1
|
Hořejší K, Holčapek M. Unraveling the complexity of glycosphingolipidome: the key role of mass spectrometry in the structural analysis of glycosphingolipids. Anal Bioanal Chem 2024; 416:5403-5421. [PMID: 39138658 PMCID: PMC11427620 DOI: 10.1007/s00216-024-05475-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 08/15/2024]
Abstract
Glycosphingolipids (GSL) are a highly heterogeneous class of lipids representing the majority of the sphingolipid category. GSL are fundamental constituents of cellular membranes that have key roles in various biological processes, such as cellular signaling, recognition, and adhesion. Understanding the structural complexity of GSL is pivotal for unraveling their functional significance in a biological context, specifically their crucial role in the pathophysiology of various diseases. Mass spectrometry (MS) has emerged as a versatile and indispensable tool for the structural elucidation of GSL enabling a deeper understanding of their complex molecular structures and their key roles in cellular dynamics and patholophysiology. Here, we provide a thorough overview of MS techniques tailored for the analysis of GSL, emphasizing their utility in probing GSL intricate structures to advance our understanding of the functional relevance of GSL in health and disease. The application of tandem MS using diverse fragmentation techniques, including novel ion activation methodologies, in studying glycan sequences, linkage positions, and fatty acid composition is extensively discussed. Finally, we address current challenges, such as the detection of low-abundance species and the interpretation of complex spectra, and offer insights into potential solutions and future directions by improving MS instrumentation for enhanced sensitivity and resolution, developing novel ionization techniques, or integrating MS with other analytical approaches for comprehensive GSL characterization.
Collapse
Affiliation(s)
- Karel Hořejší
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 53210, Pardubice, Czech Republic
- Department of Chemistry, Faculty of Science, University of South Bohemia in České Budějovice, Branišovská 1760, 370 05, České Budějovice, Czech Republic
| | - Michal Holčapek
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 53210, Pardubice, Czech Republic.
| |
Collapse
|
2
|
Szoke-Kovacs R, Khakoo S, Gogolak P, Salio M. Insights into the CD1 lipidome. Front Immunol 2024; 15:1462209. [PMID: 39238636 PMCID: PMC11375338 DOI: 10.3389/fimmu.2024.1462209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 08/05/2024] [Indexed: 09/07/2024] Open
Abstract
CD1 isoforms are MHC class I-like molecules that present lipid-antigens to T cells and have been associated with a variety of immune responses. The lipid repertoire bound and presented by the four CD1 isoforms may be influenced by factors such as the cellular lipidome, subcellular microenvironment, and the properties of the binding pocket. In this study, by shotgun mass spectrometry, we performed a comprehensive lipidomic analysis of soluble CD1 molecules. We identified 1040 lipids, of which 293 were present in all isoforms. Comparative analysis revealed that the isoforms bind almost any cellular lipid.CD1a and CD1c closely mirrored the cellular lipidome, while CD1b and CD1d showed a preference for sphingolipids. Each CD1 isoform was found to have unique lipid species, suggesting some distinct roles in lipid presentation and immune responses. These findings contribute to our understanding of the role of CD1 system in immunity and could have implications for the development of lipid-based therapeutics.
Collapse
Affiliation(s)
- Rita Szoke-Kovacs
- Immunocore Ltd, Experimental Immunology, Abingdon, United Kingdom
- Department of Immunology, University of Debrecen, Debrecen, Hungary
| | - Sophie Khakoo
- Immunocore Ltd, Experimental Immunology, Abingdon, United Kingdom
| | - Peter Gogolak
- Department of Immunology, University of Debrecen, Debrecen, Hungary
| | - Mariolina Salio
- Immunocore Ltd, Experimental Immunology, Abingdon, United Kingdom
| |
Collapse
|
3
|
Bell HN, Stockwell BR, Zou W. Ironing out the role of ferroptosis in immunity. Immunity 2024; 57:941-956. [PMID: 38749397 PMCID: PMC11101142 DOI: 10.1016/j.immuni.2024.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/20/2024] [Accepted: 03/26/2024] [Indexed: 05/19/2024]
Abstract
Ferroptosis is a type of regulated cell death that drives the pathophysiology of many diseases. Oxidative stress is detectable in many types of regulated cell death, but only ferroptosis involves lipid peroxidation and iron dependency. Ferroptosis originates and propagates from several organelles, including the mitochondria, endoplasmic reticulum, Golgi, and lysosomes. Recent data have revealed that immune cells can both induce and undergo ferroptosis. A mechanistic understanding of how ferroptosis regulates immunity is critical to understanding how ferroptosis controls immune responses and how this is dysregulated in disease. Translationally, more work is needed to produce ferroptosis-modulating immunotherapeutics. This review focuses on the role of ferroptosis in immune-related diseases, including infection, autoimmune diseases, and cancer. We discuss how ferroptosis is regulated in immunity, how this regulation contributes to disease pathogenesis, and how targeting ferroptosis may lead to novel therapies.
Collapse
Affiliation(s)
- Hannah N Bell
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan School of Medicine, Rogel Cancer Center, Ann Arbor, MI, USA; Graduate Program in Cancer Biology, University of Michigan, Ann Arbor, MI, USA; Graduate Program in Immunology, University of Michigan, Ann Arbor, MI, USA.
| | - Brent R Stockwell
- Department of Biological Sciences, Department of Chemistry, Department of Pathology and Cell Biology, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA.
| | - Weiping Zou
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan School of Medicine, Rogel Cancer Center, Ann Arbor, MI, USA; Graduate Program in Cancer Biology, University of Michigan, Ann Arbor, MI, USA; Graduate Program in Immunology, University of Michigan, Ann Arbor, MI, USA; Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI, USA.
| |
Collapse
|
4
|
Xu N, Qiao Q, Fang X, Wang G, An K, Jiang W, Li J, Xu Z. Solvatochromic Buffering Fluorescent Probe Resolves the Lipid Transport and Morphological Changes during Lipid Droplet Fusion by Super-Resolution Imaging. Anal Chem 2024; 96:4709-4715. [PMID: 38457637 DOI: 10.1021/acs.analchem.4c00292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
The varied functions of lipid droplets, which encompass the regulation of lipid and energy homeostasis, as well as their association with the occurrence of various metabolic diseases, are intricately linked to their dynamic properties. Super-resolution imaging techniques have emerged to decipher physiological processes and molecular mechanisms on the nanoscale. However, achieving long-term dynamic super-resolution imaging faces challenges due to the need for fluorescent probes with high photostability. This paper introduces LD-CF, a "buffering probe" for imaging lipid droplet dynamics using structured illumination microscopy (SIM). The polarity-sensitive LD-CF eliminates background fluorescence with a "cyan filter" strategy, enabling wash-free imaging of lipid droplets. In the fluorescent "off" state outside droplets, the probes act as a "buffering pool", replacing photobleached probes inside droplets and enabling photostable long-term SIM imaging. With this probe, three modes of lipid droplet fusion were observed, including the discovery of fusion from large to small lipid droplets. Fluorescence intensity tracking also revealed the direction of lipid transport during the lipid droplet fusion.
