1
|
Azari A, Kamani H, Sarkhosh M, Vatankhah N, Yousefi M, Mahmoudi-Moghaddam H, Razavinasab SA, Masoudi MR, Sadeghi R, Sharifi N, Yaghmaeain K. Nectarine core-derived magnetite biochar for ultrasound-assisted preconcentration of polycyclic aromatic hydrocarbons (PAHs) in tomato paste: A cost-effective and sustainable approach. Food Chem X 2024; 24:101810. [PMID: 39310888 PMCID: PMC11414710 DOI: 10.1016/j.fochx.2024.101810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/30/2024] [Accepted: 09/01/2024] [Indexed: 09/25/2024] Open
Abstract
A novel ultrasound-assisted magnetic solid-phase extraction coupled with gas chromatography-mass spectrometry (US-MSPE-GC/MS) was developed to detect trace amounts of polycyclic aromatic hydrocarbons (PAHs) in tomato paste, using a magnetic biochar adsorbent derived from nectarine cores. The highest extraction recovery was attained under 10 mg adsorbent mass, 30 min extraction time, 9 % (w/v) sodium chloride, and elution with 200 μL of dichloromethane. Under optimum conditions, the method demonstrated excellent linearity (R2 > 0.992) across a wide concentration range (0.01-100 ng g-1) with high sensitivity (LODs: 0.028-0.053 ng g-1, LOQs: 0.094-0.176 ng g-1) and good repeatability (RSDs <5.96 %). The application of the US-MSPE-GC/MS method was tested on four brands of real tomato paste and no PAHs were detected in unspiked samples, indicating no background contamination. This method showed high relative recoveries 88.03-98.52 %) and good reproducibility (<9.19 %.) at two concentration levels, confirming its effectiveness for PAH analysis in real samples.
Collapse
Affiliation(s)
- Ali Azari
- Sirjan School of Medical Sciences, Sirjan, Iran
- National Elites Foundation, Tehran, Iran
| | - Hossein Kamani
- Infectious Diseases and Tropical Medicine Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Maryam Sarkhosh
- Department of Environmental Health Engineering, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Neda Vatankhah
- Department of Pharmaceutical, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmood Yousefi
- Department of Environmental Health Engineering, School of Health, Khoy University of Medical Sciences, Khoy, Iran
| | - Hadi Mahmoudi-Moghaddam
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | | | | | | | | | - Kamyar Yaghmaeain
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Wu M, Ma Q, Li M, Zhou Z, Xu J, Waterhouse GIN, Song N, Zhao WW, Chen G. Online sequential analysis of volatile and semivolatile organic compounds in water matrices by double robotic sample preparations and dual-channel mono and comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry system. J Chromatogr A 2024; 1726:464963. [PMID: 38723493 DOI: 10.1016/j.chroma.2024.464963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 05/23/2024]
Abstract
The monitoring of organic compounds in aquatic matrices poses challenges due to its complexity and time-intensive nature. To address these challenges, we introduce a novel approach utilizing a dual-channel mono (1D) and comprehensive two-dimensional (2D) gas chromatography coupled with time-of-flight mass spectrometry (GC × GC-TOFMS) system, integrated with a robotic pretreatment platform, for online monitoring of both volatile organic compounds (VOCs) and semivolatile organic compounds (SVOCs) in water matrices. Employing the robotic platform, we establish a suite of online liquid-liquid extraction (LLE) pretreatment processes for water samples, marking the first instance of such procedures. Leveraging the automatic headspace (HS) module, dual robotic preparations of HS and LLE are sequentially executed to extract VOCs and SVOCs from water matrices. The GC × GC-TOFMS system is distinguished by its dual-channel analytical column configuration, facilitating sequential analysis of VOCs in GC-TOFMS mode and SVOCs in GC × GC-TOFMS mode. Quantitative detection of 55 target VOCs and 104 SVOCs is achieved in a water sample using the instrument system. Our method demonstrates excellent correlation coefficients ranging from 0.990 to 1.000, method detection limits ranging from 0.08 to 4.78 μg L-1, relative standard deviations below 19.3 %, and recovery rates ranging from 50.0 % to 124.0 %. To validate the online monitoring capabilities of our system, we assess target SVOCs at three different concentration levels over a 3-day period. Most compounds exhibit recovery rates ranging from 70.0 % to 130.0 %. Furthermore, we apply our method to analyze a real water sample, successfully identifying over 100 target and nontarget VOCs/SVOCs, including alcohols, aldehydes, ketones, acids, esters, and phenols. These results highlight the efficacy of the proposed analysis system, capable of conducting two distinct analyses in automatic sequence, thereby enhancing the efficiency and accuracy of organic compound analysis in water matrices.
