1
|
Polepalli S, Pulla Rao C. Protein Based Hybrid Materials of Metal Phosphate Nanoflowers and Gels for Water Remediation: Perspectives and Prospects. Chem Asian J 2025:e202401352. [PMID: 39777918 DOI: 10.1002/asia.202401352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 01/11/2025]
Abstract
Water pollution is a critical environmental issue affecting ecosystems and human health worldwide. Contaminants such as heavy metals, dyes, antibiotics, and microplastics enter water bodies from the disposals of industrial, agricultural, and domestic waste. The development of new and advanced technologies for addressing water remediation has turned out to be a dire need. Protein-inorganic hybrid materials have emerged as innovative solutions for water remediation, leveraging the unique properties of both the proteins and the inorganic components. These hybrid materials connect the biocompatibility and specificity of proteins with that of the structural stability and catalytic capability of the inorganic frameworks. In recent times, protein inorganic hybrids are gaining importance in water remediation due to their ease of synthesis and chemical modification, stability, biocompatibility and biodegradability. This article brings out the recent advancements in the development of two major kinds of protein inorganic hybrid materials, viz., metal phosphate nanoflowers and gels in the context of water purification. The effect of major factors, like, morphology, porosity, pore size and nature, surface area, and the nature of the composite were systematically compared and analyzed to make it beneficial for future researchers in the development of such hybrid materials for water remediation in a sustainable manner. For this, the article addresses the current trends and draws conclusions on future perspectives to support the topic on providing clean and potable water for everyone on the globe.
Collapse
Affiliation(s)
- Sirilata Polepalli
- Department of chemistry, University of Warwick, Coventry, United Kingdom
| | - Chebrolu Pulla Rao
- Department of Chemistry, School of Engineering and Sciences, SRM University AP, Neerukonda (P.O.), Guntur (dist), 522 240, Andhra Pradesh, India
| |
Collapse
|
2
|
Karimzadeh Z, Mahmoudpour M, Rahimpour E, Jouyban A. Recent advancements in the specific determination of carcinoembryonic antigens using MOF-based immunosensors. RSC Adv 2024; 14:9571-9586. [PMID: 38516167 PMCID: PMC10955552 DOI: 10.1039/d3ra07059j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/29/2024] [Indexed: 03/23/2024] Open
Abstract
Carcinoembryonic antigens (CEAs) are prominent cancer biomarkers that enable the early detection of numerous cancers. For effective CEA screening, rapid, portable, efficient, and sensitive diagnosis approaches should be devised. Metal-organic frameworks (MOFs) are porous crystalline materials that have received major attention for application in high-efficiency signal probes owing to their advantages such as large specific surface area, superior chemical stability and tunability, high porosity, easy surface functional modification, and adjustable size and morphology. Immunoassay strategies using antigen-antibody specific interaction are one of the imperative means for rapid and accurate measurement of target molecules in biochemical fields. The emerging MOFs and their nanocomposites are synthesized with excellent features, providing promising potential for immunoassays. This article outlines the recent breakthroughs in the synthesis approaches of MOFs and overall functionalization mechanisms of MOFs with antigen/antibody and their uses in the CEA immunoassays, which operate according to electrochemical, electrochemiluminescent and colorimetric techniques. The prospects and limitations of the preparation and immunoassay applications of MOF-derived hybrid nanocomposites are also discussed at the end.