Collapse
Affiliation(s)
- Ning Xu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- School of Chemistry, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Qinglong Qiao
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Xiangning Fang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Guangying Wang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Kai An
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Wenchao Jiang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Jin Li
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Zhaochao Xu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- School of Chemistry, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| |
Collapse
|
5
|
Kulyk DS, Baryshnikov GV, Damale PS, Maher S, Badu-Tawiah AK. Charge inversion under plasma-nanodroplet reaction conditions excludes Fischer esterification for unsaturated fatty acids: a chemical approach for type II isobaric overlap. Chem Sci 2024; 15:914-922. [PMID: 38239686 PMCID: PMC10793210 DOI: 10.1039/d3sc05369e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/10/2023] [Indexed: 01/22/2024] Open
Abstract
Direct infusion ionization methods provide the highest throughput strategy for mass spectrometry (MS) analysis of low-volume samples. But the trade-off includes matrix effects, which can significantly reduce analytical performance. Herein, we present a novel chemical approach to tackle a special type of matrix effect, namely type II isobaric overlap. We focus on detailed investigation of a nanodroplet-based esterification chemistry for differentiating isotopologue [M + 2] signal due to unsaturated fatty acid (FA) from the monoisotopic signal from a saturated FA. The method developed involves the online fusion of nonthermal plasma with charged nanodroplets, enabling selective esterification of saturated FAs. We discovered that unsaturated FAs undergo spontaneous intramolecular reaction via a novel mechanism based on a carbocation intermediate to afford a protonated lactone moiety (resonance stabilized cyclic carbonium ion), whose mass is the same as the original protonated unsaturated FA. Therefore, the monoisotopic signal from any saturated FA can be selectively shifted away from the mass-to-charge position where the isobaric interference occurs to enable effective characterization by MS. The mechanism governing the spontaneous intramolecular reactions for unsaturated FAs was validated with DFT calculations, experimentation with standards, and isotope labeling. This novel insight achieved via the ultrafast plasma-nanodroplet reaction environment provides a potentially useful synthetic pathway to achieve catalyst-free lactone preparation. Analytically, we believe the performance of direct infusion MS can be greatly enhanced by combining our approach with prior sample enrichment steps for applications in biomedicine and food safety. Also, combination with portable mass spectrometers can improve the efficiency of field studies since front-end separation is not possible under such conditions.
Collapse
Affiliation(s)
- Dmytro S Kulyk
- Department of Chemistry and Biochemistry, The Ohio State University 100 West 18th Ave. Columbus OH 43210 USA
| | - Glib V Baryshnikov
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University SE-60174 Norrköping Sweden
| | - Purva S Damale
- Department of Chemistry and Biochemistry, The Ohio State University 100 West 18th Ave. Columbus OH 43210 USA
| | - Simon Maher
- Department of Electrical Engineering and Electronics, University of Liverpool Liverpool UK
| | - Abraham K Badu-Tawiah
- Department of Chemistry and Biochemistry, The Ohio State University 100 West 18th Ave. Columbus OH 43210 USA
| |
Collapse
|
6
|
Lazaridi E, Hennebelle M, Hollebrands B, Hageman J, Vincken JP, Janssen HG. Selective ionization of oxidized lipid species using different solvent additives in flow injection mass spectrometry. Anal Bioanal Chem 2024; 416:787-799. [PMID: 37847408 PMCID: PMC10766781 DOI: 10.1007/s00216-023-04988-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/18/2023]
Abstract
Lipid oxidation in food products is a crucial problem that causes undesirable changes in the food's flavor, texture, and nutritional value. It should be carefully monitored as it can lead to the formation of potentially toxic compounds and in that way reduce the shelf life of the product. Liquid chromatography coupled to mass spectrometry is a powerful tool to monitor the formation of oxidized lipids. However, the presence of lipid species in both their non-oxidized and oxidized forms at distinctly different concentrations can hinder the detection and identification of the less abundant oxidized species, due to coelution. In this study, a flow injection mass spectrometry approach was used to selectively ionize oxidized triacylglycerols versus their non-oxidized precursors. Three mobile phase additives were investigated (ammonium formate, sodium acetate, and sodium iodide) at three different concentrations, and ion source settings (i.e., sheath gas temperature, capillary voltage, and nozzle voltage) were optimized. A fractional factorial design was conducted to examine not only the direct effect of the operating parameters on the selectivity of ionization for the oxidized lipid species, but also to assess their combined effect. Overall, selective ionization of oxidized versus non-oxidized lipid species was favored by the use of sodium-containing solvent additives. The application of specific ion source settings resulted in an increased ionization selectivity, with sheath gas temperature and capillary voltage having the most significant influence. A selectivity factor as high as 120 could be reached by combining 0.1 mg/mL sodium-containing additives, with 250 °C sheath gas temperature and 5000 V capillary voltage. These findings will contribute to future studies on fast detection and relative quantification of low abundant oxidized triacylglycerols and their possible impact on human health.
Collapse
Affiliation(s)
- Eleni Lazaridi
- Laboratory of Food Chemistry, Wageningen University & Research, Wageningen, the Netherlands
| | - Marie Hennebelle
- Laboratory of Food Chemistry, Wageningen University & Research, Wageningen, the Netherlands.
| | - Boudewijn Hollebrands
- Laboratory of Organic Chemistry, Wageningen University & Research, Wageningen, the Netherlands
- Unilever Food Innovation Center, Wageningen, the Netherlands
| | - Jos Hageman
- Biometris, Applied Statistics, Wageningen University & Research, Wageningen, the Netherlands
| | - Jean-Paul Vincken
- Laboratory of Food Chemistry, Wageningen University & Research, Wageningen, the Netherlands
| | - Hans-Gerd Janssen
- Laboratory of Organic Chemistry, Wageningen University & Research, Wageningen, the Netherlands.