Collapse
Affiliation(s)
- Manman Wu
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou 510006, PR China
| | - Qin Ma
- Hangzhou Lin'an Ecological Environment Monitoring Station, Hangzhou 311300, China
| | - Mei Li
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for Online Source Apportionment System of Air Pollution, Jinan University, Guangzhou 510632, PR China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 510632, PR China
| | - Zhen Zhou
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for Online Source Apportionment System of Air Pollution, Jinan University, Guangzhou 510632, PR China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 510632, PR China
| | - Jingwei Xu
- Guangdong MS Institute of Scientific Instrument Innovation, Guangzhou 510530, China
| | | | - Ninghui Song
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, PR China.
| | - Wei-Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China.
| | - Guangxu Chen
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
3
|
Bolat S, Demir S, Erer H, Pelit F, Dzingelevičienė R, Ligor T, Buszewski B, Pelit L. MOF-801 based solid phase microextraction fiber for the monitoring of indoor BTEX pollution. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133607. [PMID: 38280318 DOI: 10.1016/j.jhazmat.2024.133607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/18/2024] [Accepted: 01/21/2024] [Indexed: 01/29/2024]
Abstract
Benzene, toluene, ethylbenzene and xylenes (BTEX) are some of the better-known indoor air pollutants, for which effective monitoring is important. The analysis of BTEX can be performed by different type of solid phase microextraction (SPME) fibers. This study presents a proposal for a low cost, convenient and environmentally friendly analytical method for the determination of BTEX in air samples using custom made SPME fibers. In this context, custom made metal organic frameworks (MOF-801) were coated on a stainless-steel wire for SPME fiber preparation. The analysis of BTEX was performed by introducing SPME fiber into an analyte-containing Tedlar bag in steady-state conditions. After the sampling step, the analytes were analyzed using gas chromatography mass spectrometry in selected ion monitoring mode. Parameters that affect the analysis results were optimized; these include desorption temperature and time, preconditioning time, extraction temperature and time, and sample volume. Under optimized conditions, analytical figure of merits of developed method were obtained, including limits of detection (LOD) (0.012 - 0.048 mg/m3), linear ranges (0.041-18 mg/m3), intraday and interday repeatability (2.08 - 4.04% and 3.94 - 6.35%), and fiber to fiber reproducibility (7.51 - 11.17%). The proposed method was successfully applied to real air samples with an acceptable recovery values between 84.5% and 110.9%. The developed method can be applied for the effective monitoring of BTEX.
Collapse
Affiliation(s)
- Serkan Bolat
- Department of Occupational Health and Safety, Vocational School, İzmir University of Economics, İzmir, Türkiye; Department of Chemistry, Faculty of Science, Ege University, İzmir, Türkiye.
