1
|
Zengin S, Mercan S, Tarhan D, Gök A, Ercan AM. Age-related changes on physicochemical properties of the artificial vitreous humor: A practical tool for enhancing ex vivo studies. Exp Eye Res 2024; 239:109762. [PMID: 38147936 DOI: 10.1016/j.exer.2023.109762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 12/01/2023] [Accepted: 12/20/2023] [Indexed: 12/28/2023]
Abstract
The vitreous humor (VH) is a hydrophilic, jelly-like ocular fluid, which is located in the posterior chamber of the eye. The rheological, structural, and chemical properties of VH change significantly during aging, which further causes eye-associated diseases and could be a potential indicator for various diseases. In this study, artificial VH (A-VH) samples were created by taking into account different age groups to observe age-related changes in the physicochemical properties of these samples. This study aimed to measure the physicochemical properties of age-dependently prepared A-VH samples to determine the changes with aging in the physicochemical properties of A-VH samples. Phosphate-buffered saline (PBS)-based A-VH samples were prepared in three types representing adult, middle-aged, and elder individuals. Age-related changes in physicochemical properties (surface tension, osmolality, pH, relative viscosity, density, and refractive index) were analyzed by related equipment. The A-VH samples, prepared using PBS, showed strong similarity to authentic VH in terms of physicochemical properties. While the age-related changes studies have revealed some discrepancies between age-dependently prepared A-VH samples in terms of surface tension, osmolality, relative viscosity, and pH with high correlation coefficients (r2 > 0,94), density and refractive index values did not show any significant differences and correlation between types of A-VH representing 3 age groups. In conclusion, age-dependent A-VH samples were created successfully to use ex vivo method development studies, and the influence of aging on the physicochemical properties of VH was demonstrated as well.
Collapse
Affiliation(s)
- Simge Zengin
- Istanbul University-Cerrahpaşa, Institute of Forensic Sciences and Legal Medicine, Department of Science, Buyukcekmece, Istanbul, Turkey
| | - Selda Mercan
- Istanbul University-Cerrahpaşa, Institute of Forensic Sciences and Legal Medicine, Department of Science, Buyukcekmece, Istanbul, Turkey.
| | - Duygu Tarhan
- Bahcesehir University, School of Medicine, Department of Biophysics, Goztepe, Istanbul, Turkey
| | - Aslı Gök
- Istanbul University-Cerrahpaşa, Faculty of Engineering, Department of Chemical Engineering, Avcılar, Istanbul, Turkey
| | - Alev Meltem Ercan
- Istanbul University-Cerrahpaşa, Cerrahpaşa Faculty of Medicine, Department of Biophysics, Fatih, Istanbul, Turkey
| |
Collapse
|
2
|
Seo H, Chung WG, Kwon YW, Kim S, Hong YM, Park W, Kim E, Lee J, Lee S, Kim M, Lim K, Jeong I, Song H, Park JU. Smart Contact Lenses as Wearable Ophthalmic Devices for Disease Monitoring and Health Management. Chem Rev 2023; 123:11488-11558. [PMID: 37748126 PMCID: PMC10571045 DOI: 10.1021/acs.chemrev.3c00290] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Indexed: 09/27/2023]
Abstract
The eye contains a complex network of physiological information and biomarkers for monitoring disease and managing health, and ocular devices can be used to effectively perform point-of-care diagnosis and disease management. This comprehensive review describes the target biomarkers and various diseases, including ophthalmic diseases, metabolic diseases, and neurological diseases, based on the physiological and anatomical background of the eye. This review also includes the recent technologies utilized in eye-wearable medical devices and the latest trends in wearable ophthalmic devices, specifically smart contact lenses for the purpose of disease management. After introducing other ocular devices such as the retinal prosthesis, we further discuss the current challenges and potential possibilities of smart contact lenses.
