1
|
Chigozie AE, Ravikumar A, Yang X, Tamilselvan G, Deng Y, Arunjegan A, Li X, Hu Z, Zhang Z. A metal-phenolic coordination framework nanozyme exhibits dual enzyme mimicking activity and its application is effective for colorimetric detection of biomolecules. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:3530-3538. [PMID: 38779841 DOI: 10.1039/d4ay00689e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Biomolecules play vital roles in many biological processes and diseases, making their identification crucial. Herein, we present a colorimetric sensing method for detecting biomolecules like cysteine (Cys), homocysteine (Hcy), and glutathione (GSH). This approach is based on a reaction system whereby colorless 3,3',5,5'-tetramethylbenzidine (TMB) undergoes catalytic oxidation to form blue-colored oxidized TMB (ox-TMB) in the presence of hydrogen peroxide (H2O2), utilizing the peroxidase and catalase-mimicking activities of metal-phenolic coordination frameworks (MPNs) of Cu-TA, Co-TA, and Fe-TA nanospheres. The Fe-TA nanospheres demonstrated superior activity, more active sites and enhanced electron transport. Under optimal conditions, the Fe-TA nanospheres were used for the detection of biomolecules. When present, biomolecules inhibit the reaction between TMB and H2O2, causing various colorimetric responses at low detection limits of 0.382, 0.776 and 0.750 μM for Cys, Hcy and GSH. Furthermore, it was successfully applied to real water samples with good recovery results. The developed sensor not only offers a rapid, portable, and user-friendly technique for multi-target analysis of biomolecules at low concentrations but also expands the potential uses of MPNs for other targets in the environmental field.
Collapse
Affiliation(s)
- Aham Emmanuel Chigozie
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, Nigeria
| | - A Ravikumar
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Xiaofeng Yang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - G Tamilselvan
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Yibin Deng
- Center for Medical Laboratory Science, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China.
- Key Laboratory of Clinical Molecular Diagnosis and Research for High Incidence Diseases in Western Guangxi, Guangxi, 533000, China
| | - A Arunjegan
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Xuesong Li
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Zhang Hu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Zhen Zhang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
- Center for Medical Laboratory Science, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China.
- Key Laboratory of Clinical Molecular Diagnosis and Research for High Incidence Diseases in Western Guangxi, Guangxi, 533000, China
| |
Collapse
|
2
|
Piechocka J, Matwiej N, Gaweł M, Matyjaszczyk M, Głowacki R, Chwatko G. Application of the HPLC-ELSD technique for the determination of major metabolites of ibuprofen and creatinine in human urine. Sci Rep 2023; 13:20268. [PMID: 37985716 PMCID: PMC10662266 DOI: 10.1038/s41598-023-47594-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/15/2023] [Indexed: 11/22/2023] Open
Abstract
The report presents robust and high throughput methods, based on liquid chromatography coupled with evaporative light scattering detection (HPLC-ELSD), for the simultaneous determination of major metabolites of ibuprofen (IBU), namely 2-hydroxyibuprofen and carboxyibuprofen (method A) as well as creatinine (Crn) (method B) in human urine. The assays primarily involve straightforward sample purification. For both methods, the chromatographic separation of the analytes is achieved within 8 min at room temperature on Poroshell 120 SB-C18 (75 × 4.6 mm, 2.7 µm) column using gradient elution. The eluents consisted of 0.1% formic acid in water and acetonitrile (method A) or water and methanol (method B) delivered at a flow rate of 1 or 0.5 mL/min, respectively. In relation to metabolites of IBU, the assay linearity was observed within 0.06-0.5 g/L in urine, while the Crn assay linearity was demonstrated within 0.5-30 mmol/L in urine. The limit of quantification for IBU metabolites was determined to be 0.06 g/L, and 0.5 mmol/L for Crn. These methods were successfully applied to urine samples delivered by ten apparently healthy donors showing that the HPLC-ELSD assays are suitable for human urine screening.