| | - Sevde Demir
- Department of Chemistry, Faculty of Science, Eskişehir Osmangazi University, Eskişehir, Türkiye
| | - Hakan Erer
- Department of Chemistry, Faculty of Science, Eskişehir Osmangazi University, Eskişehir, Türkiye
| | - Füsun Pelit
- Department of Chemistry, Faculty of Science, Ege University, İzmir, Türkiye; Translational Pulmonary Research Center (Ege TPRC), Ege University, İzmir, Türkiye
| | - Reda Dzingelevičienė
- Faculty of Health Sciences, Marine Research Institute, Klaipeda University, Klaipeda, Lithuania
| | - Tomasz Ligor
- Department of Environmental Chemistry and Bioanalytics, Nicolaus Copernicus University, Toruń, Poland
| | - Bogusław Buszewski
- Department of Environmental Chemistry and Bioanalytics, Nicolaus Copernicus University, Toruń, Poland; Prof. Jan Czochralski Kuyavian-Pomeranian Science and Technology Center, 4 Krasińskiego str., 87 100 Toruń, Poland
| | - Levent Pelit
- Department of Chemistry, Faculty of Science, Ege University, İzmir, Türkiye; Translational Pulmonary Research Center (Ege TPRC), Ege University, İzmir, Türkiye
| |
Collapse
|
4
|
Dispersive liquid–liquid microextraction-assisted by deep eutectic solvent for the extraction of different chlorophenols from water samples followed by analysis using gas chromatography-electron capture detection. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107608] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
5
|
Riboni N, Amorini M, Bianchi F, Pedrini A, Pinalli R, Dalcanale E, Careri M. Ultra-sensitive solid-phase Microextraction-Gas Chromatography-Mass spectrometry determination of polycyclic aromatic hydrocarbons in snow samples using a deep cavity BenzoQxCavitand. CHEMOSPHERE 2022; 303:135144. [PMID: 35660393 DOI: 10.1016/j.chemosphere.2022.135144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/04/2022] [Accepted: 05/25/2022] [Indexed: 05/26/2023]
Abstract
A very sensitive and selective solid-phase microextraction-gas chromatography-mass spectrometry method based on the use of a deep cavity BenzoQxCavitand as innovative coating was developed and validated for the simultaneous determination of the 16 US-EPA priority pollutants polycyclic aromatic hydrocarbons (PAHs) in snow samples at ultra-trace levels. The presence of a 8.3 Å deep hydrophobic cavity allowed the engulfment of all the 16 PAHs, providing enhanced selectivity also in presence of interfering aromatic pollutants at high concentration levels. Validation proved the reliability of the method for the determination of the investigated compounds achieving detection limits in the 0.03-0.30 ng/L range, good precision, with relative standard deviations <18% and recovery rates in the 90.8(±2.1)%-109.6(±1.0)%. The detection of low-molecular weight PAHs in snow samples from Antarctica and Alps confirms the widespread occurrence of these compounds, thus assessing the impact of anthropogenic activities onto the environment.
Collapse
Affiliation(s)
- N Riboni
- University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, Parco Area delle Scienze 17/A, 43124, Parma, Italy.
| | - M Amorini
- University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - F Bianchi
- University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, Parco Area delle Scienze 17/A, 43124, Parma, Italy; University of Parma, Center for Energy and Environment (CIDEA), Parco Area delle Scienze 42, 43124, Parma, Italy.
