1
|
Liao J, Yang Z, Yang J, Lin H, Chen B, Fu H, Lin X, Lu B, Gao F. Investigating the cardiotoxicity of N-n-butyl haloperidol iodide: Inhibition mechanisms on hERG channels. Toxicology 2024; 508:153916. [PMID: 39128488 DOI: 10.1016/j.tox.2024.153916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
The human Ether-à-go-go-Related Gene (hERG) encodes a protein responsible for forming the alpha subunit of the IKr channel, which plays a crucial role in cardiac repolarization. The proper functioning of hERG channels is paramount in maintaining a normal cardiac rhythm. Inhibition of these channels can result in the prolongation of the QT interval and potentially life-threatening arrhythmias. Cardiotoxicity is a primary concern in the field of drug development. N-n-Butyl haloperidol iodide (F2), a derivative of haloperidol, has been investigated for its therapeutic potential. However, the impact of this compound on cardiac toxicity, specifically on hERG channels, remains uncertain. This study employs computational and experimental methodologies to examine the inhibitory mechanisms of F2 on hERG channels. Molecular docking and molecular dynamics simulations commonly used techniques in computational biology to predict protein-ligand complexes' binding interactions and stability. In the context of the F2-hERG complex, these methods can provide valuable insights into the potential binding modes and strength of interaction between F2 and the hERG protein. On the other hand, electrophysiological assays are experimental techniques used to characterize the extent and nature of hERG channel inhibition caused by various compounds. By measuring the electrical activity of the hERG channel in response to different stimuli, these assays can provide important information about the functional effects of ligand binding to the channel. The study's key findings indicate that F2 interacts with the hERG channel by forming hydrogen bonding, π-cation interactions, and hydrophobic forces. This interaction leads to the inhibition of hERG currents in a concentration-dependent manner, with an IC50 of 3.75 μM. The results presented in this study demonstrate the potential cardiotoxicity of F2 and underscore the significance of considering hERG channel interactions during its clinical development. This study aims to provide comprehensive insights into the interaction between F2 and hERG, which will may guid us in the safe use of F2 and in the development of new derivatives with high efficiency while low toxicity.
Collapse
Affiliation(s)
- Jilin Liao
- Department of Pharmacy, the Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong 515041, China; Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Zhenyu Yang
- Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Jinhua Yang
- Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Hailing Lin
- Department of Pharmacy, the Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Bingxuan Chen
- Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Hongbo Fu
- Department of Pharmacy, the Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Xiaojie Lin
- Department of Pharmacy, the Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Binger Lu
- Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong 515041, China; Department of Pharmacy, the First Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong 515041, China.
| | - Fenfei Gao
- Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong 515041, China.
| |
Collapse
|
2
|
Zhang C, You Y, Xie Y, Han L, Sun D, Chen S. Salt gradient enhanced sensitivity in nanopores for intracellular calcium ion detection. Talanta 2024; 276:126261. [PMID: 38761659 DOI: 10.1016/j.talanta.2024.126261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/14/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
Intracellular calcium ion detection is of great significance for understanding the cell metabolism and signaling pathways. Most of the current ionic sensors either face the size issue or sensitivity limit for the intracellular solution with high background ion concentrations. In this paper, we proposed a calmodulin (CaM) functionalized nanopore for sensitive and selective Ca2+ detection inside living cells. A salt gradient was created when the nanopore sensor filled with a low concentration electrolyte was in contact with a high background concentration solution, which enhanced the surface charge-based detection sensitivity. The nanopore sensor showed a 10 × sensitivity enhancement by application of a 100-fold salt gradient, and a detection limit of sub nM. The sensor had a wide detection range from 1 nM to 1 mM, and allowed for quick calcium ion quantification in a few seconds. The sensor was demonstrated for intracellular Ca2+ detection in A549 cells in response to ionomycin.
