1
|
Cui X, Chen J, Yi H, Wei Z. Mapping Reaction Pathways by In Situ Step Sweep Voltammetry Flow Electrochemical Mass Spectrometry. Anal Chem 2024; 96:17765-17772. [PMID: 39437319 DOI: 10.1021/acs.analchem.4c04117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
A step sweep voltammetry (SSV) flow electrochemical (EC) mass spectrometry (MS) platform was developed for real-time and in situ mapping of EC reaction pathways. By integrating a flow EC cell into the pneumatic spray nozzle followed by atmospheric chemical ionization, this setup was capable of in situ MS monitoring of short-lived EC intermediates with enhanced sensitivity. This setup also realized precise measurement and control of the electrode potential during in situ EC-MS analysis, which can provide detailed information on the interplay of reaction pathways under different electrode potentials. Taking the EC reductive cross coupling of nitroarenes with arylboronic acids as an example, SSV-MS had identified 13 compounds among four reaction pathways. Among these, the electrode potential of active nitrene and cross coupling intermediates were measured for the first time and the structure of the nitroso coupling complex was also confirmed by MS. With the systematic measurement of electrode potential of the intermediates and products, SSV-MS had clearly mapped out the synergies and competitions between different reaction pathways, offering key insights for optimizing reaction conditions and investigating reaction mechanisms for EC research.
Collapse
Affiliation(s)
- Xi Cui
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Jianxiong Chen
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Hong Yi
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, China
| | - Zhenwei Wei
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
2
|
Zhao K, Jiang X, Wu X, Feng H, Wang X, Wan Y, Wang Z, Yan N. Recent development and applications of differential electrochemical mass spectrometry in emerging energy conversion and storage solutions. Chem Soc Rev 2024; 53:6917-6959. [PMID: 38836324 DOI: 10.1039/d3cs00840a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Electrochemical energy conversion and storage are playing an increasingly important role in shaping the sustainable future. Differential electrochemical mass spectrometry (DEMS) offers an operando and cost-effective tool to monitor the evolution of gaseous/volatile intermediates and products during these processes. It can deliver potential-, time-, mass- and space-resolved signals which facilitate the understanding of reaction kinetics. In this review, we show the latest developments and applications of DEMS in various energy-related electrochemical reactions from three distinct perspectives. (I) What is DEMS addresses the working principles and key components of DEMS, highlighting the new and distinct instrumental configurations for different applications. (II) How to use DEMS tackles practical matters including the electrochemical test protocols, quantification of both potential and mass signals, and error analysis. (III) Where to apply DEMS is the focus of this review, dealing with concrete examples and unique values of DEMS studies in both energy conversion applications (CO2 reduction, water electrolysis, carbon corrosion, N-related catalysis, electrosynthesis, fuel cells, photo-electrocatalysis and beyond) and energy storage applications (Li-ion batteries and beyond, metal-air batteries, supercapacitors and flow batteries). The recent development of DEMS-hyphenated techniques and the outlook of the DEMS technique are discussed at the end. As DEMS celebrates its 40th anniversary in 2024, we hope this review can offer electrochemistry researchers a comprehensive understanding of the latest developments of DEMS and will inspire them to tackle emerging scientific questions using DEMS.
Collapse
Affiliation(s)
- Kai Zhao
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, 430072, China.
- Shenzhen Research Institute of Wuhan University, Shenzhen, 518057, China
| | - Xiaoyi Jiang
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, 430072, China.
- Shenzhen Research Institute of Wuhan University, Shenzhen, 518057, China
| | - Xiaoyu Wu
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, 430072, China.
- Shenzhen Research Institute of Wuhan University, Shenzhen, 518057, China
| | - Haozhou Feng
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, 430072, China.
- Shenzhen Research Institute of Wuhan University, Shenzhen, 518057, China
| | - Xiude Wang
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, 430072, China.
- Shenzhen Research Institute of Wuhan University, Shenzhen, 518057, China
| | - Yuyan Wan
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, 430072, China.
- Shenzhen Research Institute of Wuhan University, Shenzhen, 518057, China
| | - Zhiping Wang
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, 430072, China.
| | - Ning Yan
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, 430072, China.