- Unilever Food Innovation Center, Wageningen, the Netherlands.
| |
Collapse
|
7
|
Wang D, Xiao H, Lv X, Chen H, Wei F. Mass Spectrometry Based on Chemical Derivatization Has Brought Novel Discoveries to Lipidomics: A Comprehensive Review. Crit Rev Anal Chem 2023:1-32. [PMID: 37782560 DOI: 10.1080/10408347.2023.2261130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Lipids, as one of the most important organic compounds in organisms, are important components of cells and participate in energy storage and signal transduction of living organisms. As a rapidly rising field, lipidomics research involves the identification and quantification of multiple classes of lipid molecules, as well as the structure, function, dynamics, and interactions of lipids in living organisms. Due to its inherent high selectivity and high sensitivity, mass spectrometry (MS) is the "gold standard" analysis technique for small molecules in biological samples. The combination chemical derivatization with MS detection is a unique strategy that could improve MS ionization efficiency, facilitate structure identification and quantitative analysis. Herein, this review discusses derivatization-based MS strategies for lipidomic analysis over the past decade and focuses on all the reported lipid categories, including fatty acids and modified fatty acids, glycerolipids, glycerophospholipids, sterols and saccharolipids. The functional groups of lipids mainly involved in chemical derivatization include the C=C group, carboxyl group, hydroxyl group, amino group, carbonyl group. Furthermore, representative applications of these derivatization-based lipid profiling methods were summarized. Finally, challenges and countermeasures of lipid derivatization are mentioned and highlighted to guide future studies of derivatization-based MS strategy in lipidomics.
Collapse
Affiliation(s)
- Dan Wang
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan, Hubei, PR China
| | - Huaming Xiao
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan, Hubei, PR China
| | - Xin Lv
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan, Hubei, PR China
| | - Hong Chen
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan, Hubei, PR China
| | - Fang Wei
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan, Hubei, PR China
- Hubei Hongshan Laboratory, Wuhan, Hubei, PR China
| |
Collapse
|
8
|
Huang S, Zhang D, Wang Q, Shang B, Liu J, Xing X, Hong Y, Duan X, Sun H. Shotgun lipidomics reveals the changes in phospholipids of brown rice during accelerated aging. Food Res Int 2023; 171:113073. [PMID: 37330832 DOI: 10.1016/j.foodres.2023.113073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/28/2023] [Accepted: 05/29/2023] [Indexed: 06/19/2023]
Abstract
Brown rice exhibits higher nutritional value and attracts more and more attentions; however, the change in phospholipid molecular species in brown rice during aging is poorly understood. In this study, shotgun lipidomics was employed to investigate the changes in phospholipid molecular species in four brown rice varieties (two japonica rice and two indica rice) during accelerated aging. A total of 64 phospholipid molecular species were identified, and most of them were rich in polyunsaturated fatty acids. For japonica rice, phosphatidylcholine (PC), phosphatidylethanolamine (PE), and phosphatidylglycerol (PG) gradually decreased during accelerated aging. However, the content of PC, PE, and PG in indica rice showed no difference during accelerated aging. Significantly different phospholipid molecular species from four brown rice were screened during accelerated aging. Based on these significantly different phospholipids, the metabolic pathways including glycerophospholipid metabolism and linoleic acid metabolism during accelerated aging were depicted. The findings from this study could be helpful in explaining the impact of accelerated aging on phospholipids of brown rice, and offer an understanding on relationships between phospholipids degradation and brown rice deterioration.
Collapse
Affiliation(s)
- Shanshan Huang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Dong Zhang
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China.
| | - Qian Wang
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Bo Shang
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Jianlei Liu
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Xiaoting Xing
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Yu Hong
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Xiaoliang Duan
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China.
| | - Hui Sun
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China.
| |
Collapse
|
9
|
Guo L, Zhu J, Wang K, Cheng KK, Xu J, Dong L, Xu X, Chen C, Shah M, Peng Z, Wang J, Cai Z, Dong J. Multimodal Image Fusion Offers Better Spatial Resolution for Mass Spectrometry Imaging. Anal Chem 2023. [PMID: 37296503 DOI: 10.1021/acs.analchem.3c02002] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
High-resolution reconstruction has attracted increasing research interest in mass spectrometry imaging (MSI), but it remains a challenging ill-posed problem. In the present study, we proposed a deep learning model to fuse multimodal images to enhance the spatial resolution of MSI data, namely, DeepFERE. Hematoxylin and eosin (H&E) stain microscopy imaging was used to pose constraints in the process of high-resolution reconstruction to alleviate the ill-posedness. A novel model architecture was designed to achieve multi-task optimization by incorporating multi-modal image registration and fusion in a mutually reinforced framework. Experimental results demonstrated that the proposed DeepFERE model is able to produce high-resolution reconstruction images with rich chemical information and a detailed structure on both visual inspection and quantitative evaluation. In addition, our method was found to be able to improve the delimitation of the boundary between cancerous and para-cancerous regions in the MSI image. Furthermore, the reconstruction of low-resolution spatial transcriptomics data demonstrated that the developed DeepFERE model may find wider applications in biomedical fields.
