (VIT), Vellore, Tamilnadu, India
| |
Collapse
|
11
|
Zhang G, Ali MM, Feng X, Zhou J, Hu L. Mesoporous molecularly imprinted materials: From preparation to biorecognition and analysis. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116426] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
12
|
Tacias-Pascacio VG, Morellon-Sterling R, Castañeda-Valbuena D, Berenguer-Murcia Á, Kamli MR, Tavano O, Fernandez-Lafuente R. Immobilization of papain: A review. Int J Biol Macromol 2021; 188:94-113. [PMID: 34375660 DOI: 10.1016/j.ijbiomac.2021.08.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/22/2021] [Accepted: 08/03/2021] [Indexed: 12/13/2022]
Abstract
Papain is a cysteine protease from papaya, with many applications due to its broad specificity. This paper reviews for first time the immobilization of papain on different supports (organic, inorganic or hybrid supports) presenting some of the features of the utilized immobilization strategies (e.g., epoxide, glutaraldehyde, genipin, glyoxyl for covalent immobilization). Special focus is placed on the preparation of magnetic biocatalysts, which will permit the simple recovery of the biocatalyst even if the medium is a suspension. Problems specific to the immobilization of proteases (e.g., steric problems when hydrolyzing large proteins) are also defined. The benefits of a proper immobilization (enzyme stabilization, widening of the operation window) are discussed, together with some artifacts that may suggest an enzyme stabilization that may be unrelated to enzyme rigidification.
Collapse
Affiliation(s)
- Veymar G Tacias-Pascacio
- Facultad de Ciencias de la Nutrición y Alimentos, Universidad de Ciencias y Artes de Chiapas, Lib. Norte Pte. 1150, 29039 Tuxtla Gutiérrez, Chiapas, Mexico; Tecnológico Nacional de México/Instituto Tecnológico de Tuxtla Gutiérrez, Carretera Panamericana Km. 1080, 29050 Tuxtla Gutiérrez, Chiapas, Mexico
| | - Roberto Morellon-Sterling
- Departamento de Biocatálisis. ICP-CSIC./Marie Curie 2, Campus UAM-CSIC Cantoblanco, 28049 Madrid. Spain; Student of Departamento de Biología Molecular, Universidad Autónoma de Madrid, Darwin 2, Campus UAM-CSIC, Cantoblanco, 28049 Madrid. Spain
| | - Daniel Castañeda-Valbuena
- Tecnológico Nacional de México/Instituto Tecnológico de Tuxtla Gutiérrez, Carretera Panamericana Km. 1080, 29050 Tuxtla Gutiérrez, Chiapas, Mexico
| | - Ángel Berenguer-Murcia
- Departamento de Química Inorgánica e Instituto Universitario de Materiales, Universidad de Alicante, Alicante, Spain
| | - Majid Rasool Kamli
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddad 21589, Saudi Arabia; Center of excellence in Bionanoscience Research, King Abdulaziz University, Jeddad 21589, Saudi Arabia
| | - Olga Tavano
- Faculty of Nutrition, Alfenas Federal Univ., 700 Gabriel Monteiro da Silva St, Alfenas, MG 37130-000, Brazil
| | - Roberto Fernandez-Lafuente
- Departamento de Biocatálisis. ICP-CSIC./Marie Curie 2, Campus UAM-CSIC Cantoblanco, 28049 Madrid. Spain; Center of Excellence in Bionanoscience Research, External advisory board, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
13
|
Fang X, Liu X, Sun N, Deng C. Enhanced specificity of bimetallic ions via mesoporous confinement for phosphopeptides in human saliva. Talanta 2021; 233:122587. [PMID: 34215077 DOI: 10.1016/j.talanta.2021.122587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/26/2021] [Accepted: 06/03/2021] [Indexed: 11/17/2022]
Abstract
Phosphopeptides were of great significance in disease diagnosis and monitoring its dynamic changes. In this article, we proposed a more efficient method to synthesize a kind of bimetallic mesoporous silica nanomaterials (Fe3O4@mSiO2-PO3-Ti4+/Zr4+) and applied it to the analysis of phosphopeptides in human saliva samples based on IMAC technology. The chelation group was introduced into mesopores at the same time as the formation of mesoporous silica which significantly reduced the synthesis procedure and improved the synthesis efficiency. The as-prepared materials showed great sensitivity, selectivity and size-exclusion performance for phosphopeptides in standard β-casein digests. More importantly, the materials identified 85 phosphopeptides in disease saliva samples which provided a candidate choice in future clinical examination.