Collapse
Affiliation(s)
- Hunkyu Seo
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Won Gi Chung
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Yong Won Kwon
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Sumin Kim
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Yeon-Mi Hong
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Wonjung Park
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Enji Kim
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Jakyoung Lee
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Sanghoon Lee
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Moohyun Kim
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Kyeonghee Lim
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Inhea Jeong
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Hayoung Song
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Jang-Ung Park
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
- Department
of Neurosurgery, Yonsei University College
of Medicine, Seoul 03722, Republic of Korea
- Center
for Nanomedicine, Institute for Basic Science (IBS), Yonsei University, Seoul 03722, Republic
of Korea
| |
Collapse
|
3
|
Bioanalytical method for simultaneous determination of benzodiazepines in vitreous humor using liquid chromatography-tandem mass spectrometry. J Forensic Leg Med 2022; 91:102434. [DOI: 10.1016/j.jflm.2022.102434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 11/18/2022]
|
4
|
Almofti N, Ballesteros-Gómez A, Rubio S, Girela-López E. Analysis of conventional and nonconventional forensic specimens in drug-facilitated sexual assault by liquid chromatography and tandem mass spectrometry. Talanta 2022; 250:123713. [PMID: 35779361 DOI: 10.1016/j.talanta.2022.123713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/22/2022] [Accepted: 06/22/2022] [Indexed: 10/17/2022]
Abstract
The incidence of drug-facilitated sexual assault (DFSA) has dramatically increased in the last decades. Forensic analytical scientists continuously seek new methods and specimens to prove the incidence of intoxication for the judiciary system. Factors influencing sample selection include the ease of obtaining the samples and the window of detection of the drugs, among others. Both conventional (blood, urine) and non-conventional specimens (hair, nails, fluids) have been proposed as suitable in DFSA cases. Reported sample treatments include a variety of liquid-liquid and solid-phase extraction as well as dilute-and-shoot procedures and microextraction techniques. Regarding analysis, liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) has emerged as the preferred confirmatory technique, due to its sensitivity, selectivity, and wide-scope applicability. In this review, we critically discuss the most common specimens and sample treatments/analysis procedures (related to LC-MS/MS) that have been reported during the last ten years. As a final goal, we intend to provide a critical overview and suggest analytical recommendations for the establishment of suitable analytical strategies in DFSA cases.
Collapse
Affiliation(s)
- N Almofti
- Department of Analytical Chemistry, Institute of Fine Chemistry and Nanochemistry, Marie Curie Annex Building, Campus of Rabanales, University of Córdoba, 14071, Córdoba, Spain; Section of Forensic and Legal Medicine, Department of Morphological and Sociosanitary Sciences, Faculty of Medicine and Nursing, University of Córdoba, 14071, Córdoba, Spain
| | - A Ballesteros-Gómez
- Department of Analytical Chemistry, Institute of Fine Chemistry and Nanochemistry, Marie Curie Annex Building, Campus of Rabanales, University of Córdoba, 14071, Córdoba, Spain.
| | - S Rubio
- Department of Analytical Chemistry, Institute of Fine Chemistry and Nanochemistry, Marie Curie Annex Building, Campus of Rabanales, University of Córdoba, 14071, Córdoba, Spain
| | - E Girela-López
- Section of Forensic and Legal Medicine, Department of Morphological and Sociosanitary Sciences, Faculty of Medicine and Nursing, University of Córdoba, 14071, Córdoba, Spain
| |
Collapse
|
5
|
Pascual-Caro S, Borrull F, Calull M, Aguilar C. Recent chromatographic and electrophoretic based methods for determining drugs of abuse in urine and oral fluid: A review from 2018 to June 2021. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
6
|
A sustainable approach for the stability study of psychotropic substances using vitreous humor and liver as alternative matrices. Anal Bioanal Chem 2022; 414:6355-6370. [PMID: 35511247 PMCID: PMC9372124 DOI: 10.1007/s00216-022-04064-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/18/2022] [Accepted: 04/05/2022] [Indexed: 11/30/2022]
Abstract
The stability of psychotropic substances representing various drug groups important from the perspective of forensic chemistry, including benzodiazepines, antidepressants, carbamazepine, cocaine, and their selected metabolites, was investigated for 1 month in two alternative biological matrices, vitreous humor and liver homogenate. Three different thermal storage conditions (−20, 4, and 20 °C) were tested. Liquid chromatography-mass spectrometry (LC-MS) analysis was preceded by an effective solid-phase microextraction (SPME) procedure. The results were statistically analyzed using one-way ANOVA to find significant concentration variations over time. The results obtained allowed for dividing the analytes into four groups: stable under all tested conditions, only at −20 and 4 °C, only at 20 °C, and overall unstable. Nordiazepam, venlafaxine, and cocaine and its metabolites turned out to be the most unstable substances, while fluoxetine showed the highest storage stability in both matrices. The SPME/LC-MS method was comprehensively evaluated according to the principles of white analytical chemistry (WAC), which reconcile the greenness and functionality of the method. A close to 100% whiteness score proves its sustainability and suitability for the intended application.