Collapse
Affiliation(s)
- Lei Guo
- Department of Electronic Science, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen 361005, China
| | - Jinyu Zhu
- Department of Electronic Science, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen 361005, China
| | - Keqi Wang
- Institute of Big Data Science and Industry, Shanxi University, Taiyuan 030006, China
| | - Kian-Kai Cheng
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor Bahru, Johor 81310, Malaysia
| | - Jingjing Xu
- Department of Electronic Science, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen 361005, China
| | - Liheng Dong
- School of Computing and Data Science, Xiamen University Malaysia, Sepang 43600, Malaysia
| | - Xiangnan Xu
- School of Mathematics and Statistics, The University of Sydney, Sydney, NSW 2006, Australia
| | - Can Chen
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Mudassir Shah
- Department of Electronic Science, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen 361005, China
| | - Zhangxiao Peng
- Department of Molecular Oncology, Eastern Hepatobiliary Surgery Hospital & National Centre for Liver Cancer, Navy Military Medical University, Shanghai 200438, China
| | - Jianing Wang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR 999077, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR 999077, China
| | - Jiyang Dong
- Department of Electronic Science, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen 361005, China
| |
Collapse
|
10
|
Shi C, Zi Y, Huang S, Chen J, Wang X, Zhong J. Development and application of lipidomics for food research. ADVANCES IN FOOD AND NUTRITION RESEARCH 2023; 104:1-42. [PMID: 37236729 DOI: 10.1016/bs.afnr.2022.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Lipidomics is an emerging and promising omics derived from metabolomics to comprehensively analyze all of lipid molecules in biological matrices. The purpose of this chapter is to introduce the development and application of lipidomics for food research. First, three aspects of sample preparation are introduced: food sampling, lipid extraction, and transportation and storage. Second, five types of instruments for data acquisition are summarized: direct infusion-mass spectrometry (MS), chromatographic separation-MS, ion mobility-MS, MS imaging, and nuclear magnetic resonance spectroscopy. Third, data acquisition and analysis software are described for the lipidomics software development. Fourth, the application of lipidomics for food research is discussed such as food origin and adulteration analysis, food processing research, food preservation research, and food nutrition and health research. All the contents suggest that lipidomics is a powerful tool for food research based on its ability of lipid component profile analysis.
Collapse
Affiliation(s)
- Cuiping Shi
- Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ye Zi
- Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai, China
| | - Shudan Huang
- Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai, China
| | - Jiahui Chen
- Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai, China
| | - Xichang Wang
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai, China
| | - Jian Zhong
- Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
11
|
Xia F, Wan JB. Chemical derivatization strategy for mass spectrometry-based lipidomics. MASS SPECTROMETRY REVIEWS 2023; 42:432-452. [PMID: 34486155 DOI: 10.1002/mas.21729] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/02/2021] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
Lipids, serving as the structural components of cellular membranes, energy storage, and signaling molecules, play the essential and multiple roles in biological functions of mammals. Mass spectrometry (MS) is widely accepted as the first choice for lipid analysis, offering good performance in sensitivity, accuracy, and structural characterization. However, the untargeted qualitative profiling and absolute quantitation of lipids are still challenged by great structural diversity and high structural similarity. In recent decade, chemical derivatization mainly targeting carboxyl group and carbon-carbon double bond of lipids have been developed for lipidomic analysis with diverse advantages: (i) offering more characteristic structural information; (ii) improving the analytical performance, including chromatographic separation and MS sensitivity; (iii) providing one-to-one chemical isotope labeling internal standards based on the isotope derivatization regent in quantitative analysis. Moreover, the chemical derivatization strategy has shown great potential in combination with ion mobility mass spectrometry and ambient mass spectrometry. Herein, we summarized the current states and advances in chemical derivatization-assisted MS techniques for lipidomic analysis, and their strengths and challenges are also given. In summary, the chemical derivatization-based lipidomic approach has become a promising and reliable technique for the analysis of lipidome in complex biological samples.
Collapse
Affiliation(s)
- Fangbo Xia
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, China
| | - Jian-Bo Wan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, China
| |
Collapse
|
12
|
Hu R, Li Y, Yang Y, Liu M. Mass spectrometry-based strategies for single-cell metabolomics. MASS SPECTROMETRY REVIEWS 2023; 42:67-94. [PMID: 34028064 DOI: 10.1002/mas.21704] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 05/05/2021] [Accepted: 05/11/2021] [Indexed: 06/12/2023]
Abstract
Single cell analysis has drawn increasing interest from the research community due to its capability to interrogate cellular heterogeneity, allowing refined tissue classification and facilitating novel biomarker discovery. With the advancement of relevant instruments and techniques, it is now possible to perform multiple omics including genomics, transcriptomics, metabolomics or even proteomics at single cell level. In comparison with other omics studies, single-cell metabolomics (SCM) represents a significant challenge since it involves many types of dynamically changing compounds with a wide range of concentrations. In addition, metabolites cannot be amplified. Although difficult, considerable progress has been made over the past decade in mass spectrometry (MS)-based SCM in terms of processing technologies and biochemical applications. In this review, we will summarize recent progress in the development of promising MS platforms, sample preparation methods and SCM analysis of various cell types (including plant cell, cancer cell, neuron, embryo cell, and yeast cell). Current limitations and future research directions in the field of SCM will also be discussed.
Collapse
Affiliation(s)
- Rui Hu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ying Li
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yunhuang Yang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Maili Liu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
13
|
Hustin J, Kune C, Far J, Eppe G, Debois D, Quinton L, De Pauw E. Differential Kendrick's Plots as an Innovative Tool for Lipidomics in Complex Samples: Comparison of Liquid Chromatography and Infusion-Based Methods to Sample Differential Study. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:2273-2282. [PMID: 36378810 DOI: 10.1021/jasms.2c00232] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Lipidomics has developed rapidly over the past decade. Nontargeted lipidomics from biological samples remains a challenge due to the high structural diversity, the concentration range of lipids, and the complexity of biological samples. We introduce here the use of differential Kendrick's plots as a rapid visualization tool for a qualitative nontargeted analysis of lipids categories and classes from data generated by either liquid chromatography-mass spectrometry (LC-MS) or direct infusion (nESI-MS). Each lipid class is easily identified by comparison with the theoretical Kendrick plot pattern constructed from exact mass measurements and by using MSKendrickFilter, an in-house Python software. The lipids are identified with the LIPID MAPS database. In addition, in LC-MS, the software based on the Kendrick plots returns the retention time from all the lipids belonging to the same series. Lipid extracts from a yeast (Saccharomyces cerevisiae) are used as a model. An on/off case comparing Kendrick plots from two cell lines (prostate cancer cell lines treated or not with a DGAT2 inhibition) clearly shows the effect of the inhibition. Our study demonstrates the good performance of direct infusion as a fast qualitative screening method as well as for the analysis of chromatograms. A fast screening semiquantitative approach is also possible, while the targeted mode remains the golden standard for precise quantitative analysis.