Collapse
Affiliation(s)
- Xiaowei Fang
- Department of Chemistry, Fudan University, Shanghai, 200438, China
| | - Xingang Liu
- Center of Analysis and Measurement, Fudan University, Shanghai, 200438, China.
| | - Nianrong Sun
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Chunhui Deng
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China; Department of Chemistry, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
14
|
Li X, Ma Y, Zuo Y, Liu Z, Wang Q, Ren D, He Y, Cong H, Wu L, Zhou H. The efficient enrichment of marine peptides from the protein hydrolysate of the marine worm Urechis unicinctus by using mesoporous materials MCM-41, SBA-15 and CMK-3. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:2405-2414. [PMID: 33997883 DOI: 10.1039/d1ay00616a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Peptides found in marine life have various specific activities due to their special growth environment, and there is increasing interest in the isolation and concentration of these biofunctional compounds. In this study, the protein hydrolysate of the marine worm Urechis unicinctus was prepared by enzymolysis and enriched by using mesoporous materials of silica MCM-41 and SBA-15 and carbon CMK-3. The differences in pore structures and elemental composition of these materials lead to differences in surface area and hydrophobicity. The adsorption capacities of peptides were 459.5 mg g-1, 431.3 mg g-1, and 626.3 mg g-1 for MCM-41, SBA-15 and CMK-3, respectively. Adsorption kinetics studies showed that the pseudo-second-order model fit the adsorption process better, where both external mass transfer and intraparticle diffusion affected the adsorption, while the Langmuir model better fit the adsorption of peptides on MCM-41 and SBA-15 and the Freundlich model was more suitable for CMK-3. Aqueous acetonitrile (ACN, 50/50, v/v) yielded the most extracted peptides. MALDI-TOF mass spectrometry of the extracted peptides showed that the three mesoporous materials, especially the CMK-3, gave good enrichment results. This study demonstrates the great potential of mesoporous materials in the enrichment of marine biofunctional peptides.
Collapse
Affiliation(s)
- Xinwei Li
- College of Food Science and Engineering, Dalian Ocean University, Dalian, Liaoning 116023, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Covalent Immobilization of
Candida antarctica
Lipase B on Functionalized Hollow Mesoporous Silica Nanoparticles. ChemistrySelect 2021. [DOI: 10.1002/slct.202100713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
16
|
|
17
|
Chen J, Gong Z, Tang W, Row KH, Qiu H. Carbon dots in sample preparation and chromatographic separation: Recent advances and future prospects. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2020.116135] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
18
|
Hydrophilic polydopamine-derived mesoporous channels for loading Ti(IV) ions for salivary phosphoproteome research. Anal Chim Acta 2020; 1146:53-60. [PMID: 33461719 DOI: 10.1016/j.aca.2020.12.038] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/21/2020] [Accepted: 12/18/2020] [Indexed: 11/20/2022]
Abstract
Salivary phosphoproteome holds great promise in clinic diagnosis. For profiling of salivary phosphoproteome, it is essential to develop efficient enrichment methods prior to mass spectrum (MS). Among developed enrichment strategies, immobilized metal ions affinity chromatography (IMAC) has exhibited outstanding performance. In this work, we report a coherent approach where polydopamine (PDA) is first utilized to form mesoporous structure through soft templating method, then chelated with Ti4+ to construct hydrophilic polydopamine-derived magnetic mesoporous nanocomposite (denoted Fe3O4@mPDA@Ti4+). In virtue of the merits including ordered mesoporous channels, appropriate superparamagnetism, and abundant Ti4+, the enrichment strategy based on Fe3O4@mPDA@Ti4+ combined with MS is employed for accurate identification of phosphopeptides in β-casein digest and human saliva. As expected, Fe3O4@mPDA@Ti4+ revealed a great selectivity (1:200) and a low detection limit (0.1 fmol μL-1) toward phosphopeptides. More importantly, the further successful capture of phosphopeptides from human saliva indicated the prominent potential of this method for seeking phosphopeptide biomarkers in further analysis.
