1
|
Vo DK, Trinh KTL. Advances in Wearable Biosensors for Wound Healing and Infection Monitoring. BIOSENSORS 2025; 15:139. [PMID: 40136936 PMCID: PMC11940385 DOI: 10.3390/bios15030139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 02/16/2025] [Accepted: 02/21/2025] [Indexed: 03/27/2025]
Abstract
Wound healing is a complicated biological process that is important for restoring tissue integrity and function after injury. Infection, usually due to bacterial colonization, significantly complicates this process by hindering the course of healing and enhancing the chances of systemic complications. Recent advances in wearable biosensors have transformed wound care by making real-time monitoring of biomarkers such as pH, temperature, moisture, and infection-related metabolites like trimethylamine and uric acid. This review focuses on recent advances in biosensor technologies designed for wound management. Novel sensor architectures, such as flexible and stretchable electronics, colorimetric patches, and electrochemical platforms, enable the non-invasive detection of changes associated with wounds with high specificity and sensitivity. These are increasingly combined with AI and analytics based on smartphones that can enable timely and personalized interventions. Examples are the PETAL patch sensor that applies multiple sensing mechanisms for wide-ranging views on wound status and closed-loop systems that connect biosensors to therapeutic devices to automate infection control. Additionally, self-powered biosensors that tap into body heat or energy from the biofluids themselves avoid any external batteries and are thus more effective in field use or with limited resources. Internet of Things connectivity allows further support for remote sharing and monitoring of data, thus supporting telemedicine applications. Although wearable biosensors have developed relatively rapidly and their prospects continue to expand, regular clinical application is stalled by significant challenges such as regulatory, cost, patient compliance, and technical problems related to sensor accuracy, biofouling, and power, among others, that need to be addressed by innovative solutions. The goal of this review is to synthesize current trends, challenges, and future directions in wound healing and infection monitoring, with emphasis on the potential for wearable biosensors to improve patient outcomes and reduce healthcare burdens. These innovations are leading the way toward next-generation wound care by bridging advanced materials science, biotechnology, and digital health.
Collapse
Affiliation(s)
- Dang-Khoa Vo
- College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Republic of Korea
| | - Kieu The Loan Trinh
- BioNano Applications Research Center, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Republic of Korea
| |
Collapse
|
2
|
Sandaruwan HHPB, Manatunga DC, N Liyanage R, Costha NP, Dassanayake RS, Wijesinghe RE, Zhou Y, Liu Y. Next-generation methods for precise pH detection in ocular chemical burns: a review of recent analytical advancements. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:408-431. [PMID: 39564777 DOI: 10.1039/d4ay01178c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Ocular burns due to accidental chemical spillage pose an immediate threat, representing over 20% of emergency ocular traumas. Early detection of the ocular pH is imperative in managing ocular chemical burns. Alkaline chemical burns are more detrimental than acidic chemical burns. Current practices utilize litmus, nitrazine strips, bromothymol blue, fluorescent dyes, and micro-combination glass probes to detect ocular pH. However, these methods have inherent drawbacks, leading to inaccurate pH measurements, less sensitivity, photodegradation, limited pH range, and longer response time. Hence, there is a tremendous necessity for developing relatively simple, accurate, precise ocular pH detection methods. The current review aims to provide comprehensive coverage of the conventional practices of ocular pH measurement during accidental chemical burns, highlighting their strengths and weaknesses. Besides, it delves into cutting-edge technologies, including pH-sensing contact lenses, microfluidic contact lenses, fluorescent scleral contact lenses, fiber optic pH technology, and pH-sensitive thin films. The study meticulously examines the reported work since 2000. The collected data have also helped propose future directions, and the research gap needs to be filled to provide a more rapid, sensitive, and accurate measurement of ocular pH in eye clinics. For the first time, this review consolidates current techniques and recent advancements in ocular pH detection, offering a strategic overview to propel ophthalmic-related research forward and enhance ocular burn management during a chemical spillage.
Collapse
Affiliation(s)
- H H P Benuwan Sandaruwan
- Department of Biosystems Technology, Faculty of Technology, University of Sri Jayewardenepura, Pitipana North, Homagama 10206, Sri Lanka.
| | - Danushika C Manatunga
- Department of Biosystems Technology, Faculty of Technology, University of Sri Jayewardenepura, Pitipana North, Homagama 10206, Sri Lanka.