Collapse
Affiliation(s)
- Zahra Karimzadeh
- Pharmaceutical Analysis Research Center, Faculty of Pharmacy, Tabriz University of Medical Sciences Tabriz Iran
| | - Mansour Mahmoudpour
- Miandoab Schools of Medical Sciences Miandoab Iran
- Pharmaceutical Analysis Research Center, Faculty of Pharmacy, Tabriz University of Medical Sciences Tabriz Iran
| | - Elaheh Rahimpour
- Pharmaceutical Analysis Research Center, Faculty of Pharmacy, Tabriz University of Medical Sciences Tabriz Iran
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences Tabriz Iran
| | - Abolghasem Jouyban
- Pharmaceutical Analysis Research Center, Faculty of Pharmacy, Tabriz University of Medical Sciences Tabriz Iran
- Pharmaceutical Sciences Research Center, Shahid Beheshti University of Medical Sciences Tehran Iran
| |
Collapse
|
3
|
Pengyu Z, Yang Y, Ling Z, Jian G, Bing W, Xin B, Dehui Y, Linlin L, Congyu L, Na Z. The effect of trehalose on the thermodynamic stability and emulsification of soybean 11S globulin in the molten globule state. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106811] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
4
|
Sha L, Han Y, Wang M, Wu S, Yang J, Li G. A robust CRISPR-Cas12a biosensor coated with metal-organic framework. J Mater Chem B 2021; 9:5451-5455. [PMID: 34184004 DOI: 10.1039/d1tb01126j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Metal-organic frameworks (MOFs) are proposed to protect a CRISPR-associated enzyme/RNA complex from harsh environments, while the complex can be quickly released from MOFs with high efficiency. Therefore, the application of CRISPR-powered biosensing can be more feasible.
Collapse
Affiliation(s)
- Lingjun Sha
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.
| | - Yiwei Han
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China.
| | - Minghui Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China.
| | - Shuai Wu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China.
| | - Jie Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China.
| | - Genxi Li
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China. and State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China.
| |
Collapse
|
5
|
Lu M, He Q, Zhong Y, Pan J, Lao Z, Lin M, Wang T, Cui X, Ding J, Zhao S. An ultrasensitive colorimetric assay based on a multi-amplification strategy employing Pt/IrO 2@SA@HRP nanoflowers for the detection of progesterone in saliva samples. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:1164-1171. [PMID: 33599661 DOI: 10.1039/d1ay00053e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Progesterone (P4) belongs to a factor that affects stress response and is a potential carcinogen, and saliva levels are expected to be a standard measurement for clinical diagnosis. In this study, a new type of nanoflower with both recognition functionality and catalytic substrate ability was prepared by copper phosphate, Pt/IrO2 nanocomposites (Pt/IrO2 NPs), streptavidin (SA) and horseradish peroxidase (HRP) via a one-pot co-precipitation strategy. Due to the enhanced catalytic activity and stability of Pt/IrO2@SA@HRP nanoflowers, we developed a powerful and sensitive multiple-catalysis ELISA to monitor progesterone in saliva. Multiple-catalysis ELISA based on a specific antibody and Pt/IrO2@SA@HRP nanoflowers exhibited a linear interval range from 0.217 ng mL-1 to 7.934 ng mL-1. The median inhibitory concentration (IC50) for progesterone is 1.311 ng mL-1 and the limit of detection (LOD = IC10) is 0.076 ng mL-1 in the proposed method. Satisfactory recoveries were in a range of 79.6-107% with an acceptable coefficient of variation (below 10.6%). Results of the multiple-catalysis ELISA and LC-MS/MS had a good coincidence. Our result unraveled that multiple-catalysis ELISA is a potentially serviceable tool for the detection of progesterone in saliva.
Collapse
Affiliation(s)
- Minglei Lu
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, People's Republic of China.
| | - Qiyi He
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, People's Republic of China.
| | - Yingying Zhong
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, People's Republic of China.
| | - Junkang Pan
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, People's Republic of China.
| | - Zhiting Lao
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, People's Republic of China.
| | - Mingxia Lin
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, People's Republic of China.
| | - Tiantian Wang
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, People's Republic of China.
| | - Xiping Cui
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, People's Republic of China.
| | - Jinlong Ding
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, People's Republic of China.
| | - Suqing Zhao
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, People's Republic of China.