Collapse
Affiliation(s)
- Justyna Piechocka
- Faculty of Chemistry, Department of Environmental Chemistry, University of Lodz, Pomorska 163/165, 90-236, Lodz, Poland.
| | - Natalia Matwiej
- Faculty of Chemistry, Department of Environmental Chemistry, University of Lodz, Pomorska 163/165, 90-236, Lodz, Poland
| | - Marta Gaweł
- Faculty of Chemistry, Department of Environmental Chemistry, University of Lodz, Pomorska 163/165, 90-236, Lodz, Poland
- Doctoral School of Exact and Natural Sciences, University of Lodz, Banacha 12/16, 90-237, Lodz, Poland
| | - Michał Matyjaszczyk
- Department of Family Medicine, Polish Mother's Memorial Hospital Research Institute, Rzgowska 281/289, 93-338, Lodz, Poland
- Department of Family Medicine, Medical University of Lodz, Narutowicza 60, 90-131, Lodz, Poland
| | - Rafał Głowacki
- Faculty of Chemistry, Department of Environmental Chemistry, University of Lodz, Pomorska 163/165, 90-236, Lodz, Poland
| | - Grażyna Chwatko
- Faculty of Chemistry, Department of Environmental Chemistry, University of Lodz, Pomorska 163/165, 90-236, Lodz, Poland.
| |
Collapse
|
3
|
Zhou Y, Li X, Zhao Y, Yang S, Huang L. Plasmonic alloys for quantitative determination and reaction monitoring of biothiols. J Mater Chem B 2023; 11:8639-8648. [PMID: 37491995 DOI: 10.1039/d3tb01076g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Biothiols participate in numerous physiological and pathological processes in an organism. Quantitative determination and reaction monitoring of biothiols have important implications for evaluating human health. Herein, we synthesized plasmonic alloys as the matrix to assist the laser desorption and ionization (LDI) process of biothiols in mass spectrometry (MS). Plasmonic alloys were constructed with mesoporous structures for LDI enhancement and trimetallic (PdPtAu) compositions for noble metal-thiol hybridization, toward enhanced detection sensitivity and selectivity, respectively. Plasmonic alloys enabled direct detection of biothiols from complex biosamples without any enrichment or separation. We introduced internal standards into the quantitative MS system, achieving accurate quantitation of methionine directly from serum samples with a recovery rate of 103.19% ± 6.52%. Moreover, we established a rapid monitoring platform for the oxidation-reduction reaction of glutathione, consuming trace samples down to 200 nL with an interval of seconds. This work contributes to the development of molecular tools based on plasmonic materials for biothiol detection toward real-case applications.
Collapse
Affiliation(s)
- Yan Zhou
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, P. R. China.
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, P. R. China
| | - Xvelian Li
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, P. R. China.
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, P. R. China
| | - Yuewei Zhao
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, P. R. China.
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, P. R. China
| | - Shouzhi Yang
- School of Biomedical Engineering, Institute of Medical Robotics and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Lin Huang
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, P. R. China.
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, P. R. China
| |
Collapse
|
4
|
Piechocka J, Głowacki R. One-pot sample preparation procedure for the determination of protein N-linked homocysteine by HPLC-FLD based method. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1228:123835. [PMID: 37478723 DOI: 10.1016/j.jchromb.2023.123835] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/13/2023] [Accepted: 07/15/2023] [Indexed: 07/23/2023]
Abstract
The report presents robust and high throughput method, based on liquid chromatography coupled with fluorescence detection (HPLC-FLD), for the determination of total protein N-linked homocysteine (Hcy) in human plasma. The assay involves simultaneous proteins precipitation with perchloric acid and removal of any other form of Hcy, except protein N-linked Hcy, via disulfides reduction with tris(2-carboxyethyl)phosphine (TCEP) and plasma protein pellet wash with perchloric acid followed by liberation of N-linked Hcy from proteins by hydrochloric acid hydrolysis, drying under vacuum and residue reconstitution in diluted hydrochloric acid. The chromatographic separation of resulting in this way Hcy-thiolactone (HTL) is achieved within 3 min at room temperature on PolymerX RP-1 (150 × 4.6 mm, 5.0 µm) column using isocratic elution with eluent, consisted of o-phthaldialdehyde (OPA) in sodium hydroxide and acetonitrile (ACN), delivered at a flow rate 1 mL/min. The analyte is quantified by monitoring fluorescence at 480 nm using excitation at 370 nm, in a linear range from 0.25 to 10 µmol/L in plasma, while the limit of quantification (LOQ) equals 0.25 µmol/L. The method was successfully applied to plasma samples delivered by fifteen apparently healthy donors showing that the HPLC-FLD assay is suitable for screening of human plasma.