Collapse
|
19
|
Saleem S, Sajid MS, Hussain D, Fatima B, Jabeen F, Najam-ul-Haq M, Saeed A. Highly porous terpolymer-ZIF8@BA MOF composite for identification of mono- and multi-glycosylated peptides/proteins using MS-based bottom-up approach. Mikrochim Acta 2020; 187:555. [DOI: 10.1007/s00604-020-04532-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 08/24/2020] [Indexed: 11/30/2022]
|
20
|
Fontanals N, Borrull F, Marcé RM. Overview of mixed-mode ion-exchange materials in the extraction of organic compounds. Anal Chim Acta 2020; 1117:89-107. [DOI: 10.1016/j.aca.2020.03.053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 12/18/2022]
|
21
|
Peng J, Zhang H, Niu H, Wu R. Peptidomic analyses: The progress in enrichment and identification of endogenous peptides. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115835] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
22
|
Feng J, Loussala HM, Han S, Ji X, Li C, Sun M. Recent advances of ionic liquids in sample preparation. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115833] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
23
|
Yu Q, Zhao L, Guo C, Yan B, Su G. Regulating Protein Corona Formation and Dynamic Protein Exchange by Controlling Nanoparticle Hydrophobicity. Front Bioeng Biotechnol 2020; 8:210. [PMID: 32266237 PMCID: PMC7100549 DOI: 10.3389/fbioe.2020.00210] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 03/03/2020] [Indexed: 01/19/2023] Open
Abstract
Physiochemical properties of engineered nanoparticles (NPs) play a vital role in nano-bio interactions, which are critical for nanotoxicity and nanomedicine research. To understand the effects of NP hydrophobicity on the formation of the protein corona, we synthesized four gold NPs with a continuous change in hydrophobicity ranging from -2.6 to 2.4. Hydrophobic NPs adsorbed 2.1-fold proteins compared to hydrophilic ones. Proteins with small molecular weights (<50 kDa) and negatively charge (PI < 7) constituted the majority of the protein corona, especially for hydrophobic NPs. Moreover, proteins preferred binding to hydrophilic NPs (vitronectin and antithrombin III), hydrophobic NPs (serum albumin and hemoglobin fetal subunit beta), and medium hydrophobic NPs (talin 1 and prothrombin) were identified. Besides, proteins such as apolipoprotein bound to all NPs, did not show surface preference. We also found that there was a dynamic exchange between hard protein corona and solution proteins. Because of such dynamic exchanges, protein-bound NPs could expose their surface in biological systems. Hydrophilic NPs exhibited higher protein exchange rate than hydrophobic NPs. Above understandings have improved our capabilities to modulate protein corona formation by controlling surface chemistry of NPs. These will also help modulate nanotoxicity and develop better nanomedcines.