| |
Collapse
|
6
|
Li Y, Wu H, Su Z. Enzyme-based hybrid nanoflowers with high performances for biocatalytic, biomedical, and environmental applications. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213342] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
7
|
Zhang L, Ying Y, Li Y, Fu Y. Integration and synergy in protein-nanomaterial hybrids for biosensing: Strategies and in-field detection applications. Biosens Bioelectron 2020; 154:112036. [DOI: 10.1016/j.bios.2020.112036] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/12/2020] [Accepted: 01/16/2020] [Indexed: 12/12/2022]
|
8
|
Yoon J, Shin M, Lim J, Kim DY, Lee T, Choi J. Nanobiohybrid Material‐Based Bioelectronic Devices. Biotechnol J 2020; 15:e1900347. [DOI: 10.1002/biot.201900347] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/19/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Jinho Yoon
- Department of Chemical and Biomolecular EngineeringSogang University 35 Baekbeom‐Ro Mapo‐Gu Seoul 04107 Republic of Korea
| | - Minkyu Shin
- Department of Chemical and Biomolecular EngineeringSogang University 35 Baekbeom‐Ro Mapo‐Gu Seoul 04107 Republic of Korea
| | - Joungpyo Lim
- Department of Chemical and Biomolecular EngineeringSogang University 35 Baekbeom‐Ro Mapo‐Gu Seoul 04107 Republic of Korea
| | - Dong Yeon Kim
- Department of Chemical and Biomolecular EngineeringSogang University 35 Baekbeom‐Ro Mapo‐Gu Seoul 04107 Republic of Korea
| | - Taek Lee
- Department of Chemical EngineeringKwangwoon University Wolgye‐dong Nowon‐gu Seoul 01899 Republic of Korea
| | - Jeong‐Woo Choi
- Department of Chemical and Biomolecular EngineeringSogang University 35 Baekbeom‐Ro Mapo‐Gu Seoul 04107 Republic of Korea
| |
Collapse
|
9
|
Zhang L, Liu Z, Zha S, Liu G, Zhu W, Xie Q, Li Y, Ying Y, Fu Y. Bio-/Nanoimmobilization Platform Based on Bioinspired Fibrin-Bone@Polydopamine-Shell Adhesive Composites for Biosensing. ACS APPLIED MATERIALS & INTERFACES 2019; 11:47311-47319. [PMID: 31742992 DOI: 10.1021/acsami.9b15376] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Inspired by blood coagulation and mussel adhesion, we report novel adhesive fibrin-bone@polydopamine (PDA)-shell composite matrix as highly efficient immobilization platform for biomacromolecules and nanomaterials. Fibrin, as a bioglue, and PDA, as a chemical adhesive, are integrated in a one-pot simultaneous polymerization consisting of biopolymerization of fibrinogen and chemical polymerization of dopamine. Fibrin fibers act as adhesive bones to construct scaffold, while PDA coat on the scaffold to form adhesive shell, generating 3D porous composite matrix with unique bone@shell structure. Two types of enzymes (glucose oxidase and acetylcholinesterase) and Au nanoparticles were adopted as respective model biomolecules and nanomaterials to investigate the immobilization capability of the matrix. The bionanocomposites showed high efficiency in capturing nanoparticles and enzymes, as well as significant mass-transfer and biocatalysis efficiencies. Therefore, the bionanocomposites exhibited significant potential in biosensing of glucose and paraoxon with limits of detection down to 5.2 μM and 4 ppt, respectively. The biological-chemical-combined polymerization strategy and composite platform with high immobilization capacity and mass-transfer efficiency open up a novel way for the preparation of high-performance bionanocomposites for various applications, in particular, biosensing.
Collapse
Affiliation(s)
| | - Ziyu Liu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China) , Hunan Normal University , Changsha 410081 , China
| | | | | | | | - Qingji Xie
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China) , Hunan Normal University , Changsha 410081 , China
| | - Yanbin Li
- Department of Biological and Agricultural Engineering , University of Arkansas , Fayetteville , Arkansas 72701 , United States
| | - Yibin Ying
- Zhejiang A&F University , Hangzhou , Zhejiang 311300 , China
| | | |
Collapse
|