Collapse
Affiliation(s)
- Justine Hustin
- Mass Spectrometry Laboratory, MolSys Research Unit, Department of Chemistry, University of Liège, Allée du Six Août 11 - Quartier Agora, 4000Liège, Belgium
| | - Christopher Kune
- Mass Spectrometry Laboratory, MolSys Research Unit, Department of Chemistry, University of Liège, Allée du Six Août 11 - Quartier Agora, 4000Liège, Belgium
| | - Johann Far
- Mass Spectrometry Laboratory, MolSys Research Unit, Department of Chemistry, University of Liège, Allée du Six Août 11 - Quartier Agora, 4000Liège, Belgium
| | - Gauthier Eppe
- Mass Spectrometry Laboratory, MolSys Research Unit, Department of Chemistry, University of Liège, Allée du Six Août 11 - Quartier Agora, 4000Liège, Belgium
| | | | - Loïc Quinton
- Mass Spectrometry Laboratory, MolSys Research Unit, Department of Chemistry, University of Liège, Allée du Six Août 11 - Quartier Agora, 4000Liège, Belgium
| | - Edwin De Pauw
- Mass Spectrometry Laboratory, MolSys Research Unit, Department of Chemistry, University of Liège, Allée du Six Août 11 - Quartier Agora, 4000Liège, Belgium
| |
Collapse
|
14
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2019-2020. MASS SPECTROMETRY REVIEWS 2022:e21806. [PMID: 36468275 DOI: 10.1002/mas.21806] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
This review is the tenth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2020. Also included are papers that describe methods appropriate to analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. The review is basically divided into three sections: (1) general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, quantification and the use of arrays. (2) Applications to various structural types such as oligo- and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals, and (3) other areas such as medicine, industrial processes and glycan synthesis where MALDI is extensively used. Much of the material relating to applications is presented in tabular form. The reported work shows increasing use of incorporation of new techniques such as ion mobility and the enormous impact that MALDI imaging is having. MALDI, although invented nearly 40 years ago is still an ideal technique for carbohydrate analysis and advancements in the technique and range of applications show little sign of diminishing.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
- Department of Chemistry, University of Oxford, Oxford, Oxfordshire, United Kingdom
| |
Collapse
|
15
|
Bindila L, Eid T, Mills JD, Hildebrand MS, Brennan GP, Masino SA, Whittemore V, Perucca P, Reid CA, Patel M, Wang KK, van Vliet EA. A companion to the preclinical common data elements for proteomics, lipidomics, and metabolomics data in rodent epilepsy models. A report of the TASK3-WG4 omics working group of the ILAE/AES joint translational TASK force. Epilepsia Open 2022. [PMID: 36259125 DOI: 10.1002/epi4.12662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 05/19/2022] [Indexed: 11/07/2022] Open
Abstract
The International League Against Epilepsy/American Epilepsy Society (ILAE/AES) Joint Translational Task Force established the TASK3 working groups to create common data elements (CDEs) for various preclinical epilepsy research disciplines. This is the second in a two-part series of omics papers, with the other including genomics, transcriptomics, and epigenomics. The aim of the CDEs was to improve the standardization of experimental designs across a range of epilepsy research-related methods. We have generated CDE tables with key parameters and case report forms (CRFs) containing the essential contents of the study protocols for proteomics, lipidomics, and metabolomics of samples from rodent models and people with epilepsy. We discuss the important elements that need to be considered for the proteomics, lipidomics, and metabolomics methodologies, providing a rationale for the parameters that should be documented.
Collapse
Affiliation(s)
- Laura Bindila
- Clinical Lipidomics Unit, Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Tore Eid
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - James D Mills
- Amsterdam UMC location University of Amsterdam, Department of (Neuro)Pathology, Amsterdam Neuroscience, University of Amsterdam, Amsterdam, the Netherlands
| | - Michael S Hildebrand
- Epilepsy Research Centre, Department of Medicine (Austin Health), The University of Melbourne, Heidelberg, Victoria, Australia
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, Victoria, Australia
| | - Gary P Brennan
- UCD School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin, Ireland
- FutureNeuro Research Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Susan A Masino
- Neuroscience Program and Psychology Department, Life Sciences Center, Trinity College, Hartford, Connecticut, USA
| | - Vicky Whittemore
- Division of Neuroscience, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Piero Perucca
- Epilepsy Research Centre, Department of Medicine (Austin Health), The University of Melbourne, Heidelberg, Victoria, Australia
- Bladin-Berkovic Comprehensive Epilepsy Program, Austin Health, Heidelberg, Victoria, Australia
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Neurology, The Royal Melbourne Hospital, Melbourne, Victoria, Australia
- Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
| | - Christopher A Reid
- Epilepsy Research Centre, Department of Medicine (Austin Health), The University of Melbourne, Heidelberg, Victoria, Australia
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Manisha Patel
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kevin K Wang
- Program for Neurotrauma, Neuroproteomics & Biomarker Research (NNBR), Department of Emergency Medicine, Psychiatry and Neuroscience, University of Florida, Gainesville, Florida, USA
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, Florida, USA
| | - Erwin A van Vliet
- Amsterdam UMC location University of Amsterdam, Department of (Neuro)Pathology, Amsterdam Neuroscience, University of Amsterdam, Amsterdam, the Netherlands
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
16
|
Ultrahigh-performance supercritical fluid chromatography for intraclass separation of lipids: Investigation of general principles. J Chromatogr A 2022; 1670:462975. [DOI: 10.1016/j.chroma.2022.462975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/08/2022] [Accepted: 03/13/2022] [Indexed: 11/23/2022]
|
17
|
Gao F, Tom E, Skowronska-Krawczyk D. Dynamic Progress in Technological Advances to Study Lipids in Aging: Challenges and Future Directions. FRONTIERS IN AGING 2022; 3:851073. [PMID: 35821837 PMCID: PMC9261449 DOI: 10.3389/fragi.2022.851073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 02/23/2022] [Indexed: 11/29/2022]
Abstract
Lipids participate in all cellular processes. Diverse methods have been developed to investigate lipid composition and distribution in biological samples to understand the effect of lipids across an organism’s lifespan. Here, we summarize the advanced techniques for studying lipids, including mass spectrometry-based lipidomics, lipid imaging, chemical-based lipid analysis and lipid engineering and their advantages. We further discuss the limitation of the current methods to gain an in-depth knowledge of the role of lipids in aging, and the possibility of lipid-based therapy in aging-related diseases.