Collapse
Affiliation(s)
- Justyna Piechocka
- University of Lodz, Faculty of Chemistry, Department of Environmental Chemistry, 163/165 Pomorska Str., 90-236 Łódź, Poland.
| | - Rafał Głowacki
- University of Lodz, Faculty of Chemistry, Department of Environmental Chemistry, 163/165 Pomorska Str., 90-236 Łódź, Poland
| |
Collapse
|
5
|
Piechocka J, Wyszczelska-Rokiel M, Głowacki R. Simultaneous determination of 2-(3-hydroxy-5-phosphonooxymethyl-2-methyl-4-pyridyl)-1,3-thiazolidine-4-carboxylic acid and main plasma aminothiols by HPLC-UV based method. Sci Rep 2023; 13:9294. [PMID: 37286735 DOI: 10.1038/s41598-023-36548-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/06/2023] [Indexed: 06/09/2023] Open
Abstract
The report presents the first method for simultaneous determination of plasma 2-(3-hydroxy-5-phosphonooxymethyl-2-methyl-4-pyridyl)-1,3-thiazolidine-4-carboxylic acid (HPPTCA), an adduct of cysteine (Cys) and active form of vitamin B6 pyridoxal 5'-phosphate (PLP), as well as total low molecular-weight thiols content, including Cys, homocysteine (Hcy), cysteinyl-glycine (Cys-Gly), and glutathione (GSH). The assay is based on high performance liquid chromatography coupled with ultraviolet detection (HPLC-UV) and involves disulfides reduction with tris(2-carboxyethyl)phosphine (TCEP), derivatization with 2-chloro-1-methylquinolinium tetrafluoroborate (CMQT) followed by sample deproteinization with perchloric acid (PCA). The chromatographic separation of obtained stable UV-absorbing derivatives is achieved on ZORBAX SB-C18 (150 × 4.6 mm, 5.0 µm) column using gradient elution with eluent consisted of 0.1 mol/L trichloroacetic acid (TCA), pH 1.7 and acetonitrile (ACN), delivered at a flow rate 1 mL/min. Under these conditions, the analytes are separated within 14 min at room temperature, and quantified by monitoring at 355 nm. Regarding HPPTCA, the assay linearity was demonstrated within a 1-100 µmol/L in plasma and the lowest concentration on the calibration curve was recognized as the limit of quantification (LOQ). The accuracy ranged from 92.74 to 105.57% and 95.43 to 115.73%, while precision varied from 2.48 to 6.99% and 0.84 to 6.98% for intra- and inter-day measurements, respectively. The utility of the assay was proved by application to plasma samples delivered by apparently healthy donors (n = 18) in which the HPPTCA concentration ranged from 19.2 to 65.6 µmol/L. The HPLC-UV assay provides complementary tool for routine clinical analysis, facilitating further studies on the role of aminothiols and HPPTCA in living systems.
Collapse
Affiliation(s)
- Justyna Piechocka
- Department of Environmental Chemistry, Faculty of Chemistry, University of Lodz, 163/165 Pomorska Str., 90-236, Łódź, Poland.
| | - Monika Wyszczelska-Rokiel
- Department of Environmental Chemistry, Faculty of Chemistry, University of Lodz, 163/165 Pomorska Str., 90-236, Łódź, Poland
| | - Rafał Głowacki
- Department of Environmental Chemistry, Faculty of Chemistry, University of Lodz, 163/165 Pomorska Str., 90-236, Łódź, Poland.
| |
Collapse
|
6
|
Cao YY, Guo MY, Liu XJ, Wang BZ, Jiao QC, Zhu HL. A highly chromogenic selective Rhodamine-chloride-based fluorescence probe activated by cysteine and application in living cells and zebrafish. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 283:121635. [PMID: 36007345 DOI: 10.1016/j.saa.2022.121635] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/10/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Cysteine (Cys), one of the biological thiols, which plays critical roles in biological system regulating the balance of redox homeostasis. In order to monitor the level of Cys in the living cells and organisms, a chromogenic fluorescence probe Rhocl-Cys based on Rhodamine chloride exhibiting the preferable performance of fluorescence turn-on response reacting with Cys was presented. Rhocl-Cys responded rapidly to Cys within 20 min, and had stable fluorescence intensity within pH 6.0-10.0, high selectivity towards Cys and the anti-inference capability with a low detection limit of 0.80 μM. In particular, Rhocl-Cys could qualitatively and quantitatively monitor the level of endogenous and exogenous Cys in living cells and successfully apply to zebrafish detecting Cys. Therefore, these results might further provide the basis exploring the role of Cys in biological system and facilitate as clinical diagnostic molecular tools.