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Renuka N Liyanage
- Department of Materials and Mechanical Technology, Faculty of Technology, University of Sri Jayewardenepura, Pitipana North, Homagama 10200, Sri Lanka
| | | | - Rohan S Dassanayake
- Department of Biosystems Technology, Faculty of Technology, University of Sri Jayewardenepura, Pitipana North, Homagama 10206, Sri Lanka.
| | - Ruchire Eranga Wijesinghe
- Center for Excellence in Informatics, Electronics & Transmission (CIET), Sri Lanka Institute of Information Technology, Malabe, 10115, Sri Lanka
- Department of Electrical and Electronic Engineering, Faculty of Engineering, Sri Lanka Institute of Information Technology, Malabe, 10115, Sri Lanka
| | - Yang Zhou
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education and School of Chemical Engineering and Technology, Hainan University, Haikou, Hainan 570228, China
| | - Yuanyuan Liu
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education and School of Chemical Engineering and Technology, Hainan University, Haikou, Hainan 570228, China
| |
Collapse
|
3
|
Dadi S, Ocsoy I. Role of pretty nanoflowers as novel versatile analytical tools for sensing in biomedical and bioanalytical applications. SMART MEDICINE 2024; 3:e20230040. [PMID: 39188519 PMCID: PMC11236047 DOI: 10.1002/smmd.20230040] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 01/24/2024] [Indexed: 08/28/2024]
Abstract
In recent years, an encouraging breakthrough in the synthesis of immobilized enzymes in flower-shaped called "organic-inorganic hybrid nanoflowers (hNFs)" with greatly enhanced catalytic activity and stability were reported. Although, these hNFs were discovered by accident, the enzymes exhibited highly enhanced catalytic activities and stabilities in the hNFs compared with the free and conventionally immobilized enzymes. Herein, we rationally utilized the catalytic activity of the hNFs for analytical applications. In this comprehensive review, we covered the design and use of the hNFs as novel versatile sensors for electrochemical, colorimetric/optical and immunosensors-based detection strategies in analytical perspective.
Collapse
Affiliation(s)
- Seyma Dadi
- Department of Nanotechnology EngineeringAbdullah Gül UniversityKayseriTurkey
| | - Ismail Ocsoy
- Department of Analytical ChemistryFaculty of PharmacyErciyes UniversityKayseriTurkey
| |
Collapse
|
4
|
Yang M, Sun N, Lai X, Zhao X, Zhou W. Advances in Non-Electrochemical Sensing of Human Sweat Biomarkers: From Sweat Sampling to Signal Reading. BIOSENSORS 2023; 14:17. [PMID: 38248394 PMCID: PMC10813192 DOI: 10.3390/bios14010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/19/2023] [Accepted: 12/25/2023] [Indexed: 01/23/2024]
Abstract
Sweat, commonly referred to as the ultrafiltrate of blood plasma, is an essential physiological fluid in the human body. It contains a wide range of metabolites, electrolytes, and other biologically significant markers that are closely linked to human health. Compared to other bodily fluids, such as blood, sweat offers distinct advantages in terms of ease of collection and non-invasive detection. In recent years, considerable attention has been focused on wearable sweat sensors due to their potential for continuous monitoring of biomarkers. Electrochemical methods have been extensively used for in situ sweat biomarker analysis, as thoroughly reviewed by various researchers. This comprehensive review aims to provide an overview of recent advances in non-electrochemical methods for analyzing sweat, including colorimetric methods, fluorescence techniques, surface-enhanced Raman spectroscopy, and more. The review covers multiple aspects of non-electrochemical sweat analysis, encompassing sweat sampling methodologies, detection techniques, signal processing, and diverse applications. Furthermore, it highlights the current bottlenecks and challenges faced by non-electrochemical sensors, such as limitations and interference issues. Finally, the review concludes by offering insights into the prospects for non-electrochemical sensing technologies. By providing a valuable reference and inspiring researchers engaged in the field of sweat sensor development, this paper aspires to foster the creation of innovative and practical advancements in this domain.