Collapse
Affiliation(s)
- Qianhui Yu
- School of Environmental Science and Engineering, Shandong University, Qingdao, China
| | - Linxia Zhao
- School of Pharmacy, Nantong University, Nantong, China
| | - Congcong Guo
- School of Environmental Science and Engineering, Shandong University, Qingdao, China
| | - Bing Yan
- School of Environmental Science and Engineering, Shandong University, Qingdao, China
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Institute of Environmental Research at Greater Bay, Ministry of Education, Guangzhou University, Guangzhou, China
| | - Gaoxing Su
- School of Pharmacy, Nantong University, Nantong, China
| |
Collapse
|
24
|
|
25
|
Hussain D, Raza Naqvi ST, Ashiq MN, Najam-ul-Haq M. Analytical sample preparation by electrospun solid phase microextraction sorbents. Talanta 2020; 208:120413. [DOI: 10.1016/j.talanta.2019.120413] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 09/28/2019] [Accepted: 09/30/2019] [Indexed: 12/15/2022]
|
26
|
One-pot preparation of hydrophilic citric acid-magnetic nanoparticles for identification of glycopeptides in human saliva. Talanta 2020; 206:120178. [DOI: 10.1016/j.talanta.2019.120178] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 07/07/2019] [Accepted: 07/24/2019] [Indexed: 12/22/2022]
|
27
|
A polymer monolith composed of a perovskite and cucurbit[6]uril hybrid for highly selective enrichment of phosphopeptides prior to mass spectrometric analysis. Mikrochim Acta 2019; 187:68. [PMID: 31853651 DOI: 10.1007/s00604-019-4054-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 11/28/2019] [Indexed: 12/21/2022]
Abstract
A hybrid monolith was prepared from perovskite and cucurbit[6]uril [poly(hydroxyethyl methacrylate-pentaerythritol triacrylate) monolith] for the enrichment of phosphopeptides. By coupling with mass spectrometry, three goals were simultaneously realized, viz. (a) selective enrichment of phosphopeptides from non-phosphopeptides, (b) identification of mono- and multi-phosphopeptides, and (c) recognition of tyrosine phosphopeptides. The perovskite introduced into the monolith warrants high selectivity for phosphopeptides even at a high (10,000:1) ratio of non-phosphopeptides to phosphopeptides, and and enables identification of eight mono- and multi-phosphopeptides from standard β-casein tryptic digests. Tyrosine phosphopeptides were specifically detected via the recognition capability of cucurbit[6]uril integrated into the monolith. The method has remarkably specific enrichment capacity for phosphopeptides from samples including human serum, nonfat milk, and human acute myelocytic leukemia cell lysate. Graphical abstractSchematic representation of a monolith integrated with perovskite and cucurbit[6]uril. The monolithic column was coupled with mass spectrometry and applied to the enrichment of phosphopeptides. The method has remarkably specific enrichment capacity for phosphopeptides from complex biological samples.
Collapse
|
28
|
Li Y, Sun N, Hu X, Li Y, Deng C. Recent advances in nanoporous materials as sample preparation techniques for peptidome research. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.115658] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
29
|
Li Y, Liu L, Wu H, Deng C. Magnetic mesoporous silica nanocomposites with binary metal oxides core-shell structure for the selective enrichment of endogenous phosphopeptides from human saliva. Anal Chim Acta 2019; 1079:111-119. [DOI: 10.1016/j.aca.2019.06.045] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/06/2019] [Accepted: 06/24/2019] [Indexed: 10/26/2022]
|
30
|
Capriotti AL, Antonelli M, Antonioli D, Cavaliere C, Chiarcos R, Gianotti V, Piovesana S, Sparnacci K, Laus M, Laganà A. Effect of shell structure of Ti-immobilized metal ion affinity chromatography core-shell magnetic particles for phosphopeptide enrichment. Sci Rep 2019; 9:15782. [PMID: 31673007 PMCID: PMC6823385 DOI: 10.1038/s41598-019-51995-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 09/28/2019] [Indexed: 11/09/2022] Open
Abstract
Magnetic materials in sample preparation for shotgun phosphoproteomics offer several advantages over conventional systems, as the enrichment can be achieved directly in solution, but they still suffer from some drawbacks, due to limited stability and selectivity, which is supposed to be affected by the hydrophilicity of the polymeric supports used for cation immobilization. The paper describes the development of an improved magnetic material with increased stability, thanks to a two-step covering of the magnetic core, for the enrichment of phosphopeptides in biological samples. Four materials were prepared featuring a polymeric shell with tunable hydrophilicity, obtained by "grafting from" polymerization of glycidyl methacrylate with 0-8.3% of polyethylene glycol methacrylate (PEGMA), the latter used to modulate the hydrophilicity of the material surface. Finally, the materials were functionalized with iminodiacetic acid for Ti4+ ion immobilization. The materials were analyzed for their composition by a combination of CHN elemental analysis and thermogravimetric analysis, also hyphenated to gas chromatography and mass spectrometric detection. Surface characteristics were evaluated by water contact angle measurements, scanning electron microscopy and energy dispersive X-ray spectrometry. These materials were applied to the enrichment of phosphopeptides from yeast protein digests. Peptides were identified by proteomics techniques using nano-high performance liquid chromatography coupled to mass spectrometry and bioinformatics. Qualitatively the peptides identified by the four systems were comparable, with 1606-1693 phosphopeptide identifications and a selectivity of 47-54% for all materials. The physico-chemical features of the identified peptides were also the same for the four materials. In particular, the grand average of hydropathy index values indicated that the enriched phosphopeptides were hydrophilic (ca. 90%), and only some co-enriched non-phosphorylated peptides were hydrophobic (21-28%), regardless of the material used for enrichment. Peptides had a pI ≤ 7, which indicated a well-known bias for acidic peptides binding, attributed to the interaction with the metal center itself. The results indicated that the enrichment of phosphopeptides and the co-enrichment of non-phosphorylated peptides is mainly driven by interactions with Ti4+ and does not depend on the amount of PEGMA chains in the polymer shell.