Collapse
Affiliation(s)
- Fangyuan Gao
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, United States
| | - Emily Tom
- Department of Physiology and Biophysics, Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, United States
| | - Dorota Skowronska-Krawczyk
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, United States
- Department of Physiology and Biophysics, Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, United States
- *Correspondence: Dorota Skowronska-Krawczyk,
| |
Collapse
|
18
|
Pinto B, Conde T, Domingues I, Domingues MR. Adaptation of Lipid Profiling in Depression Disease and Treatment: A Critical Review. Int J Mol Sci 2022; 23:ijms23042032. [PMID: 35216147 PMCID: PMC8874755 DOI: 10.3390/ijms23042032] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 11/30/2022] Open
Abstract
Major depressive disorder (MDD), also called depression, is a serious disease that impairs the quality of life of patients and has a high incidence, affecting approximately 3.8% of the world population. Its diagnosis is very subjective and is not supported by measurable biomarkers mainly due to the lack of biochemical markers. Recently, disturbance of lipid profiling has been recognized in MDD, in animal models of MDD or in depressed patients, which may contribute to unravel the etiology of the disease and find putative new biomarkers, for a diagnosis or for monitoring the disease and therapeutics outcomes. In this review, we provide an overview of current knowledge of lipidomics analysis, both in animal models of MDD (at the brain and plasma level) and in humans (in plasma and serum). Furthermore, studies of lipidomics analyses after antidepressant treatment in rodents (in brain, plasma, and serum), in primates (in the brain) and in humans (in plasma) were reviewed and give evidence that antidepressants seem to counteract the modification seen in lipids in MDD, giving some evidence that certain altered lipid profiles could be useful MDD biomarkers for future precision medicine.
Collapse
Affiliation(s)
- Bruno Pinto
- Centre for Environmental and Marine Studies, CESAM, Department of Chemistry, Santiago University Campus, University of Aveiro, 3810-193 Aveiro, Portugal; (B.P.); (T.C.)
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, Santiago University Campus, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Tiago Conde
- Centre for Environmental and Marine Studies, CESAM, Department of Chemistry, Santiago University Campus, University of Aveiro, 3810-193 Aveiro, Portugal; (B.P.); (T.C.)
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, Santiago University Campus, University of Aveiro, 3810-193 Aveiro, Portugal
- Institute of Biomedicine—iBiMED, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Inês Domingues
- Centre for Environmental and Marine Studies, CESAM, Department of Biology, Santiago University Campus, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - M. Rosário Domingues
- Centre for Environmental and Marine Studies, CESAM, Department of Chemistry, Santiago University Campus, University of Aveiro, 3810-193 Aveiro, Portugal; (B.P.); (T.C.)
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, Santiago University Campus, University of Aveiro, 3810-193 Aveiro, Portugal
- Correspondence:
| |
Collapse
|
19
|
Zhu Y, Li P, Meng R, Li X, Qiu Y, Wang L, Zhang S, Zhang X, Lin H, Zhai H, Liu K. Lipid Profiles of the Heads of Four Shrimp Species by UPLC-Q-Exactive Orbitrap/MS and Their Cardiovascular Activities. Molecules 2022; 27:molecules27020350. [PMID: 35056663 PMCID: PMC8781101 DOI: 10.3390/molecules27020350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/01/2022] [Accepted: 01/03/2022] [Indexed: 02/01/2023] Open
Abstract
Lipids are key factors in nutrition, structural function, metabolic features, and other biological functions. In this study, the lipids from the heads of four species of shrimp (Fenneropenaeus chinensis (FC), Penaeus japonicus (PJ), Penaeus vannamei (PV), and Procambarus clarkia (PCC)) were compared and characterized based on UPLC-Q-Exactive Orbitrap/MS. We compared the differences in lipid composition of four kinds of shrimp head using multivariate analysis. In addition, a zebrafish model was used to evaluate pro-angiogenic, anti-inflammatory, anti-thrombotic, and cardioprotective activities of the shrimp head lipids. The lipids from the four kinds of shrimp head had different degrees of pro-angiogenic activities, and the activities of PCC and PJ shrimp lipids were more significant than those of the other two species. Four lipid groups displayed strong anti-inflammatory activities. For antithrombotic activity, only PCC (25 μg/mL) and PV (100 μg/mL) groups showed obvious activity. In terms of cardioprotective activity, the four kinds of lipid groups significantly increased the zebrafish heart rhythms. The heart distances were shortened, except for those of the FC (100 μg/mL) and PJ (25 μg/mL) groups. Our comprehensive lipidomics analysis and bioactivity study of lipids from different sources could provide a basis for the better utilization of shrimp.
Collapse
Affiliation(s)
- Yongqiang Zhu
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Key Laboratory for Biosensor of Shandong Province, Biology Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250103, China; (Y.Z.); (P.L.); (Y.Q.); (L.W.); (S.Z.); (X.Z.)
- Bioengineering Technology Innovation Center of Shandong Province, Qilu University of Technology, Shandong Academy of Sciences, Heze 274000, China
| | - Peihai Li
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Key Laboratory for Biosensor of Shandong Province, Biology Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250103, China; (Y.Z.); (P.L.); (Y.Q.); (L.W.); (S.Z.); (X.Z.)
| | - Ronghua Meng
- Physical and Chemical Examination Division, Zoucheng Center for Disease Control and Prevention, Zoucheng 273500, China;
| | - Xiaobin Li
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Key Laboratory for Biosensor of Shandong Province, Biology Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250103, China; (Y.Z.); (P.L.); (Y.Q.); (L.W.); (S.Z.); (X.Z.)