- Shenzhen Research Institute of Wuhan University, Shenzhen, 518057, China
| |
Collapse
|
3
|
Liu CY, Chen Y, Hu J. Identification of the Electrogenerated Hidden Nitrenium Ions by In Situ Mass Spectrometry. Anal Chem 2024; 96:3354-3361. [PMID: 38295431 DOI: 10.1021/acs.analchem.3c04315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
The identification of the electrogenerated reactive intermediates is essential for an in-depth understanding of the electroredox processes. Although various short-lived intermediates are well characterized by coupling electrochemistry with mass spectrometry (EC/MS), many electrogenerated transient species (τ < 1 μs) are still rarely captured by the currently available EC/MS approaches. Here, we present a low-delay coupling device, which was constructed by decorating a microelectrode into the front tip of a microsized ion emitter. For the first time, the in situ detection of a previously hidden intermediate, i.e., the transient nitrenium ion of carbazole (τ = 333 ns), was achieved. The electrochemical generation of indole nitrenium ion, whose half-life is estimated to be shorter compared to the carbazole nitrenium ion due to less resonance stabilization, was also confirmed by direct observation. This clog-free microelectrode/ion emitter is cheap and easy to fabricate and offers a general and powerful approach to monitoring the fast reactions of electrogenerated reactive intermediates. We believe that our integrated EC/MS approach holds substantial potential for broad applicability, particularly in probing the intricate and ultrafast electroredox processes occurring at the electrode-solution interface.
Collapse
Affiliation(s)
- Chun-Yan Liu
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, P. R. China
| | - Yun Chen
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, P. R. China
| | - Jun Hu
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, P. R. China
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, P. R. China
| |
Collapse
|
4
|
Cheng QY, Wang T, Hu J, Chen HY, Xu JJ. In Situ Probing the Short-Lived Intermediates in Visible-Light Heterogeneous Photocatalysis by Mass Spectrometry. Anal Chem 2023; 95:14150-14157. [PMID: 37665645 DOI: 10.1021/acs.analchem.3c03494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Visible-light-mediated heterogeneous photocatalysis has recently emerged as an environmentally friendly and energy-sustainable alternative for organic transformations. Despite the advancements in developing wide varieties of photocatalysts during the past decades, the accurate probing and identification of the photogenerated species, especially the short-lived radical intermediates, are still challenging. In this work, we reported a hybrid ion emitter that integrated with a pico-liter heterogeneous photocatalytic reactor, which was fabricated by depositing the photocatalyst (e.g., TiO2) into the front tip of a quartz micropipette. Benefited from the dual-function feature of the hybrid micropipette (i.e., a clog-free tip-confined pico-liter reactor for heterogeneous photocatalysis and an ion emitter for nanoelectrospray ionization), sensitized photoredox reactions at the catalyst-solution interface can be triggered upon visible-light irradiation using a cheap LED laser (453 nm), and the newly produced transient radical intermediates can be rapidly transformed into gaseous ions for mass spectrometric identification. Using this novel low-delay coupling device, photogenerated intermediates, including the cationic radicals produced during the photooxidation of anilines and the anionic radicals produced during the photoreduction of quinones, were successfully captured by mass spectrometry. We believe that our hybrid photochemical microreactor/ion emitter has provided a new and powerful tool for exploring the complicated heterogeneous photochemical processes, especially their ultrafast initial transformations.
Collapse
Affiliation(s)
- Qiu-Yue Cheng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Ting Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Jun Hu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
5
|
Mohan B, Kumari R, Singh G, Singh K, Pombeiro AJL, Yang X, Ren P. Covalent organic frameworks (COFs) and metal-organic frameworks (MOFs) as electrochemical sensors for the efficient detection of pharmaceutical residues. ENVIRONMENT INTERNATIONAL 2023; 175:107928. [PMID: 37094512 DOI: 10.1016/j.envint.2023.107928] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/21/2023] [Accepted: 04/09/2023] [Indexed: 05/03/2023]
Abstract
Pharmaceutical residues are the undecomposed remains from drugs used in the medical and food industries. Due to their potential adverse effects on human health and natural ecosystems, they are of increasing worldwide concern. The acute detection of pharmaceutical residues can give a rapid examination of their quantity and then prevent them from further contamination. Herein, this study summarizes and discusses the most recent porous covalent-organic frameworks (COFs) and metal-organic frameworks (MOFs) for the electrochemical detection of various pharmaceutical residues. The review first introduces a brief overview of drug toxicity and its effects on living organisms. Subsequently, different porous materials and drug detection techniques are discussed with materials' properties and applications. Then the development of COFs and MOFs has been addressed with their structural properties and sensing applications. Further, the stability, reusability, and sustainability of MOFs/COFs are reviewed and discussed. Besides, COFs and MOFs' detection limits, linear ranges, the role of functionalities, and immobilized nanoparticles are analyzed and discussed. Lastly, this review summarized and discussed the MOF@COF composite as sensors, the fabrication strategies to enhance detection potential, and the current challenges in this area.