Collapse
Affiliation(s)
- Anna Laura Capriotti
- Department of Chemistry, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Michela Antonelli
- Department of Chemistry, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Diego Antonioli
- Department of Science and Technological Innovation, Università degli Studi del Piemonte Orientale, Alessandria, Italy
- INSTM, UdR Alessandria, Viale Teresa Michel 11, 15121, Alessandria, Italy
| | - Chiara Cavaliere
- Department of Chemistry, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Riccardo Chiarcos
- Department of Science and Technological Innovation, Università degli Studi del Piemonte Orientale, Alessandria, Italy
| | - Valentina Gianotti
- Department of Science and Technological Innovation, Università degli Studi del Piemonte Orientale, Alessandria, Italy
- INSTM, UdR Alessandria, Viale Teresa Michel 11, 15121, Alessandria, Italy
| | - Susy Piovesana
- Department of Chemistry, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| | - Katia Sparnacci
- Department of Science and Technological Innovation, Università degli Studi del Piemonte Orientale, Alessandria, Italy
- INSTM, UdR Alessandria, Viale Teresa Michel 11, 15121, Alessandria, Italy
| | - Michele Laus
- Department of Science and Technological Innovation, Università degli Studi del Piemonte Orientale, Alessandria, Italy
- INSTM, UdR Alessandria, Viale Teresa Michel 11, 15121, Alessandria, Italy
| | - Aldo Laganà
- Department of Chemistry, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185, Rome, Italy
- CNR NANOTEC, Campus Ecotekne, University of Salento, Via Monteroni, 73100, Lecce, Italy
| |
Collapse
|
31
|
Fang X, Yao J, Hu X, Li Y, Yan G, Wu H, Deng C. Magnetic mesoporous silica of loading copper metal ions for enrichment and LC-MS/MS analysis of salivary endogenous peptides. Talanta 2019; 207:120313. [PMID: 31594600 DOI: 10.1016/j.talanta.2019.120313] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/26/2019] [Accepted: 09/02/2019] [Indexed: 02/03/2023]
Abstract
Peptidomics research is of great significance for discovering potential biomarkers and monitoring human diseases. As a kind of common clinical biofluid, saliva known for its noninvasive collection and easy accessibility has been widely used in peptidomics research. In this article, we combined immobilized metal ions affinity chromotography (IMAC) with mesoporous material and proposed the copper ion doped magnetic mesoporous silica material (denoted as Fe3O4@mSiO2-Cu2+) which had a large surface area of 221 m2 g-1 and pore volume of 0.20 cm3 g-1. By immobilizing copper ions onto the mesopore walls, the standard peptide Angiotensin II could be identified in an extremely low concentration of 0.1 fmol μl-1 and in a mass ratio of 1:500 (Angiotensin II:BSA, m/m), which indicated significant sensitivity and a great size-exclusive ability. In addition, the introduction of polydopamine (PDA) made Fe3O4@mSiO2-Cu2+ more hydrophilic and biocompatible which could improve the profiling of endogenous peptides in bio-sample. Finally, 131 endogenous peptides were identified in human saliva after enrichment with Fe3O4@mSiO2-Cu2+. Therefore, Fe3O4@mSiO2-Cu2+ nanoparticles provided a promising candidate protocol for biomarker discovery.