- Bioengineering Technology Innovation Center of Shandong Province, Qilu University of Technology, Shandong Academy of Sciences, Heze 274000, China
- Correspondence: (X.L.); (K.L.)
| | - Yuezi Qiu
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Key Laboratory for Biosensor of Shandong Province, Biology Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250103, China; (Y.Z.); (P.L.); (Y.Q.); (L.W.); (S.Z.); (X.Z.)
| | - Lizheng Wang
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Key Laboratory for Biosensor of Shandong Province, Biology Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250103, China; (Y.Z.); (P.L.); (Y.Q.); (L.W.); (S.Z.); (X.Z.)
| | - Shanshan Zhang
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Key Laboratory for Biosensor of Shandong Province, Biology Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250103, China; (Y.Z.); (P.L.); (Y.Q.); (L.W.); (S.Z.); (X.Z.)
| | - Xuanming Zhang
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Key Laboratory for Biosensor of Shandong Province, Biology Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250103, China; (Y.Z.); (P.L.); (Y.Q.); (L.W.); (S.Z.); (X.Z.)
| | - Houwen Lin
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China;
| | - Hongbin Zhai
- Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China;
| | - Kechun Liu
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Key Laboratory for Biosensor of Shandong Province, Biology Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250103, China; (Y.Z.); (P.L.); (Y.Q.); (L.W.); (S.Z.); (X.Z.)
- Correspondence: (X.L.); (K.L.)
| |
Collapse
|
20
|
Engel KM, Prabutzki P, Leopold J, Nimptsch A, Lemmnitzer K, Vos DRN, Hopf C, Schiller J. A new update of MALDI-TOF mass spectrometry in lipid research. Prog Lipid Res 2022; 86:101145. [PMID: 34995672 DOI: 10.1016/j.plipres.2021.101145] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/06/2021] [Accepted: 12/29/2021] [Indexed: 01/06/2023]
Abstract
Matrix-assisted laser desorption and ionization (MALDI) mass spectrometry (MS) is an indispensable tool in modern lipid research since it is fast, sensitive, tolerates sample impurities and provides spectra without major analyte fragmentation. We will discuss some methodological aspects, the related ion-forming processes and the MALDI MS characteristics of the different lipid classes (with the focus on glycerophospholipids) and the progress, which was achieved during the last ten years. Particular attention will be given to quantitative aspects of MALDI MS since this is widely considered as the most serious drawback of the method. Although the detailed role of the matrix is not yet completely understood, it will be explicitly shown that the careful choice of the matrix is crucial (besides the careful evaluation of the positive and negative ion mass spectra) in order to be able to detect all lipid classes of interest. Two developments will be highlighted: spatially resolved Imaging MS is nowadays well established and the distribution of lipids in tissues merits increasing interest because lipids are readily detectable and represent ubiquitous compounds. It will also be shown that a combination of MALDI MS with thin-layer chromatography (TLC) enables a fast spatially resolved screening of an entire TLC plate which makes the method competitive with LC/MS.
Collapse
Affiliation(s)
- Kathrin M Engel
- Leipzig University, Faculty of Medicine, Institute for Medical Physics and Biophysics, Härtelstraße 16-18, D-04107, Germany
| | - Patricia Prabutzki
- Leipzig University, Faculty of Medicine, Institute for Medical Physics and Biophysics, Härtelstraße 16-18, D-04107, Germany
| | - Jenny Leopold
- Leipzig University, Faculty of Medicine, Institute for Medical Physics and Biophysics, Härtelstraße 16-18, D-04107, Germany
| | - Ariane Nimptsch
- Leipzig University, Faculty of Medicine, Institute for Medical Physics and Biophysics, Härtelstraße 16-18, D-04107, Germany
| | - Katharina Lemmnitzer
- Leipzig University, Faculty of Medicine, Institute for Medical Physics and Biophysics, Härtelstraße 16-18, D-04107, Germany
| | - D R Naomi Vos
- Center for Biomedical Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack-Strasse 10, D-68163 Mannheim, Germany
| | - Carsten Hopf
- Center for Biomedical Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack-Strasse 10, D-68163 Mannheim, Germany
| | - Jürgen Schiller
- Leipzig University, Faculty of Medicine, Institute for Medical Physics and Biophysics, Härtelstraße 16-18, D-04107, Germany.
| |
Collapse
|
21
|
Zaikin VG, Borisov RS. Mass Spectrometry as a Crucial Analytical Basis for Omics Sciences. JOURNAL OF ANALYTICAL CHEMISTRY 2021. [PMCID: PMC8693159 DOI: 10.1134/s1061934821140094] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This review is devoted to the consideration of mass spectrometric platforms as applied to omics sciences. The most significant attention is paid to omics related to life sciences (genomics, proteomics, meta-bolomics, lipidomics, glycomics, plantomics, etc.). Mass spectrometric approaches to solving the problems of petroleomics, polymeromics, foodomics, humeomics, and exosomics, related to inorganic sciences, are also discussed. The review comparatively presents the advantages of various principles of separation and mass spectral techniques, complementary derivatization, used to obtain large arrays of various structural and quantitative information in the mentioned omics sciences.
Collapse
Affiliation(s)
- V. G. Zaikin
- Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991 Moscow, Russia
| | - R. S. Borisov
- Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991 Moscow, Russia
- RUDN University, 117198 Moscow, Russia
- Core Facility Center “Arktika,” Northern (Arctic) Federal University, 163002 Arkhangelsk, Russia
| |
Collapse
|
22
|
de Kok NAW, Exterkate M, Andringa RLH, Minnaard AJ, Driessen AJM. A versatile method to separate complex lipid mixtures using 1-butanol as eluent in a reverse-phase UHPLC-ESI-MS system. Chem Phys Lipids 2021; 240:105125. [PMID: 34453926 DOI: 10.1016/j.chemphyslip.2021.105125] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/07/2021] [Accepted: 08/20/2021] [Indexed: 10/20/2022]
Abstract
Simple, robust and versatile LC-MS based methods add to the rapid assessment of the lipidome of biological cells. Here we present a versatile RP-UHPLC-MS method using 1-butanol as the eluent, specifically designed to separate different highly hydrophobic lipids. This method is capable of separating different lipid classes of glycerophospholipid standards, in addition to phospholipids of the same class with a different acyl chain composition. The versatility of this method was demonstrated through analysis of lipid extracts of the bacterium Escherichia coli and the archaeon Sulfolobus acidocaldarius. In contrast to 2-propanol-based methods, the 1-butanol-based mobile phase is capable of eluting highly hydrophobic analytes such as cardiolipins, tetraether lipids and mycolic acids during the gradient instead of the isocratic purge phase, resulting in an enhanced separation of cardiolipins and extending the analytical range for RPLC.