| | - A Pedrini
- University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - R Pinalli
- University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - E Dalcanale
- University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - M Careri
- University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| |
Collapse
|
6
|
Song N, Tian Y, Luo Z, Dai J, Liu Y, Duan Y. Advances in pretreatment and analysis methods of aromatic hydrocarbons in soil. RSC Adv 2022; 12:6099-6113. [PMID: 35424557 PMCID: PMC8981609 DOI: 10.1039/d1ra08633b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/27/2022] [Indexed: 11/21/2022] Open
Abstract
Benzene compounds that are prevalent in the soil as organic pollutants mainly include BTEX (benzene, toluene, ethylbenzene, and three xylene isomers) and PAHs (polycyclic aromatic hydrocarbons). These pose a severe threat to many aspects of human health. Therefore, the accurate measurement of BTEX and PAHs concentrations in the soil is of great importance. The samples for analysis of BTEX and PAHs need to be suitable for the various detection methods after pretreatment, which include Soxhlet extraction, ultrasonic extraction, solid-phase microextraction, supercritical extraction, and needle trap. The detection techniques mainly consist of gas chromatography (GC), mass spectrometry (MS), and online sensors, and provide comprehensive information on contaminants in the soil. Their performance is evaluated in terms of sensitivity, selectivity, and recovery. Recently, there has been rapid progress in the pretreatment and analysis methods for the quantitative and qualitative analyses of BTEX and PAHs. Therefore, it is necessary to produce a timely and in-depth review of the emerging pretreatment and analysis methods, which is unfortunately absent from the recent literature. In this work, state-of-art extraction techniques and analytical methods have been summarized for the determination of BTEX and PAHs in soil, with a particular focus on the potential and limitations of the respective methods for different aromatic hydrocarbons. Accordingly, the paper will describe the basic methodological knowledge, as well as the recent advancement of pretreatment and analysis methods for samples containing BTEX and PAHs.
Collapse
Affiliation(s)
- Na Song
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University Xi'an Shaanxi 710069 P. R.China
| | - Yonghui Tian
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University Xi'an Shaanxi 710069 P. R.China
| | - Zewei Luo
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University Xi'an Shaanxi 710069 P. R.China
| | - Jianxiong Dai
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University Xi'an Shaanxi 710069 P. R.China
| | - Yan Liu
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University Xi'an Shaanxi 710069 P. R.China
| | - Yixiang Duan
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University Xi'an Shaanxi 710069 P. R.China
| |
Collapse
|
7
|
Vu-Duc N, Phung Thi LA, Le-Minh T, Nguyen LA, Nguyen-Thi H, Pham-Thi LH, Doan-Thi VA, Le-Quang H, Nguyen-Xuan H, Thi Nguyen T, Nguyen PT, Chu DB. Analysis of Polycyclic Aromatic Hydrocarbon in Airborne Particulate Matter Samples by Gas Chromatography in Combination with Tandem Mass Spectrometry (GC-MS/MS). JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2021; 2021:6641326. [PMID: 34136305 PMCID: PMC8175174 DOI: 10.1155/2021/6641326] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/17/2021] [Accepted: 05/12/2021] [Indexed: 05/26/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs), the family of organic contaminations, have been shown to have negative effects on human health. However, until now, the comprehension on occurrence, distribution, and risk assessment of human exposure to PAHs has been limited in Vietnam. In this work, a capillary gas chromatography coupled with electron impact ionization tandem mass spectrometry (GC-EI-MS/MS) has been introduced for analysis of 16 PAHs in some particulate matter samples. PAHs have been separated on the TG 5 ms capillary gas chromatographic column and detected by tandem mass spectrometry in multiple reaction monitoring mode. The PAHs in the particulate matter (PM 2.5 and PM 10) samples were extracted by ultrasonic-assisted liquid extraction and cleaned up by an acidic silica gel solid phase extraction. The linearity range of all analyzed PAHs was from 5 to 2000 ng mL-1 with R 2 ≥0.9990. Limit of detection (LOD) of PAHs in particulate matter sample was from 0.001 ng m-3 (Br-Naph) to 0.276 ng m-3 (Fln). The recovery of PAHs was investigated by international proficiency testing samples. The recoveries of PAHs in proficiency testing sample ranged from 79.3% (Chr) to 109.8% (IcdP). The in-house validated GC-EI-MS/MS method was then applied to analysis of some particulate matter samples that were collected in the Hanoi areas. The total concentrations of PAHs in several brands of samples collected from Hanoi were found in the range of 226.3 ng m-3-706.43 ng m-3. Among the studied compounds, naphthalene was found at high frequency and ranged from 106.5 ng m-3 to 631.1 ng m-3. The main distribution of the PAHs in particulate matter samples was two-ring and three-ring compounds.
