1
|
Handlovic TT, Wahab MF, Glass BC, Armstrong DW. On the greenness of separation modes containing compressed fluids. Anal Chim Acta 2024; 1330:343288. [PMID: 39489969 DOI: 10.1016/j.aca.2024.343288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND In the past three decades, liquid chromatography (LC) has been recognized as a significant environmental, health, and safety burden due to its heavy reliance on toxic organic solvents. Various chromatographic modes are in vogue today for complex analyses, such as sub/supercritical fluid chromatography (SFC) and enhanced fluidity liquid chromatography (EFLC). These modes are often advertised as "universally green" compared to the traditional allliquid reversed (RPLC) and normal phases (NPLC). Quantitative greenness evaluations must be done to validate or invalidate this assumption and allow separation scientists to make educated choices when deciding on what mode to use. RESULTS In this work, we modify the Analytical Method Greenness Score (AMGS) to include the cycle time of the instrument, and with the help of the first-order optimality condition (by setting the AMGS gradient = 0), we show that SFC and EFLC are not always the greenest option as they are often thought to be. Most of the greenness metrics have ignored the cycle time of instruments, yet this key component changes the entire AMGS response to flow rate. The complex case of separating tobacco alkaloid enantiomers (nicotine, nornicotine, anabasine, and anatabine) was selected as an illustrative example for comparing and contrasting separation modes using the modified greenness metric. These enantiomers have been selected due to their notorious difficulty in separation over the past 30 years. Using this family of molecules, four unique retention patterns were observed covering a wide variety of retention phenomena seen in small molecule enantioseparations. SIGNIFICANCE The modified AMGS metric will assist practicing analytical chemists in assessing the environmental impact of their separation methods from a single run in a given chromatographic mode. The proposed methodology identifies the minimum AMGS score corresponding to the greenest separation for routine chemical analysis.
Collapse
Affiliation(s)
- Troy T Handlovic
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, USA
| | - M Farooq Wahab
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, USA
| | - Bailey C Glass
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, USA
| | - Daniel W Armstrong
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, USA.
| |
Collapse
|
2
|
Samuelsson J, Leśko M, Thunberg L, Weinmann AL, Limé F, Enmark M, Fornstedt T. Fundamental investigation of impact of water and TFA additions in peptide sub/supercritical fluid separations. J Chromatogr A 2024; 1732:465203. [PMID: 39096781 DOI: 10.1016/j.chroma.2024.465203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/17/2024] [Accepted: 07/20/2024] [Indexed: 08/05/2024]
Abstract
The retention of three peptides was studied under analytical and overloaded conditions at different concentrations of trifluoroacetic acid (TFA) and water added to the co-solvent methanol (MeOH). Four columns with different stationary phase properties, i.e., silica, diol, 2-ethylpyridine and cyanopropyl (CN) columns, were evaluated in this investigation. The overall aim was to get a deeper understanding on how column chemistry as well as water and TFA in the co-solvent affect the analytical and overloaded elution profiles using multivariate design of experiments and adsorption measurements of co-solvent components. Multivariate experimental design modeling indicated that water had on average around five times higher effect on the retention than the addition of TFA. The results also showed that the retention increases with the addition of TFA and water to the co-solvent on all columns except the CN column, on which the retention decreased. When examining the effect of adding water to the co-solvent, evidence of a hydrophilic interaction liquid chromatography (HILIC)-like retention mechanism was found on the three other columns with more polar stationary phases. However, on the CN column water acted as an additive, decreasing the retention due to competition with the peptide for available adsorption surface. Adsorption isotherm measurements of the polar solvent MeOH showed that MeOH adsorbs much weaker on the CN column than on the other columns. Addition of TFA and water to the co-solvent substantially sharpened the elution profiles under both overloaded and analytical conditions. Adding a small amount of TFA (from 0 % to 0.05 %) to the co-solvent substantially improved the peak shape of the elution profiles, while further addition (from 0.05 % to 0.15 %) had only a minor effect on the elution profile shape. The reduced retention on the CN column could not be explained by TFA adsorption, which was very weak on all studied columns (retention factor, 0.05-0.15). One could therefore speculate that the ion-pairing complex formed between the peptide and TFA in the mobile phase, reduce the retention due to its reduced polarity. On the other columns displaying HILIC-like properties, the TFA probably just decreased the pH of the mobile phase, thereby promoting the partitioning of the peptide into the water-rich layer. Finally, peak deformation due to diluent-eluent mismatch was observed under overloaded conditions. This was most severe in the cases where MeOH adsorption to the stationary phase was strong and the peptides were only mildly retained. Adding 1,4-dioxan to the diluent resolved this issue.
Collapse
Affiliation(s)
- Jörgen Samuelsson
- Department of Engineering and Chemical Sciences, Karlstad University, Karlstad SE-651 88, Sweden.
| | - Marek Leśko
- Department of Engineering and Chemical Sciences, Karlstad University, Karlstad SE-651 88, Sweden
| | - Linda Thunberg
- Early Chemical Development, Pharmaceutical Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Annika Langborg Weinmann
- Early Chemical Development, Pharmaceutical Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | | | - Martin Enmark
- Department of Engineering and Chemical Sciences, Karlstad University, Karlstad SE-651 88, Sweden
| | - Torgny Fornstedt
- Department of Engineering and Chemical Sciences, Karlstad University, Karlstad SE-651 88, Sweden.