Collapse
Affiliation(s)
- Mingpeng Yang
- School of Automation, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, China (X.Z.)
- Jiangsu Collaborative Innovation Centre on Atmospheric Environment and Equipment Technology, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, China
| | - Nan Sun
- School of Automation, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, China (X.Z.)
| | - Xiaochen Lai
- School of Automation, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, China (X.Z.)
- Jiangsu Collaborative Innovation Centre on Atmospheric Environment and Equipment Technology, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, China
| | - Xingqiang Zhao
- School of Automation, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, China (X.Z.)
- Jiangsu Collaborative Innovation Centre on Atmospheric Environment and Equipment Technology, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, China
| | - Wangping Zhou
- School of Automation, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, China (X.Z.)
- Jiangsu Collaborative Innovation Centre on Atmospheric Environment and Equipment Technology, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, China
| |
Collapse
|
5
|
Ramírez-Coronel AA, Alameri AA, Altalbawy F, Sanaan Jabbar H, Lateef Al-Awsi GR, Iswanto AH, Altamimi AS, Shareef Mohsen K, Almulla AF, Mustafa YF. Smartphone-Facilitated Mobile Colorimetric Probes for Rapid Monitoring of Chemical Contaminations in Food: Advances and Outlook. Crit Rev Anal Chem 2023; 54:2290-2308. [PMID: 36598426 DOI: 10.1080/10408347.2022.2164173] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Smartphone-derived colorimetric tools have the potential to revolutionize food safety control by enabling citizens to carry out monitoring assays. To realize this, it is of paramount significance to recognize recent study efforts and figure out important technology gaps in terms of food security. Driven by international connectivity and the extensive distribution of smartphones, along with their built-in probes and powerful computing abilities, smartphone-based sensors have shown enormous potential as cost-effective and portable diagnostic scaffolds for point-of-need tests. Meantime, the colorimetric technique is of particular notice because of its benefits of rapidity, simplicity, and high universality. In this study, we tried to outline various colorimetric platforms using smartphone technology, elucidate their principles, and explore their applications in detecting target analytes (pesticide residues, antibiotic residues, metal ions, pathogenic bacteria, toxins, and mycotoxins) considering their sensitivity and multiplexing capability. Challenges and desired future perspectives for cost-effective, accurate, reliable, and multi-functions smartphone-based colorimetric tools have also been debated.
Collapse
Affiliation(s)
- Andrés Alexis Ramírez-Coronel
- Laboratory of Psychometrics, Comparative Psychology and Ethology (LABPPCE), Universidad Católica de Cuenca, Ecuador and Universidad CES, Medellín, Colombia, Cuenca, Ecuador
| | - Ameer A Alameri
- Department of Chemistry, Faculty of Science, University of Babylon, Babylon, Iraq
| | - Farag Altalbawy
- Department of Chemistry, University College of Duba, Tabuk University, Duba, Saudi Arabia
| | - Hijran Sanaan Jabbar
- Department of Chemistry, College of Science, Salahaddin University, Erbil, Kurdistan Region, Iraq
- Department of Medical Laboratory Science, College of Health Sciences, Lebanese French University, Erbil, Kurdistan Region, Iraq
| | | | - Acim Heri Iswanto
- Department of Public Health, Faculty of Health Science, University of Pembangunan Nasional Veteran Jakarta, Jakarta, Indonesia
| | - Abdulmalik S Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Karrar Shareef Mohsen
- Information and Communication Technology Research Group, Scientific Research Center, Al-Ayen University, Thi-Qar, Iraq
| | - Abbas F Almulla
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq
| |
Collapse
|
6
|
Taimoory SM, Yu X, Beyeh NK, Nasri S, Trant JF. Divalent Benzimidazolium-Based Axles for Self-Reporting Pseudorotaxanes. J Org Chem 2022; 87:15783-15795. [PMID: 36377941 DOI: 10.1021/acs.joc.2c01758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mono- and (bis)benzimidazoliums were evaluated both experimentally and computationally for their potential as pseudopolyrotaxane axle building blocks. Their aggregation and photophysical behavior, along with their potential to form a [2]pseudorotaxane with dibenzyl-24-crown-8, was studied through the synergistic application of 1D/2D and diffusion-ordered NMR spectroscopy, mass spectrometry, ultraviolet-visible and fluorescence spectroscopy, and time-dependent density functional theory. Their photophysical behavior was measured and modeled as a function of protonation state, solvent, and concentration. The axles show strong solvochromaticism and a very pronounced concentration-dependent optical profile, including self-quenching when a pseudorotaxane is formed. This axle with multiple recognition sites has the potential to form pseudorotaxanes with tunable optical behavior.