Collapse
Affiliation(s)
- Xiaowei Fang
- Department of Chemistry and The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200438, China
| | - Jizong Yao
- Department of Chemistry and The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200438, China
| | - Xufang Hu
- Department of Chemistry and The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200438, China
| | - Yan Li
- School of Pharmacy, Fudan University, Shanghai, 200438, China
| | - Guoquan Yan
- Institutes of Biomedical Sciences and Collaborative Innovation Center of Genetics and Development, Fudan University, Shanghai, 200438, China
| | - Hao Wu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai, 200438, China.
| | - Chunhui Deng
- Department of Chemistry and The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200438, China; Institutes of Biomedical Sciences and Collaborative Innovation Center of Genetics and Development, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
32
|
Wang Z, Wang J, Sun N, Deng C. A promising nanoprobe based on hydrophilic interaction liquid chromatography and immobilized metal affinity chromatography for capture of glycopeptides and phosphopeptides. Anal Chim Acta 2019; 1067:1-10. [DOI: 10.1016/j.aca.2019.04.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/05/2019] [Accepted: 04/07/2019] [Indexed: 01/06/2023]
|
33
|
Lan H, Zhang W, Smått JH, Koivula RT, Hartonen K, Riekkola ML. Selective extraction of aliphatic amines by functionalized mesoporous silica-coated solid phase microextraction Arrow. Mikrochim Acta 2019; 186:412. [PMID: 31187285 PMCID: PMC6560004 DOI: 10.1007/s00604-019-3523-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 05/19/2019] [Indexed: 02/02/2023]
Abstract
Mesoporous silica-coated solid phase microextraction (SPME) Arrow systems were developed for capturing of low-molecular-weight aliphatic amines (LMWAAs) from complicated sample matrices. Specifically, silicas of type MCM-41, SBA-15 and KIT-6 were chosen as substrates to afford size-exclusion selectivity. They possess ordered multidimensional pore-channel structures and mesopore sizes between 3.8 and 8.2 nm. Their surface acidity was enhanced by grafting them with a layer of titanium hydrogenphosphate (-TP). This enhanced the chemical selectivity for basic LMWAAs. The siliceous coatings increased the extraction of ethylamine, diethylamine (DEA) and triethylamine (TEA) by factors of 18.6–102.5, 4.8–10.8 and 2.6–4.0, respectively, when compared to the commercial SPME Arrow with polydimethylsiloxane/divinylbenzene coating. Among them, the MCM-41 and MCM-41-TP coated SPME Arrows demonstrated exceptional selectivity towards LMWAAs that were quantified by gas chromatography-mass spectrometry (GC-MS). The total peak area ratios of LMWAAs/ten competing compounds were 25.4 and 36.3, respectively. The extraction equilibrium was reached within 20–30 min. The MCM-41 and MCM-41-TP derived SPME Arrows gave very similar results (18.4 ± 2.1–376 ± 12 ng g−1 to DEA and TEA) when applied to urban mushroom samples. SPME Arrow with MCM-41 coatings followed by GC-MS was applied also to the analysis of atmospheric air and urine samples resulting in high selectivity due to the size and mesoporous structure of the functionalized silica, and its chemical interactions with the LMWAAs. Scheme of synthesis of the MCM-41 silicas, and the preparation of solid phase microextraction Arrow coatings. They were employed for selective capturing of aliphatic amines from complex sample matrices, followed by gas chromatography-mass spectrometry. ![]()
Collapse
Affiliation(s)
- Hangzhen Lan
- Department of Chemistry, University of Helsinki, P.O. Box 55, 00014, Helsinki, Finland.,Institute for Atmospheric and Earth System Research, University of Helsinki, P.O. Box 64, 00014, Helsinki, Finland
| | - Wenzhong Zhang
- Department of Chemistry, University of Helsinki, P.O. Box 55, 00014, Helsinki, Finland
| | - Jan-Henrik Smått
- Laboratory of Physical Chemistry, Åbo Akademi University, Porthansgatan 3-5, 20500, Turku, Finland
| | - Risto T Koivula
- Department of Chemistry, University of Helsinki, P.O. Box 55, 00014, Helsinki, Finland
| | - Kari Hartonen
- Department of Chemistry, University of Helsinki, P.O. Box 55, 00014, Helsinki, Finland.,Institute for Atmospheric and Earth System Research, University of Helsinki, P.O. Box 64, 00014, Helsinki, Finland
| | - Marja-Liisa Riekkola
- Department of Chemistry, University of Helsinki, P.O. Box 55, 00014, Helsinki, Finland. .,Institute for Atmospheric and Earth System Research, University of Helsinki, P.O. Box 64, 00014, Helsinki, Finland.