Collapse
Affiliation(s)
- Changling Zhang
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, China
| | - Yuru You
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, China
| | - Yu Xie
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, China
| | - Lianhuan Han
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, China
| | - Daoheng Sun
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, China
| | - Songyue Chen
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, China.
| |
Collapse
|
3
|
Wang Z, Pan T, Shen M, Liao J, Tian Y. Cross-conjugated polymers as fluorescent probes for intracellular potassium ion detection. SENSORS AND ACTUATORS B: CHEMICAL 2023; 390:134008. [DOI: 10.1016/j.snb.2023.134008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
|
4
|
Reverté J, Alkassar M, Diogène J, Campàs M. Detection of Ciguatoxins and Tetrodotoxins in Seafood with Biosensors and Other Smart Bioanalytical Systems. Foods 2023; 12:foods12102043. [PMID: 37238861 DOI: 10.3390/foods12102043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
The emergence of marine toxins such as ciguatoxins (CTXs) and tetrodotoxins (TTXs) in non-endemic regions may pose a serious food safety threat and public health concern if proper control measures are not applied. This article provides an overview of the main biorecognition molecules used for the detection of CTXs and TTXs and the different assay configurations and transduction strategies explored in the development of biosensors and other biotechnological tools for these marine toxins. The advantages and limitations of the systems based on cells, receptors, antibodies, and aptamers are described, and new challenges in marine toxin detection are identified. The validation of these smart bioanalytical systems through analysis of samples and comparison with other techniques is also rationally discussed. These tools have already been demonstrated to be useful in the detection and quantification of CTXs and TTXs, and are, therefore, highly promising for their implementation in research activities and monitoring programs.
Collapse
Affiliation(s)
- Jaume Reverté
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Ctra. Poble Nou km 5.5, 43540 La Ràpita, Spain
| | - Mounira Alkassar
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Ctra. Poble Nou km 5.5, 43540 La Ràpita, Spain
| | - Jorge Diogène
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Ctra. Poble Nou km 5.5, 43540 La Ràpita, Spain
| | - Mònica Campàs
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Ctra. Poble Nou km 5.5, 43540 La Ràpita, Spain
| |
Collapse
|
5
|
Wang Y, Liu S, Wang H, Zhao Y, Zhang XD. Neuron devices: emerging prospects in neural interfaces and recognition. MICROSYSTEMS & NANOENGINEERING 2022; 8:128. [PMID: 36507057 PMCID: PMC9726942 DOI: 10.1038/s41378-022-00453-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 06/17/2023]
Abstract
Neuron interface devices can be used to explore the relationships between neuron firing and synaptic transmission, as well as to diagnose and treat neurological disorders, such as epilepsy and Alzheimer's disease. It is crucial to exploit neuron devices with high sensitivity, high biocompatibility, multifunctional integration and high-speed data processing. During the past decades, researchers have made significant progress in neural electrodes, artificial sensory neuron devices, and neuromorphic optic neuron devices. The main part of the review is divided into two sections, providing an overview of recently developed neuron interface devices for recording electrophysiological signals, as well as applications in neuromodulation, simulating the human sensory system, and achieving memory and recognition. We mainly discussed the development, characteristics, functional mechanisms, and applications of neuron devices and elucidated several key points for clinical translation. The present review highlights the advances in neuron devices on brain-computer interfaces and neuroscience research.
Collapse
Affiliation(s)
- Yang Wang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, 300072 Tianjin, China
| | - Shuangjie Liu
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, 300072 Tianjin, China
| | - Hao Wang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, 300072 Tianjin, China
| | - Yue Zhao
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, 300072 Tianjin, China
| | - Xiao-Dong Zhang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, 300072 Tianjin, China
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Institute of Advanced Materials Physics, School of Sciences, Tianjin University, 300350 Tianjin, China
| |
Collapse
|
6
|
Shen M, Pan T, Ning J, Sun F, Deng M, Liao J, Su F, Tian Y. New nanostructured extracellular potassium ion probe for assay of cellular K + transport. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 279:121435. [PMID: 35653810 DOI: 10.1016/j.saa.2022.121435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/05/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
The concentration of potassium ion is an important indicator for human health, and its abnormality is often accompanied by various diseases. However, most tools currently used to study potassium ion transport are low throughput. Herein, we reported a new K+ fluorescent nanoprobe CP1-KS with high selectivity and sensitivity to K+ (fluorescence enhanced factor was up to 9.91 at 20 mM K+). The polymeric fluorescent probe CP1-KS was composed of the small-molecular K+ indicator KS and amphiphilic copolymer CP1. This sensor can be easily and uniformly dispersed in cell culture medium and is suitable for high throughput analysis. To assess the utility of the probe CP1-KS in biological field, this probe was employed as an extracellular fluorescent probe to monitor the efflux of K+ from cells (E coli, B. Subtilis 168, Hela and MCF-7 cells) under various stimulation including lysozyme, nigericin, digitonin, and ATP. Results demonstrated that CP1-KS is an effective analysis tool for extracellular K+ concentration. We believe that the nanoprobe has great potential in antibacterial drug screening, K+ ionophore function, K+ channel activity, cell membrane permeability analysis or other K+ related field in the future.