Collapse
Affiliation(s)
- Yu-Yao Cao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Meng-Ya Guo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Xiao-Jing Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Bao-Zhong Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China.
| | - Qing-Cai Jiao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China.
| | - Hai-Liang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
7
|
Up-to-date knowledge about analytical methods for homocysteine thiolactone determination in biological samples. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
8
|
Kašička V. Recent developments in capillary and microchip electroseparations of peptides (2019-mid 2021). Electrophoresis 2021; 43:82-108. [PMID: 34632606 DOI: 10.1002/elps.202100243] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 12/19/2022]
Abstract
The review provides a comprehensive overview of developments and applications of high performance capillary and microchip electroseparation methods (zone electrophoresis, isotachophoresis, isoelectric focusing, affinity electrophoresis, electrokinetic chromatography, and electrochromatography) for analysis, microscale isolation, and physicochemical characterization of peptides from 2019 up to approximately the middle of 2021. Advances in the investigation of electromigration properties of peptides and in the methodology of their analysis, such as sample preparation, sorption suppression, EOF control, and detection, are presented. New developments in the individual CE and CEC methods are demonstrated and several types of their applications are shown. They include qualitative and quantitative analysis, determination in complex biomatrices, monitoring of chemical and enzymatic reactions and physicochemical changes, amino acid, sequence, and chiral analyses, and peptide mapping of proteins. In addition, micropreparative separations and determination of significant physicochemical parameters of peptides by CE and CEC methods are described.
Collapse
Affiliation(s)
- Václav Kašička
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Prague 6, Czechia
| |
Collapse
|
9
|
Assi N, Nejdl L, Zemankova K, Pavelicova K, Bezdekova J, Macka M, Adam V, Vaculovicova M. UV-induced Zn:Cd/S quantum dots in-situ formed in the presence of thiols for sensitive and selective fluorescence detection of thiols. Sci Rep 2021; 11:13806. [PMID: 34226580 PMCID: PMC8257596 DOI: 10.1038/s41598-021-93137-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/13/2021] [Indexed: 11/24/2022] Open
Abstract
In this work, we explored a new approach to a simple and sensitive fluorescence detection of thiols. The approach takes advantage of an in-situ formation of UV light-induced fluorescent nanoparticles (ZnCd/S quantum dots), while utilizing the thiol group of the analyte as a capping agent. The selectivity is ensured by the selective isolation of the thiol analyte by a polydopamine molecularly imprinted polymeric (MIP) layer. Based on this approach, a method for determination of thiols was designed. Key experimental parameters were optimized, including those of molecular imprinting and of effective model thiol molecule (L-cysteine) isolation. The relationship between the fluorescence intensity of ZnCd/S quantum dots and the concentration of L-cysteine in the range of 12-150 µg/mL was linear with a detection limit of 3.6 µg/mL. The molecularly imprinted polymer showed high absorption mass capacity (1.73 mg/g) and an excellent selectivity factor for L-cysteine compared to N-acetyl-L-cysteine and L-homocysteine of 63.56 and 87.48, respectively. The proposed method was applied for L-cysteine determination in human urine with satisfactory results. Due to a high variability of molecular imprinting technology and versatility of in-situ probe formation, methods based on this approach can be easily adopted for analysis of any thiol of interest.
Collapse
Affiliation(s)
- Navid Assi
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, 612 00, Brno, Czech Republic
| | - Lukas Nejdl
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, 612 00, Brno, Czech Republic
| | - Kristyna Zemankova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, 612 00, Brno, Czech Republic
| | - Kristyna Pavelicova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, 612 00, Brno, Czech Republic
| | - Jaroslava Bezdekova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, 612 00, Brno, Czech Republic
| | - Mirek Macka
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, 612 00, Brno, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, 612 00, Brno, Czech Republic
| | - Marketa Vaculovicova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic.