| |
Collapse
|
34
|
Sun N, Wang Z, Wang J, Chen H, Wu H, Shen S, Deng C. Hydrophilic tripeptide combined with magnetic titania as a multipurpose platform for universal enrichment of phospho- and glycopeptides. J Chromatogr A 2019; 1595:1-10. [DOI: 10.1016/j.chroma.2019.02.039] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/14/2019] [Accepted: 02/18/2019] [Indexed: 12/11/2022]
|
35
|
Sun N, Wu H, Chen H, Shen X, Deng C. Advances in hydrophilic nanomaterials for glycoproteomics. Chem Commun (Camb) 2019; 55:10359-10375. [PMID: 31414669 DOI: 10.1039/c9cc04124a] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Owing to the formidable challenge posed by microheterogeneities in glycosylation sites, macroheterogeneity of the modification number of glycans, and low abundance and ionization efficiency of glycosylation, the crucial premise for conducting in-depth profiling of the glycoproteome is to develop highly efficient technology for separation and enrichment. The appearance of hydrophilic interaction chromatography (HILIC) has considerably accelerated the progress in glycoproteomics. In particular, additional hydrophilic nanomaterials have been developed for glycoproteomics research in the recent years. In this review, we mainly summarize the recent progresses made in the design and synthesis of different hydrophilic nanomaterials, as well as their applications in glycoproteomics, according to the classification of the main hydrophilic functional molecules on the surface. Further, we briefly illustrate the potential retention mechanism of the HILIC mode and discuss the limits and barriers of hydrophilic nanomaterials in glycoproteomics, as well as propose their possible development trends in the future.
Collapse
Affiliation(s)
- Nianrong Sun
- Department of Gastroenterology, Zhongshan Hospital of Fudan University, Shanghai 200032, China.
| | | | | | | | | |
Collapse
|
36
|
Fabrication of hydrophilic multilayer magnetic probe for salivary glycopeptidome analysis. J Chromatogr A 2018; 1587:24-33. [PMID: 30502035 DOI: 10.1016/j.chroma.2018.11.040] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/14/2018] [Accepted: 11/20/2018] [Indexed: 12/23/2022]
Abstract
Variations in salivary components are closely associated with the predisposition and state of disease, the abnormal changes of salivary glycopeptidome are usually discovered as perilous singals of serious disease. Therefore, the monitoring and analyzing of salivary glycopeptidome are of even more overriding importance. In this work, a low-cost layer-by-layer assembly strategy was adopted to fabricate a hydrophilic multilayer magnetic probe (dubbed Mag-m-G6P) for salivary glycopeptidome analysis. The successful construction of multilayer structure not only guaranteed the good dispersal of probe by protecting magnetic core from itself aggregation tendency, but also endowed the probe with multiple advantages including the good hydrophilicity, uniform mesopore size and strong magnetic responsiveness, etc. As expected, with the optimized experimental conditions, the multifunctional probe showed high enrichemnt sensitivity, unbiased enrichment ability, excellent size-exclusion ability and reusability and so on in the process of standard sample analysis. At last, the Mag-m-G6P was successfully applied to salivary glycopeptidome analysis on further combination with LC-MS/MS analysis, a total of 53 endogenous glycopeptides were identified from human saliva.