Collapse
Affiliation(s)
- Nam Vu-Duc
- Center for Research and Technology Transfer, Vietnam Academic of Science and Technology, 18 Hoang Quoc Viet, Hanoi 100000, Vietnam
| | - Lan Anh Phung Thi
- School of Environmental Science and Technology, Hanoi University of Science and Technology, No. 1 Dai Co Viet, Hanoi 100000, Vietnam
| | - Thuy Le-Minh
- Center for Research and Technology Transfer, Vietnam Academic of Science and Technology, 18 Hoang Quoc Viet, Hanoi 100000, Vietnam
| | - Lan-Anh Nguyen
- Center for Research and Technology Transfer, Vietnam Academic of Science and Technology, 18 Hoang Quoc Viet, Hanoi 100000, Vietnam
| | - Huong Nguyen-Thi
- Center for Research and Technology Transfer, Vietnam Academic of Science and Technology, 18 Hoang Quoc Viet, Hanoi 100000, Vietnam
| | - Loan-Ha Pham-Thi
- Center for Research and Technology Transfer, Vietnam Academic of Science and Technology, 18 Hoang Quoc Viet, Hanoi 100000, Vietnam
| | - Van-Anh Doan-Thi
- Center for Research and Technology Transfer, Vietnam Academic of Science and Technology, 18 Hoang Quoc Viet, Hanoi 100000, Vietnam
| | - Huong Le-Quang
- Center for Research and Technology Transfer, Vietnam Academic of Science and Technology, 18 Hoang Quoc Viet, Hanoi 100000, Vietnam
| | - Hung Nguyen-Xuan
- Center for Research and Technology Transfer, Vietnam Academic of Science and Technology, 18 Hoang Quoc Viet, Hanoi 100000, Vietnam
| | - Thao Thi Nguyen
- School of Environmental Science and Technology, Hanoi University of Science and Technology, No. 1 Dai Co Viet, Hanoi 100000, Vietnam
| | - Phuong Thanh Nguyen
- FPT University, Hoa Lac High Tech Park, Km 29 Thang Long Boulevard, Thach That, Hanoi 100000, Vietnam
| | - Dinh Binh Chu
- Department of Analytical Chemistry, School of Chemical Engineering, Hanoi University of Science and Technology, No. 1 Dai Co Viet Road, Hanoi 100000, Vietnam
| |
Collapse
|
8
|
Nukatsuka I, Satoh R, Kihara S, Kitagawa F. A thin-layer solid-phase extraction-liquid film elution technique used for the enrichment of polycyclic aromatic hydrocarbons in water. J Sep Sci 2021; 44:1989-1997. [PMID: 33605531 DOI: 10.1002/jssc.202001165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/28/2022]
Abstract
In this article, we propose a novel microsolid-phase extraction and elution technique, which we called the thin-layer solid-phase extraction-liquid film elution technique. The thin-layer solid-phase extraction phase is an octadecylsilylated sol gel- coated porous silica thin film prepared on the outer wall of a test tube, which has a larger surface area for the extraction of the target compounds compared to a conventional solid-phase microextraction phase. After optimization of the extraction procedure for five types of polycyclic aromatic hydrocarbons, the liquid film elution technique was investigated. Liquid film elution is an elution technique wherein the compounds extracted into the thin-layer solid-phase extraction phase are eluted using a small volume of solvent film formed around the extraction phase. The results show that the elution can be carried out using 150 μL of eluent. Enrichment factors between 20 and 34 were obtained for polycyclic aromatic hydrocarbons containing more than four aromatic rings in 10 mL aliquots of aqueous samples. Finally, recoveries of 85-112% were obtained for polycyclic aromatic hydrocarbons containing more than four aromatic rings from spiked natural water samples using the thin-layer solid-phase extraction-liquid film elution technique.