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, 612 00, Brno, Czech Republic.
| |
Collapse
|
10
|
Huang Z, Chen H, Ye H, Chen Z, Jaffrezic-Renault N, Guo Z. An ultrasensitive aptamer-antibody sandwich cortisol sensor for the noninvasive monitoring of stress state. Biosens Bioelectron 2021; 190:113451. [PMID: 34171819 DOI: 10.1016/j.bios.2021.113451] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/13/2021] [Accepted: 06/16/2021] [Indexed: 11/19/2022]
Abstract
Cortisol is a major glucocorticoid that can affect physiological activities in the human body. Besides, it is also a biomarker that can reflect the stress state of the body. Therefore, in order to monitor stress states in a sensitive and non-invasive manner, an ultra-sensitive aptamer-antibody sandwich sensor modified with multi-walled carbon nanotubes, ordered mesoporous carbon CMK-3, and silver nanoparticles (MWCNTs/CMK-3/AgNPs) was proposed for non-invasive detection of cortisol in human saliva. The MWCNTs/CMK-3/AgNPs nanocomposite was fixed on the surface of the glassy carbon electrodes (GCEs) as the material for the first round of signal amplification, and secondary signal amplification was realized by conjugating cortisol antibodies with gold nanoparticles (AuNPs). Finally, the aptamer-antibody sandwich pattern was used to specifically recognize and bind cortisol. The concentration response range for this aptamer-antibody sandwich sensor is 0.1 pg/mL-10 ng/mL, and the limit of detection (LOD) is 0.09 pg/mL. So far, the LOD of this sensor has been relatively low, showing its good sensitivity, selectivity, stability, and reproducibility. Furthermore, it has been successfully applied to detect cortisol in saliva samples to compare the stress states of postgraduates and undergraduates.
Collapse
Affiliation(s)
- Ziyu Huang
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, 430065, PR China; School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan, 430065, PR China
| | - Hao Chen
- Department of Anaesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Huarong Ye
- China Resources and Wisco General Hospital, Wuhan, 430080, PR China
| | - Zixuan Chen
- Department of Clinical Medicine, Medical College, Wuhan University of Science and Technology, Wuhan, 430065, PR China
| | - Nicole Jaffrezic-Renault
- University of Lyon, Institute of Analytical Sciences, UMR-CNRS 5280, 5, La Doua Street, Villeurbanne, 69100, France.
| | - Zhenzhong Guo
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, 430065, PR China.
| |
Collapse
|
11
|
Brasiunas B, Popov A, Ramanavicius A, Ramanaviciene A. Gold nanoparticle based colorimetric sensing strategy for the determination of reducing sugars. Food Chem 2021; 351:129238. [PMID: 33640764 DOI: 10.1016/j.foodchem.2021.129238] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 01/04/2021] [Accepted: 01/25/2021] [Indexed: 11/16/2022]
Abstract
The colorimetric sensors for reducing sugars based on a redox reaction between AuCl4- ions and fructose, glucose, lactose, or mannose are presented. Gold nanoparticles (AuNPs) that formed at room temperature as a product of this reaction were registered using a spectrophotometer. Lengthening reaction time had a positive effect on the sensitivity of the developed sensors. Different reducing sugars exhibited distinct reaction rates for AuNP formation, with the rate decreasing in the order fructose > glucose > lactose > mannose. LOD values after 60 min of the reaction for different sugars followed the same trend of 0.067, 0.081, 0.087, and 0.106 mM, while LOQ was 0.223, 0.270, 0.289, and 0.353 mM, respectively. The linear range 60 min since the start of the reaction varied from 0.3 up to 5.0 mM for different sugars. The colorimetric sensor was evaluated for use in real samples of beverages, milk, and saliva.
Collapse
Affiliation(s)
- Benediktas Brasiunas
- NanoTechnas - Center of Nanotechnology and Materials Science, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko st. 24, LT-03225 Vilnius, Lithuania.
| | - Anton Popov
- NanoTechnas - Center of Nanotechnology and Materials Science, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko st. 24, LT-03225 Vilnius, Lithuania.
| | - Arunas Ramanavicius
- NanoTechnas - Center of Nanotechnology and Materials Science, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko st. 24, LT-03225 Vilnius, Lithuania.
| | - Almira Ramanaviciene
- NanoTechnas - Center of Nanotechnology and Materials Science, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko st. 24, LT-03225 Vilnius, Lithuania.