Collapse
|
37
|
Zhang H, Li X, Yao Y, Ma S, Liu Z, Ou J, Wei Y, Ye M. Sol-gel preparation of titanium (IV)-immobilized hierarchically porous organosilica hybrid monoliths. Anal Chim Acta 2018; 1046:199-207. [PMID: 30482300 DOI: 10.1016/j.aca.2018.09.066] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 09/26/2018] [Accepted: 09/26/2018] [Indexed: 11/17/2022]
Abstract
Hierarchically porous monoliths as a key feature of biological materials have been applied in enrichment and separation. In this work, a metal immobilized hierarchically porous organosilica hybrid monolith was synthesized by hydrolysis and condensation of tetraethoxysilane (TEOS) and diethoxyphosphorylethyl-triethoxysilane (DPTS) under alkaline environment. Phosphonate ester groups were firstly introduced by the employment of DPTS as functional monomer, and then acidified to phosphonic acids. The surface area of optimal monolith could reach to 1170 m2/g, which simultaneously contained micropores and mesopores (4 nm) obtained from nitrogen sorption measurement. Meanwhile, mercury intrusion porosimetry (MIP) further demonstrated that macropores (1-3 μm) existed in monoliths. Followed by chelating with titanium ion (Ti4+), the hierarchically porous organosilica hybrid monoliths could be applied as IMAC materials. This synthesized process was easy-operating and time-saving, and avoided the tedious and complex process of traditional Ti4+-IMAC materials. Furthermore, the Ti4+-IMAC monoliths exhibited high adsorption capacity for pyridoxal 5'-phosphate (82.6 mg/g). The 3282 unique phosphopeptides could be identified from 100 μg of HeLa digests after enrichment with the monolith, exhibiting excellent enrichment performance of low-abundance phosphopeptides.
Collapse
Affiliation(s)
- Haiyang Zhang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, 116023, China; Key Laboratory of Synthetic and Natural Function Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaowei Li
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yating Yao
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shujuan Ma
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, 116023, China; Key Laboratory of Synthetic and Natural Function Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhen Liu
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junjie Ou
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, 116023, China.
| | - Yinmao Wei
- Key Laboratory of Synthetic and Natural Function Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, China.
| | - Mingliang Ye
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, 116023, China
| |
Collapse
|
38
|
Hydrophilic probe in mesoporous pore for selective enrichment of endogenous glycopeptides in biological samples. Anal Chim Acta 2018; 1024:84-92. [DOI: 10.1016/j.aca.2018.04.030] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 04/13/2018] [Accepted: 04/14/2018] [Indexed: 12/30/2022]
|
39
|
Wu Y, Liu Q, Xie Y, Deng C. Core-shell structured magnetic metal-organic framework composites for highly selective enrichment of endogenous N-linked glycopeptides and phosphopeptides. Talanta 2018; 190:298-312. [PMID: 30172513 DOI: 10.1016/j.talanta.2018.08.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 07/26/2018] [Accepted: 08/03/2018] [Indexed: 01/18/2023]
Abstract
In this work, core-shell structured magnetic metal-organic framework composites denoted as Fe3O4 @MIL-100(Fe) were synthesized by means of a layer-by-layer assembly method selecting Fe as metal center and 1,3,5-benzenetricarboxylic acid as organic ligand. The as-prepared material exhibited outstanding sensitivity (0.1 fmol/μL), good selectivity (1:20 and 1:50 respectively), excellent ability of size-exclusion (1: 500), fine reusability (six cycles) and great stability (two months) in enriching N-linked glycopeptides and phosphopeptides from tryptic digests of standard proteins by combining HILIC and IMAC. Moreover, it was applied into the enrichment of endogenous N-linked glycopeptides and phosphopeptides in human saliva and achieved great results (43 phosphopeptides and 39 N-linked glycopeptides), revealing its promising potential in enrichment of low-abundance endogenous N-linked glycopeptides and phosphopeptides in practical samples.
Collapse
Affiliation(s)
- Yonglei Wu
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Qianjing Liu
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Yiqin Xie
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Chunhui Deng
- Department of Chemistry, The Fifth People's Hospital of Shanghai, Institutes of Biomedical Sciences, Collaborative Innovation Center of Genetics and Development, Fudan University, 220 Handan Road, Yangpu District, Shanghai 200433, China.
| |
Collapse
|