Collapse
Affiliation(s)
- S Maryamdokht Taimoory
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Ave., Windsor, ON N9B 3P4, Canada.,Department of Chemistry, University of Michigan, 930 N. University Ave., 2006B, Ann Arbor, Michigan 48109, United States
| | - Xiao Yu
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Ave., Windsor, ON N9B 3P4, Canada
| | - Ngong Kodiah Beyeh
- Department of Chemistry, Oakland University, 146 Library Drive, Rochester, Michigan 48309-4479, United States
| | - Sarah Nasri
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Ave., Windsor, ON N9B 3P4, Canada
| | - John F Trant
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Ave., Windsor, ON N9B 3P4, Canada
| |
Collapse
|
7
|
C.C.G. Carneiro M, Rodrigues LR, Moreira FT, Goreti F. Sales M. Paper-based ELISA for fast CA 15–3 detection in point-of-care. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
Gerdan Z, Saylan Y, Denizli A. Recent Advances of Optical Sensors for Copper Ion Detection. MICROMACHINES 2022; 13:1298. [PMID: 36014218 PMCID: PMC9413819 DOI: 10.3390/mi13081298] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/30/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
A trace element copper (Cu2+) ion is the third most plentiful metal ion that necessary for all living organisms and playing a critical role in several processes. Nonetheless, according to cellular needs, deficient or excess Cu2+ ion cause various diseases. For all these reasons, optical sensors have been focused rapid Cu2+ ion detection in real-time with high selectivity and sensitivity. Optical sensors can measure fluorescence in the refractive index-adsorption from the relationships between light and matter. They have gained great attention in recent years due to the excellent advantages of simple and naked eye recognition, real-time detection, low cost, high specificity against analytes, a quick response, and the need for less complex equipment in analysis. This review aims to show the significance of Cu2+ ion detection and electively current trends in optical sensors. The integration of optical sensors with different systems, such as microfluidic systems, is mentioned, and their latest studies in medical and environmental applications also are depicted. Conclusions and future perspectives on these advances is added at the end of the review.
Collapse
Affiliation(s)
| | | | - Adil Denizli
- Department of Chemistry, Hacettepe University, 06800 Ankara, Turkey
| |
Collapse
|
9
|
Carneiro MCCG, Rodrigues LR, Moreira FTC, Sales MGF. Colorimetric Paper-Based Sensors against Cancer Biomarkers. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22093221. [PMID: 35590912 PMCID: PMC9102172 DOI: 10.3390/s22093221] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/15/2022] [Accepted: 04/17/2022] [Indexed: 05/14/2023]
Abstract
Cancer is a major cause of mortality and morbidity worldwide. Detection and quantification of cancer biomarkers plays a critical role in cancer early diagnosis, screening, and treatment. Clinicians, particularly in developing countries, deal with high costs and limited resources for diagnostic systems. Using low-cost substrates to develop sensor devices could be very helpful. The interest in paper-based sensors with colorimetric detection increased exponentially in the last decade as they meet the criteria for point-of-care (PoC) devices. Cellulose and different nanomaterials have been used as substrate and colorimetric probes, respectively, for these types of devices in their different designs as spot tests, lateral-flow assays, dipsticks, and microfluidic paper-based devices (μPADs), offering low-cost and disposable devices. However, the main challenge with these devices is their low sensitivity and lack of efficiency in performing quantitative measurements. This review includes an overview of the use of paper for the development of sensing devices focusing on colorimetric detection and their application to cancer biomarkers. We highlight recent works reporting the use of paper in the development of colorimetric sensors for cancer biomarkers, such as proteins, nucleic acids, and others. Finally, we discuss the main advantages of these types of devices and highlight their major pitfalls.