Collapse
Affiliation(s)
- Niels A W de Kok
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands.
| | - Marten Exterkate
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands.
| | - Ruben L H Andringa
- Stratingh Institute for Chemistry, University of Groningen, Groningen, Netherlands.
| | - Adriaan J Minnaard
- Stratingh Institute for Chemistry, University of Groningen, Groningen, Netherlands.
| | - Arnold J M Driessen
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands.
| |
Collapse
|
23
|
Zhang P, Jiang J, Zhang K, Liu W, Tu P, Li J, Song Y, Zheng J, Tang L. Shotgun chemome characterization of Artemisia rupestris L. Using direct infusion-MS/MS ALL. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1176:122735. [PMID: 34020402 DOI: 10.1016/j.jchromb.2021.122735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 04/02/2021] [Accepted: 04/21/2021] [Indexed: 11/26/2022]
Abstract
In comparison of liquid chromatography, direct infusion is a superior choice to achieve high-throughput measurements. The specificity and selectivity of tandem mass spectrometry (MS/MS) actually result in a so-called MS separation potential when chemical characterization of herbal medicines. Here, a MS/MSALL program was introduced to promote DI-MS/MS to be an eligible tool for shotgun chemome characterization of Artemisia rupestris L. that is currently drawing worldwide interests because of the promising antiviral activity. After MS1 spectral acquisition for the crude extract, the gas phase fractionation concept enabled the precursor ion cohort sequentially entered the collision cell with a stepped unit mass window (step-size as 1 Da) to generate MS2 spectra, thus generating a unique property integrating the advantages of both data-dependent and data-independent acquisition manners. Even though being free of chromatographic separation, spectrometric separations were accomplished for by MS/MSALL program unless the components shared identical nominal molecular weights. Extensive efforts such as the correlations of MS1 signals with MS2 spectra, structural annotations of fragment ion species, information retrieval in some accessible databases, and referring to the literature data, were devoted for chemical characterization, and as a result, 44 compounds, in total, were structurally identified from 50% aqueous methanol exact of A. rupestris, including 8 caffeoyl quinic acid derivatives, 13 flavonoids, 15 monomeric and dimeric sesquiterpenoids, 4 fatty acids, 2 penylpropanoids, along with 2 other compounds. However, isomers were assigned as an isomeric mixture because their precursor ions always co-existed in a single mass window. Above all, DI-MS/MSALL provides an alternative tool for chemome characterization of herbal medicines, in particular when the great measurement workload for a large sample cohort, attributing to the high-throughput advantage.
Collapse
Affiliation(s)
- Peijie Zhang
- Key Laboratory of Ethnomedicine (Minzu University of China) Ministry of Education, School of Pharmacy, Minzu University of China, Beijing 100081, China; Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jun Jiang
- Shandong Institute for Food and Drug Control, Jinan 250101, China
| | - Ke Zhang
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wenjing Liu
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Pengfei Tu
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jun Li
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yuelin Song
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jiao Zheng
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Li Tang
- Key Laboratory of Ethnomedicine (Minzu University of China) Ministry of Education, School of Pharmacy, Minzu University of China, Beijing 100081, China.
| |
Collapse
|
24
|
Zhang K, Liu W, Song Q, Wan JB, Yu J, Gong X, Cao L, Si D, Tu P, Li J, Song Y. Integrated Strategy Drives Direct Infusion–Tandem Mass Spectrometry as an Eligible Tool for Shotgun Pseudo-Targeted Metabolomics of Medicinal Plants. Anal Chem 2021; 93:2541-2550. [DOI: 10.1021/acs.analchem.0c04602] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ke Zhang
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, East Road of North 3rd Ring, Chaoyang District, Beijing 100029, China
| | - Wenjing Liu
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, East Road of North 3rd Ring, Chaoyang District, Beijing 100029, China
| | - Qingqing Song
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, East Road of North 3rd Ring, Chaoyang District, Beijing 100029, China
| | - Jian-Bo Wan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao 999078, China
| | - Juan Yu
- Zhangzhou Pien Tze Huang Pharmaceutical Co., Ltd., Zhangzhou 363000, China
| | - Xingcheng Gong
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, East Road of North 3rd Ring, Chaoyang District, Beijing 100029, China
| | - Libo Cao
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, East Road of North 3rd Ring, Chaoyang District, Beijing 100029, China
| | - Dandan Si
- SCIEX China, Jiuxianqiao Middle Road, Chaoyang District, Beijing 100015, China
| | - Pengfei Tu
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, East Road of North 3rd Ring, Chaoyang District, Beijing 100029, China
| | - Jun Li
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, East Road of North 3rd Ring, Chaoyang District, Beijing 100029, China
| | - Yuelin Song
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, East Road of North 3rd Ring, Chaoyang District, Beijing 100029, China
| |
Collapse
|
25
|
|
26
|
High-coverage lipidomics for functional lipid and pathway analyses. Anal Chim Acta 2020; 1147:199-210. [PMID: 33485579 DOI: 10.1016/j.aca.2020.11.024] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 11/10/2020] [Accepted: 11/18/2020] [Indexed: 12/19/2022]
Abstract
Rapid advances in front-end separation approaches and analytical technologies have accelerated the development of lipidomics, particularly in terms of increasing analytical coverage to encompass an expanding repertoire of lipids within a single analytical approach. Developments in lipid pathway analysis, however, have somewhat lingered behind, primarily due to (1) the lack of coherent alignment between lipid identifiers in common databases versus that generated from experiments, owing to the differing structural resolution of lipids at molecular level that is specific to the analytical approaches adopted by various laboratories; (2) the immense complexity of lipid metabolic relationships that may entail head group changes, fatty acyls modifications of various forms (e.g. elongation, desaturation, oxidation), as well as active remodeling that demands a multidimensional, panoramic view to take into account all possibilities in lipid pathway analyses. Herein, we discuss current efforts undertaken to address these challenges, as well as alternative form of "pathway analyses" that may be particularly useful for uncovering functional lipid interactions under different biological contexts. Consolidating lipid pathway analyses will be indispensable in facilitating the transition of lipidomics from its prior role of phenotype validation to a hypothesis-generating tool that uncovers novel molecular targets to drive downstream mechanistic pursuits under biomedical settings.
Collapse
|