Collapse
Affiliation(s)
- Min Shen
- Department of Materials Science and Engineering, Southern University of Science and Technology, No 1088 Xueyuan Blvd, Xili, Nanshan District, Shenzhen, Guangdong 518055, China
| | - Tingting Pan
- Department of Pediatric Neurology, Shenzhen Children's Hospital, 7019 Yitian Road, Shenzhen 518038, China
| | - Juewei Ning
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, China
| | - Fangyuan Sun
- Department of Materials Science and Engineering, Southern University of Science and Technology, No 1088 Xueyuan Blvd, Xili, Nanshan District, Shenzhen, Guangdong 518055, China
| | - Mengyu Deng
- Department of Materials Science and Engineering, Southern University of Science and Technology, No 1088 Xueyuan Blvd, Xili, Nanshan District, Shenzhen, Guangdong 518055, China
| | - Jianxiang Liao
- Department of Pediatric Neurology, Shenzhen Children's Hospital, 7019 Yitian Road, Shenzhen 518038, China
| | - Fengyu Su
- Academy of Advanced Interdisciplinary Studies, Southern University of Science and Technology, No 1088 Xueyuan Blvd, Xili, Nanshan District, Shenzhen, Guangdong 518055, China.
| | - Yanqing Tian
- Department of Materials Science and Engineering, Southern University of Science and Technology, No 1088 Xueyuan Blvd, Xili, Nanshan District, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
7
|
Herr DW. The Future of Neurotoxicology: A Neuroelectrophysiological Viewpoint. FRONTIERS IN TOXICOLOGY 2021; 3:1. [PMID: 34966904 PMCID: PMC8711081 DOI: 10.3389/ftox.2021.729788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 11/29/2021] [Indexed: 11/13/2022] Open
Abstract
Neuroelectrophysiology is an old science, dating to the 18th century when electrical activity in nerves was discovered. Such discoveries have led to a variety of neurophysiological techniques, ranging from basic neuroscience to clinical applications. These clinical applications allow assessment of complex neurological functions such as (but not limited to) sensory perception (vision, hearing, somatosensory function), and muscle function. The ability to use similar techniques in both humans and animal models increases the ability to perform mechanistic research to investigate neurological problems. Good animal to human homology of many neurophysiological systems facilitates interpretation of data to provide cause-effect linkages to epidemiological findings. Mechanistic cellular research to screen for toxicity often includes gaps between cellular and whole animal/person neurophysiological changes, preventing understanding of the complete function of the nervous system. Building Adverse Outcome Pathways (AOPs) will allow us to begin to identify brain regions, timelines, neurotransmitters, etc. that may be Key Events (KE) in the Adverse Outcomes (AO). This requires an integrated strategy, from in vitro to in vivo (and hypothesis generation, testing, revision). Scientists need to determine intermediate levels of nervous system organization that are related to an AO and work both upstream and downstream using mechanistic approaches. Possibly more than any other organ, the brain will require networks of pathways/AOPs to allow sufficient predictive accuracy. Advancements in neurobiological techniques should be incorporated into these AOP-base neurotoxicological assessments, including interactions between many regions of the brain simultaneously. Coupled with advancements in optogenetic manipulation, complex functions of the nervous system (such as acquisition, attention, sensory perception, etc.) can be examined in real time. The integration of neurophysiological changes with changes in gene/protein expression can begin to provide the mechanistic underpinnings for biological changes. Establishment of linkages between changes in cellular physiology and those at the level of the AO will allow construction of biological pathways (AOPs) and allow development of higher throughput assays to test for changes to critical physiological circuits. To allow mechanistic/predictive toxicology of the nervous system to be protective of human populations, neuroelectrophysiology has a critical role in our future.