Collapse
Affiliation(s)
- Mariana C. C. G. Carneiro
- BioMark@ISEP, School of Engineering, Polytechnic Institute, 4249-015 Porto, Portugal;
- Centre of Biological Engineering, Minho University (CEB), 4710-057 Braga, Portugal; (L.R.R.); (M.G.F.S.)
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
| | - Ligia R. Rodrigues
- Centre of Biological Engineering, Minho University (CEB), 4710-057 Braga, Portugal; (L.R.R.); (M.G.F.S.)
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
| | - Felismina T. C. Moreira
- BioMark@ISEP, School of Engineering, Polytechnic Institute, 4249-015 Porto, Portugal;
- Centre of Biological Engineering, Minho University (CEB), 4710-057 Braga, Portugal; (L.R.R.); (M.G.F.S.)
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
- Correspondence:
| | - Maria Goreti F. Sales
- Centre of Biological Engineering, Minho University (CEB), 4710-057 Braga, Portugal; (L.R.R.); (M.G.F.S.)
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
- BioMark@UC, Faculty of Sciences and Technology, Coimbra University, 3030-790 Coimbra, Portugal
| |
Collapse
|
10
|
de Carvalho Oliveira G, Machado CCS, Inácio DK, Silveira Petruci JFD, Silva SG. RGB color sensor for colorimetric determinations: Evaluation and quantitative analysis of colored liquid samples. Talanta 2022; 241:123244. [DOI: 10.1016/j.talanta.2022.123244] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 12/18/2022]
|
11
|
Shende P, Trivedi R. Nanotheranostics in epilepsy: A perspective for multimodal diagnosis and strategic management. NANO SELECT 2021. [DOI: 10.1002/nano.202000141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- Pravin Shende
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS Vile Parle (W) Mumbai India
| | - Riddhi Trivedi
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS Vile Parle (W) Mumbai India
| |
Collapse
|
12
|
Wang C, Liu M, Wang Z, Li S, Deng Y, He N. Point-of-care diagnostics for infectious diseases: From methods to devices. NANO TODAY 2021; 37:101092. [PMID: 33584847 PMCID: PMC7864790 DOI: 10.1016/j.nantod.2021.101092] [Citation(s) in RCA: 247] [Impact Index Per Article: 61.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 01/22/2021] [Accepted: 01/23/2021] [Indexed: 05/04/2023]
Abstract
The current widespread of COVID-19 all over the world, which is caused by SARS-CoV-2 virus, has again emphasized the importance of development of point-of-care (POC) diagnostics for timely prevention and control of the pandemic. Compared with labor- and time-consuming traditional diagnostic methods, POC diagnostics exhibit several advantages such as faster diagnostic speed, better sensitivity and specificity, lower cost, higher efficiency and ability of on-site detection. To achieve POC diagnostics, developing POC detection methods and correlated POC devices is the key and should be given top priority. The fast development of microfluidics, micro electro-mechanical systems (MEMS) technology, nanotechnology and materials science, have benefited the production of a series of portable, miniaturized, low cost and highly integrated POC devices for POC diagnostics of various infectious diseases. In this review, various POC detection methods for the diagnosis of infectious diseases, including electrochemical biosensors, fluorescence biosensors, surface-enhanced Raman scattering (SERS)-based biosensors, colorimetric biosensors, chemiluminiscence biosensors, surface plasmon resonance (SPR)-based biosensors, and magnetic biosensors, were first summarized. Then, recent progresses in the development of POC devices including lab-on-a-chip (LOC) devices, lab-on-a-disc (LOAD) devices, microfluidic paper-based analytical devices (μPADs), lateral flow devices, miniaturized PCR devices, and isothermal nucleic acid amplification (INAA) devices, were systematically discussed. Finally, the challenges and future perspectives for the design and development of POC detection methods and correlated devices were presented. The ultimate goal of this review is to provide new insights and directions for the future development of POC diagnostics for the management of infectious diseases and contribute to the prevention and control of infectious pandemics like COVID-19.
Collapse
Affiliation(s)
- Chao Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China
- Department of Biomedical Engineering, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China
| | - Mei Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Zhifei Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Song Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, PR China
| | - Yan Deng
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, PR China
| | - Nongyue He
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, PR China
| |
Collapse
|