Collapse
Affiliation(s)
- Isoshi Nukatsuka
- Department of Frontier Materials Chemistry, Graduate School of Science and Technology, Hirosaki University, Hirosaki, 036-8561, Japan
| | - Ryota Satoh
- Department of Frontier Materials Chemistry, Graduate School of Science and Technology, Hirosaki University, Hirosaki, 036-8561, Japan
| | - Shigeki Kihara
- Department of Frontier Materials Chemistry, Graduate School of Science and Technology, Hirosaki University, Hirosaki, 036-8561, Japan
| | - Fumihiko Kitagawa
- Department of Frontier Materials Chemistry, Graduate School of Science and Technology, Hirosaki University, Hirosaki, 036-8561, Japan
| |
Collapse
|
9
|
Li J, Cui Y, Liu D, Li M, Gao J, Ye J. Development of a sample pretreatment device integrating ultrasonication, centrifugation and ultrafiltration, its application on rapid on-site screening of illegally added chemical components in heat-clearing, detoxicating Chinese patent medicines followed by electrospray ionization-ion mobility spectrometry. J Pharm Biomed Anal 2020; 194:113767. [PMID: 33279301 DOI: 10.1016/j.jpba.2020.113767] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 11/17/2022]
Abstract
In this paper, a simple and rapid sample pretreatment device integrating ultrasonication, centrifugation and ultrafiltration (UCU) was reported for preparation of trace analytes in complex matrices. The UCU device was composed of two parts, A and B. The sample and extraction solvent were put into Part B for ultrasonic extraction. Subsequently, Part A and Part B were integrated and sealed for centrifugation and ultrafiltration. Finally, the ultrafiltrate in Part A was taken out for subsequent detection. After optimization, the device was applied to rapid on-site screening of five illegally added chemical components in heat-clearing and detoxicating Chinese patent medicines by combining with electrospray ionization-ion mobility spectrometry (ESI-IMS). The method showed good performance in terms of linearity with correlation coefficients (R2) above 0.9976 and limits of detection (LODs) in the range of 0.049-0.391 μg mL-1. The recoveries were from 96.5 % to 100.8 %. The whole analysis process was within 11 min. The proposed method was further compared with other methods reported in the literature and the advantages and considerations were also explored. The results demonstrated that it was a simple, fast and accurate technique. The establishment of this method not only greatly improved the experimental efficiency but also avoided potential sample pollution brought by multiple sample transfer, and could provide a powerful means for rapid on-site analysis of trace analytes in complex matrices.
Collapse
Affiliation(s)
- Junmei Li
- School of Pharmacy, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, 050017, China
| | - Yixuan Cui
- School of Pharmacy, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, 050017, China
| | - Di Liu
- School of Pharmacy, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, 050017, China
| | - Mengjiao Li
- Department of Pharmacy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China
| | - Jinglin Gao
- Department of Clinical Pharmacology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China
| | - Jiang Ye
- School of Pharmacy, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, 050017, China.
| |
Collapse
|
10
|
Aly AA, Górecki T. Green Approaches to Sample Preparation Based on Extraction Techniques. Molecules 2020; 25:E1719. [PMID: 32283595 PMCID: PMC7180442 DOI: 10.3390/molecules25071719] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/25/2020] [Accepted: 03/29/2020] [Indexed: 12/11/2022] Open
Abstract
Preparing a sample for analysis is a crucial step of many analytical procedures. The goal of sample preparation is to provide a representative, homogenous sample that is free of interferences and compatible with the intended analytical method. Green approaches to sample preparation require that the consumption of hazardous organic solvents and energy be minimized or even eliminated in the analytical process. While no sample preparation is clearly the most environmentally friendly approach, complete elimination of this step is not always practical. In such cases, the extraction techniques which use low amounts of solvents or no solvents are considered ideal alternatives. This paper presents an overview of green extraction procedures and sample preparation methodologies, briefly introduces their theoretical principles, and describes the recent developments in food, pharmaceutical, environmental and bioanalytical chemistry applications.