Collapse
Affiliation(s)
- David W. Herr
- Neurological and Endocrine Toxicology Branch, Public Health and Integrated Toxicology Division, CPHEA/ORD, U.S. Environmental Protection Agency, Washington, NC, United States
| |
Collapse
|
8
|
Pan T, Shen M, Shi J, Ning J, Su F, Liao J, Tian Y. Intracellular potassium ion fluorescent nanoprobes for functional analysis of hERG channel via bioimaging. SENSORS AND ACTUATORS B: CHEMICAL 2021; 345:130450. [DOI: 10.1016/j.snb.2021.130450] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
|
9
|
Yu R, Li P. Computational and experimental studies on the inhibitory mechanism of hydroxychloroquine on hERG. Toxicology 2021; 458:152822. [PMID: 34058295 PMCID: PMC8161735 DOI: 10.1016/j.tox.2021.152822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 05/08/2021] [Accepted: 05/24/2021] [Indexed: 12/26/2022]
Abstract
Hydroxychloroquine (HCQ) was noted to produce severe cardiac arrhythmia, an adverse effect as its use against severe acute respiratory syndrome caused by coronavirus 2 (SAES-CoV-2). HCQ is an antimalarial drug with quinoline structure. Some other quinoline compounds, such as fluoroquinolone antibiotics (FQs), also lead to arrhythmias characterized by QT prolongation. QT prolongation is usually related to the human ether-a-go-go-related gene (hERG) potassium channel inhibitory activity of most drugs. In this research, molecular docking was used to study the potential inhibitory activities of HCQ as well as other quinolines derivatives and hERG potassium channel protein. The possible causes of these QT prolongation effects were revealed. Molecular docking and patch clamp experiments showed that HCQ could bind to hERG and inhibit the efflux of potassium ion preferentially in the repolarization stage. The IC50 of HCQ was 8.6 μM ± 0.8 μM. FQs, which are quinoline derivatives, could also bind to hERG molecules. The binding energies of FQs varied according to their molecular polarity. It was found that drugs with a quinoline structure, particularly with high molecular polarity, can exert a significant potential hERG inhibitory activity. The potential side effects of QT prolongation during the development and use of quinolines should be carefully considered.
Collapse
Affiliation(s)
- Ran Yu
- Department of Bioengineering, Beijing Polytechnic, Daxing District, Beijing, 100176, China.
| | - Peng Li
- SDIC Xinkai Water Environment Investment Co., Ltd, Tongzhou District, Beijing, 101101, China
| |
Collapse
|
10
|
Gao J, Liao C, Liu S, Xia T, Jiang G. Nanotechnology: new opportunities for the development of patch-clamps. J Nanobiotechnology 2021; 19:97. [PMID: 33794903 PMCID: PMC8017657 DOI: 10.1186/s12951-021-00841-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/23/2021] [Indexed: 12/29/2022] Open
Abstract
The patch-clamp technique is one of the best approaches to investigate neural excitability. Impressive improvements towards the automation of the patch-clamp technique have been made, but obvious limitations and hurdles still exist, such as parallelization, volume displacement in vivo, and long-term recording. Nanotechnologies have provided opportunities to overcome these hurdles by applying electrical devices on the nanoscale. Electrodes based on nanowires, nanotubes, and nanoscale field-effect transistors (FETs) are confirmed to be robust and less invasive tools for intracellular electrophysiological recording. Research on the interface between the nanoelectrode and cell membrane aims to reduce the seal conductance and further improve the recording quality. Many novel recording approaches advance the parallelization, and precision with reduced invasiveness, thus improving the overall intracellular recording system. The combination of nanotechnology and the present intracellular recording framework is a revolutionary and promising orientation, potentially becoming the next generation electrophysiological recording technique and replacing the conventional patch-clamp technique. Here, this paper reviews the recent advances in intracellular electrophysiological recording techniques using nanotechnology, focusing on the design of noninvasive and greatly parallelized recording systems based on nanoelectronics.
Collapse
Affiliation(s)
- Jia Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunyang Liao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China. .,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tian Xia
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|