Collapse
Affiliation(s)
- Brij Mohan
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Ritu Kumari
- Department of Chemistry, Kurukshetra University Kurukshetra -136119, India
| | - Gurjaspreet Singh
- Department of Chemistry and Centre of Advanced Studies Panjab University, Chandigarh-160014, India
| | - Kamal Singh
- Department of Physics, Chaudhary Bansi Lal University, Bhiwani, Haryana-127021, India
| | - Armando J L Pombeiro
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Xuemei Yang
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| | - Peng Ren
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| |
Collapse
|
6
|
Chen J, Wang X, Cui X, Li Y, Feng Y, Wei Z. In Situ Probing and Identification of Electrochemical Reaction Intermediates by Floating Electrolytic Electrospray Mass Spectrometry. Angew Chem Int Ed Engl 2023; 62:e202219302. [PMID: 36710258 DOI: 10.1002/anie.202219302] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023]
Abstract
The in-depth study of electrochemical (EC) synthesis can require a powerful mass spectrometry (MS) analytical platform which can discover and identify fleeting intermediates in EC reactions. Here we report a floating electrolytic electrospray ionization (FE-ESI) strategy that can perform EC processes in a floating electrolytic cell and monitor intermediates by high-resolution MS. Compared with previous EC-MS methods, a significant advantage of FE-ESI-MS is that it allows one to modulate the electrolytic and electrospray process individually, ensuring its high sensitivity in discovering intermediates and universality to investigate redox reactions in different scenarios. This powerful platform has been successfully used to investigate the EC reductive coupling of p-tolylboronic acid and p-nitrotoluene. A series of nitrene intermediates were discovered and identified by FE-ESI-MS, indicating that a hidden mechanism involving nitrene formation might play a key role in EC reductive coupling process.
Collapse
Affiliation(s)
- Jianxiong Chen
- Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Xiangyu Wang
- Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Xi Cui
- Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Yongyi Li
- Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Yuqi Feng
- Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Zhenwei Wei
- Department of Chemistry, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
7
|
Zhang X, Chen QF, Deng J, Xu X, Zhan J, Du HY, Yu Z, Li M, Zhang MT, Shao Y. Identifying Metal-Oxo/Peroxo Intermediates in Catalytic Water Oxidation by In Situ Electrochemical Mass Spectrometry. J Am Chem Soc 2022; 144:17748-17752. [PMID: 36149317 DOI: 10.1021/jacs.2c07026] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Molecular catalysis of water oxidation has been intensively investigated, but its mechanism is still not yet fully understood. This study aims at capturing and identifying key short-lived intermediates directly during the water oxidation catalyzed by a cobalt-tetraamido macrocyclic ligand complex using a newly developed an in situ electrochemical mass spectrometry (EC-MS) method. Two key ligand-centered-oxidation intermediates, [(L2-)CoIIIOH] and [(L2-)CoIIIOOH], were directly observed for the first time, and further confirmed by 18O-labeling and collision-induced dissociation studies. These experimental results further confirmed the rationality of the water nucleophilic attack mechanism for the single-site water oxidation catalysis. This work also demonstrated that such an in situ EC-MS method is a promising analytical tool for redox catalytic processes, not only limited to water oxidation.
Collapse
Affiliation(s)
- Xianhao Zhang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Qi-Fa Chen
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jintao Deng
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xinyu Xu
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jirui Zhan
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Hao-Yi Du
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zhengyou Yu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Meixian Li
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Ming-Tian Zhang
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yuanhua Shao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
8
|
Xi XJ, Hu J, Chen HY, Xu JJ. Rapid identification of the short-lived intermediates in alternating-current electrolysis by mass spectrometry. Chem Commun (Camb) 2022; 58:10233-10236. [PMID: 36004520 DOI: 10.1039/d2cc04363g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we report the rapid mass spectrometric identification of the short-lived intermediates generated under AC electrolysis via combining bipolar electrochemistry with nanoelectrospray ionization in a hybrid ultramicroelectrode/ion emitter. The key reactive intermediates involved in the C-O/O-H cross-metathesis between 4-alkoxy anilines and alcohols were successfully captured and identified for the first time, providing direct evidence for the previously proposed mechanism.
Collapse
Affiliation(s)
- Xiao-Jun Xi
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
| | - Jun Hu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
| |
Collapse
|