Collapse
|
7
|
Alternative matrices in forensic toxicology: a critical review. Forensic Toxicol 2021; 40:1-18. [DOI: 10.1007/s11419-021-00596-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/19/2021] [Indexed: 12/12/2022]
Abstract
Abstract
Purpose
The use of alternative matrices in toxicological analyses has been on the rise in clinical and forensic settings. Specimens alternative to blood and urine are useful in providing additional information regarding drug exposure and analytical benefits. The goal of this paper is to present a critical review on the most recent literature regarding the application of six common alternative matrices, i.e., oral fluid, hair, sweat, meconium, breast milk and vitreous humor in forensic toxicology.
Methods
The recent literature have been searched and reviewed for the characteristics, advantages and limitations of oral fluid, hair, sweat, meconium, breast milk and vitreous humor and its applications in the analysis of traditional drugs of abuse and novel psychoactive substances (NPS).
Results
This paper outlines the properties of six biological matrices that have been used in forensic analyses, as alternatives to whole blood and urine specimens. Each of this matrix has benefits in regards to sampling, extraction, detection window, typical drug levels and other aspects. However, theses matrices have also limitations such as limited incorporation of drugs (according to physical–chemical properties), impossibility to correlate the concentrations for effects, low levels of xenobiotics and ultimately the need for more sensitive analysis. For more traditional drugs of abuse (e.g., cocaine and amphetamines), there are already data available on the detection in alternative matrices. However, data on the determination of emerging drugs such as the NPS in alternative biological matrices are more limited.
Conclusions
Alternative biological fluids are important specimens in forensic toxicology. These matrices have been increasingly reported over the years, and this dynamic will probably continue in the future, especially considering their inherent advantages and the possibility to be used when blood or urine are unavailable. However, one should be aware that these matrices have limitations and particular properties, and the findings obtained from the analysis of these specimens may vary according to the type of matrix. As a potential perspective in forensic toxicology, the topic of alternative matrices will be continuously explored, especially emphasizing NPS.
Collapse
|
8
|
Spectroscopy as a useful tool for the identification of changes with time in post-mortem vitreous humor for forensic toxicology purposes. MONATSHEFTE FUR CHEMIE 2021. [DOI: 10.1007/s00706-021-02786-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractVitreous humor (VH) is an alternative biological matrix with a great advantage of longer availability for analysis due to the lack of many enzymes. The use of VH in forensic toxicology may have an added benefit, however, this application requires rapid, simple, non-destructive, and relatively portable analytical analysis methods. These requirements may be met by Fourier transform infrared spectroscopy technique (FT-IR) equipped with attenuated total reflection accessory (ATR). FT-IR spectra of vitreous humor samples, deposited on glass slides, were collected and subsequent chemometric data analysis by means of Hierarchical Cluster Analysis and Principal Component Analysis was conducted. Differences between animal and human VH samples and human VH samples stored for diverse periods of time were detected. A kinetic study of changes in the VH composition up to 2 weeks showed the distinction of FT-IR spectra collected on the 1st and 14th day of storage. In addition, data obtained for the most recent human vitreous humor samples—collected 3 and 2 years before the study, presented successful discrimination of all time points studied. The method introduced was unable to detect mephedrone addition to VH in the concentration of 10 µg/cm3.
Graphic abstract
Collapse
|
9
|
Nowak PM, Wietecha-Posłuszny R, Pawliszyn J. White Analytical Chemistry: An approach to reconcile the principles of Green Analytical Chemistry and functionality. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116223] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
10
|
Application of microextraction techniques in alternative biological matrices with focus on forensic toxicology: a review. Bioanalysis 2020; 13:45-64. [PMID: 33326299 DOI: 10.4155/bio-2020-0241] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The interest in alternative biological matrices (e.g., hair and saliva) for forensic toxicology analysis has increased, and recent developments in sample preparation have targeted rapid, cheap, efficient and eco-friendly methods, including microextraction techniques. For this review, we have gathered information about these two hot topics. We discuss the composition, incorporation of analytes and advantages and disadvantages of different biological matrices, and also present the operation principles of the most reported microextraction procedures and their application in forensic toxicology. The outcome of this review may encourage future forensic researches into alternative samples and microextraction techniques.
Collapse
|