| |
Collapse
|
12
|
Piechocka J, Wieczorek M, Głowacki R. Gas Chromatography-Mass Spectrometry Based Approach for the Determination of Methionine-Related Sulfur-Containing Compounds in Human Saliva. Int J Mol Sci 2020; 21:ijms21239252. [PMID: 33291575 PMCID: PMC7729597 DOI: 10.3390/ijms21239252] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/28/2020] [Accepted: 12/02/2020] [Indexed: 12/12/2022] Open
Abstract
Gas chromatography-mass spectrometry technique (GC-MS) is mainly recognized as a tool of first choice when volatile compounds are determined. Here, we provide the credible evidence that its application in analysis can be extended to non-volatile sulfur-containing compounds, to which methionine (Met), homocysteine (Hcy), homocysteine thiolactone (HTL), and cysteine (Cys) belong. To prove this point, the first method, based on GC-MS, for the identification and quantification of Met-related compounds in human saliva, has been elaborated. The assay involves simultaneous disulfides reduction with tris(2-carboxyethyl)phosphine (TCEP) and acetonitrile (MeCN) deproteinization, followed by preconcentration by drying under vacuum and treatment of the residue with a derivatizing mixture containing anhydrous pyridine, N-trimethylsilyl-N-methyl trifluoroacetamide (MSTFA), and trimethylchlorosilane (TMCS). The validity of the method was demonstrated based upon US FDA recommendations. The assay linearity was observed over the range of 0.5-20 µmol L-1 for Met, Hcy, Cys, and 1-20 µmol L-1 for HTL in saliva. The limit of quantification (LOQ) equals 0.1 µmol L-1 for Met, Hcy, Cys, while its value for HTL was 0.05 µmol L-1. The method was successfully applied to saliva samples donated by apparently healthy volunteers (n = 10).
Collapse
Affiliation(s)
- Justyna Piechocka
- Correspondence: (J.P.); (R.G.); Tel.: +48-42-635-58-46 (J.P.); +48-42-635-58-35 (R.G.)
| | | | - Rafał Głowacki
- Correspondence: (J.P.); (R.G.); Tel.: +48-42-635-58-46 (J.P.); +48-42-635-58-35 (R.G.)
| |
Collapse
|
13
|
Piechocka J, Wrońska M, Chwatko G, Jakubowski H, Głowacki R. Quantification of homocysteine thiolactone in human saliva and urine by gas chromatography-mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1149:122155. [PMID: 32447254 DOI: 10.1016/j.jchromb.2020.122155] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 05/05/2020] [Accepted: 05/10/2020] [Indexed: 11/29/2022]
Abstract
Homocysteine thiolactone (HTL) is a chemically reactive thioester that has been implicated in cardiovascular disease. So far, its presence has been documented in human and mouse plasma and urine. Here, using a new method, we show that HTL is present in human saliva. The assay involves chloroform-methanol extraction of HTL, lyophilization, and derivatization with N-trimethylsilyl-N-methyl trifluoroacetamide (MSTFA) and trimethylchlorosilane (TMCS). The method is based on a gas chromatography coupled with mass spectrometry (GC-MS) and quantifies HTL in a linear range from 0.05 to 1 µmol L-1 saliva and urine. The limit of quantification (LOQ) was 0.05 µmol L-1. With respect to saliva specimen, the accuracy was 98.7-112.6%, and 90.2-100.5%, while the precision was 7.1-13.5% and 12.5-15.0% for the intra- and inter-day variation, respectively. In relation to urine samples, the accuracy was 91.9-110.9% and 91.2-103.3%, while the precision varied from 2.2% to 14.5% and 7.4% to 14.3% for intra- and inter-day measurements, respectively. Using this method, we show that in apparently healthy individuals (n = 18), HTL levels in saliva are not positively correlated with urinary HTL levels. Undoubtedly, larger population should be investigated to get more meaningful results.
Collapse
Affiliation(s)
- Justyna Piechocka
- Department of Environmental Chemistry, University of Lodz, Faculty of Chemistry, Łódź, Poland.
| | - Monika Wrońska
- Department of Environmental Chemistry, University of Lodz, Faculty of Chemistry, Łódź, Poland
| | - Grażyna Chwatko
- Department of Environmental Chemistry, University of Lodz, Faculty of Chemistry, Łódź, Poland
| | - Hieronim Jakubowski
- Department of Biochemistry and Biotechnology, University of Life Sciences, Poznań, Poland; Department of Microbiology, Biochemistry and Molecular Genetics,Rutgers-New Jersey Medical School, International Center from Public Health, Newark, NJ, USA
| | - Rafał Głowacki
- Department of Environmental Chemistry, University of Lodz, Faculty of Chemistry, Łódź, Poland.
| |
Collapse
|