Collapse
Affiliation(s)
- Alshymaa A. Aly
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada;
- Analytical Chemistry Department, Faculty of Pharmacy, Minia University, Menia Governorate 61519, Egypt
| | - Tadeusz Górecki
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada;
| |
Collapse
|
11
|
Fabrication of water soluble and luminescent Eu2O3 nanoparticles for specific quantification of aromatic nitrophenols in aqueous media. Chem Phys Lett 2019. [DOI: 10.1016/j.cplett.2019.136799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Aryal N, Deng D, Jha MK, Ofori-Boadu A. Monitoring, sampling, and automated analysis. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2019; 91:1288-1293. [PMID: 31509322 DOI: 10.1002/wer.1224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 08/14/2019] [Accepted: 08/19/2019] [Indexed: 06/10/2023]
Abstract
A review of the literature published in 2018 on topics related to monitoring, sampling, and automated analysis is presented. The review includes current developments in monitoring, sampling, and analysis of water, wastewater, and groundwater. This review includes the following sections: brief introduction; sample preparation and extraction techniques; real-time, high-frequency, and/or in situ monitoring (microbiological, inorganic, organic, metals, and others); passive monitoring; and the biosensors. In the end, the authors have discussed future of the topic. PRACTITIONER POINTS: Advances in monitoring, sampling and automated analysis of water and wastewater are summarized. Real-time, high-frequency, and in-situ monitoring and analysis of pollutants are summarized. Topics include sample preparation and extraction and passive monitoring, and biosensors for pollutants.
Collapse
Affiliation(s)
- Niroj Aryal
- Department of Natural Resources and Environmental Design, North Carolina A&T State University, Greensboro, North Carolina
| | - Dongyang Deng
- Department of Built Environment, North Carolina A&T State University, Greensboro, North Carolina
| | - Manoj K Jha
- Department of Civil, Architectural and Environmental Engineering, North Carolina A&T State University, Greensboro, North Carolina
| | - Andrea Ofori-Boadu
- Department of Built Environment, North Carolina A&T State University, Greensboro, North Carolina
| |
Collapse
|
13
|
|
14
|
Sánchez-Camargo ADP, Parada-Alonso F, Ibáñez E, Cifuentes A. Recent applications of on-line supercritical fluid extraction coupled to advanced analytical techniques for compounds extraction and identification. J Sep Sci 2018; 42:243-257. [PMID: 30156751 DOI: 10.1002/jssc.201800729] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 08/23/2018] [Accepted: 08/24/2018] [Indexed: 12/28/2022]
Abstract
In a previous review (Sánchez-Camargo et al., J. Sep. Sci. 40 (2017) 213-227), we discussed the application of on-line supercritical fluid extraction coupled to chromatographic techniques. This review includes an update of the most recent publications (from January 2016 till June 2018) on this topic, which employs advanced analytical techniques for extracting and identifying valuable analytes. Supercritical fluid extraction has been widely recognized as a green sample preparation technique, because it is efficient, environmentally friendly, powerful, and faster, offering the possibility of direct coupling to analytical instrumental techniques. Among those techniques, supercritical fluid chromatography has experienced an innovative progression in the last 10 years, and the most recent applications of supercritical fluid extraction are coupled to this advanced analytical tool. The general principles, both methodological and instrumental of on-line supercritical fluid extraction coupled to supercritical fluid chromatography are described here. Besides, applications of the mentioned coupling for analysing biological fluids, food, soil, and botanical samples are also presented and discussed. Finally, a brief description about the very recent on-line coupling of supercritical fluid extraction to ion mobility spectrometry is presented, as well as concluding remarks about the importance of using these coupled techniques in the near future.
Collapse
Affiliation(s)
| | - Fabián Parada-Alonso
- High Pressure Laboratory, Department of Chemistry, Faculty of Science, Universidad Nacional de Colombia, Bogotá D.C., Colombia
| | - Elena Ibáñez
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC, Madrid, Spain
| | - Alejandro Cifuentes
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC, Madrid, Spain
| |
Collapse
|