| |
Collapse
|
3
|
Song C, Jin G, Yu D, Guo Z, Liang X. A nitrogenous heterocyclic ring-bonded stationary phase for separating alkaloids in supercritical fluid chromatography. J Chromatogr A 2024; 1720:464811. [PMID: 38490143 DOI: 10.1016/j.chroma.2024.464811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 03/17/2024]
Abstract
A novel silica stationary phase was designed and prepared through thiol-epoxy click chemistry for supercritical fluid chromatography (SFC). The developed stationary phase was characterized by elemental analysis, Fourier transform infrared spectrometry and solid-state 13C/CP MAS NMR spectroscopy. In order to evaluate the chromatographic performance and retention mechanisms of the prepared column, a variety of alkaloids were used, including indoles, isoquinolines, pyrrolidines, piperidines, quinolizidines and organic amines. The stationary phase showed more symmetrical peak shapes and better performance for these compounds compared to the conventional SFC stationary phases. The investigations on the effects of pressure and temperature on retention provided information that the selectivity of the compounds can be improved by changing the density of the supercritical fluids. Moreover, it shows improved separation efficiency of three natural products with alkaloids as the main components at high sample loading. In conclusion, the developed stationary phase could offer flexible selectivity toward alkaloids and complex samples.
Collapse
Affiliation(s)
- Chunying Song
- Key Lab of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Gaowa Jin
- Key Lab of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, China
| | - Dongping Yu
- Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, China
| | - Zhimou Guo
- Key Lab of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, China.
| | - Xinmiao Liang
- Key Lab of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, China.
| |
Collapse
|
4
|
Song C, Qi Y, Wang C, Jin G, Wang S, Yu D, Guo Z, Liang X. Ordered mesoporous silica microspheres for supercritical fluid chromatography. Chem Commun (Camb) 2024. [PMID: 38372355 DOI: 10.1039/d3cc05690b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Herein, silica microspheres with ordered mesopores are synthesized and applied as a stationary phase for supercritical fluid chromatography (SFC). The excellent particle monodispersity and pore orderliness coupled with the rapid analytes diffusion of the supercritical fluid lead to an ultra-high column efficiency of 340 000 plate per m.
Collapse
Affiliation(s)
- Chunying Song
- Key Lab of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Qi
- Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China
| | - Chenyu Wang
- Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China
| | - Gaowa Jin
- Key Lab of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Shengfu Wang
- Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China
| | - Dongping Yu
- Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China
| | - Zhimou Guo
- Key Lab of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Xinmiao Liang
- Key Lab of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
5
|
Kozlov O, Hančová E, Cífková E, Lísa M. Comprehensive Single-Platform Lipidomic/Metabolomic Analysis Using Supercritical Fluid Chromatography-Mass Spectrometry. Anal Chem 2024; 96:1320-1327. [PMID: 38193397 DOI: 10.1021/acs.analchem.3c04771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Supercritical fluid chromatography (SFC) is a rapidly expanding technique in the analysis of nonpolar to moderately polar substances and, more recently, also in the analysis of compounds with higher polarity. Herein, we demonstrate a proof of concept for the application of a commercial SFC instrument with electrospray ionization-mass spectrometry (MS) detection as a platform for the comprehensive analysis of metabolites with the full range of polarities, from nonpolar lipids up to highly polar metabolites. The developed single-platform SFC-MS lipidomic/metabolomic method is based on two consecutive injections of lipid and polar metabolite extracts from biphase methyl tert-butyl ether extraction using a diol column and two different gradient programs of methanol-water-ammonium formate modifier. Detailed development of the method focused mainly on the pressure limits of the system, the long-term repeatability of results, and the chromatographic performance, including optimization of the flow rate program, modifier composition and gradient, and injection solvent selection. The developed method enabled fast and comprehensive analysis of lipids and polar metabolites from plasma within a 24 min cycle with two injections using a simple analytical platform based on a single instrument, column, and mobile phase. Finally, the results from SFC-MS analysis of polar metabolites were compared with widely established liquid chromatography MS analysis in metabolomics. The comparison showed different separation selectivity of metabolites using both methods and overall lower sensitivity of the SFC-MS due to the higher flow rate and worse chromatographic performance.
Collapse
Affiliation(s)
- Oleksandr Kozlov
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Rokitanského 62, Hradec Králové 50003, Czech Republic
| | - Eliška Hančová
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Rokitanského 62, Hradec Králové 50003, Czech Republic
| | - Eva Cífková
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Rokitanského 62, Hradec Králové 50003, Czech Republic
| | - Miroslav Lísa
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Rokitanského 62, Hradec Králové 50003, Czech Republic
| |
Collapse
|
6
|
Losacco GL, Breitbach ZS, Walsh PL, Van Haandel L. Unified chromatography in drug development: Exploiting chaotropic/kosmotropic salts for an accelerated method development. J Chromatogr A 2023; 1709:464392. [PMID: 37742458 DOI: 10.1016/j.chroma.2023.464392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/15/2023] [Accepted: 09/17/2023] [Indexed: 09/26/2023]
Abstract
Recent trends in supercritical fluid chromatography (SFC) introduced an innovative gradient profile called Unified Chromatography (UC), which pushes the amount of liquid modifier up to 80-100 % of the total mobile phase composition. These new conditions allow the full transition from a supercritical to a liquid state, unifying the benefits of both SFC and liquid chromatography. However, to facilitate the use of UC for industrial drug development, a stronger effort is needed to streamline and simplify its method development and optimization. In this work, a quick and novel method development procedure for UC is introduced, enabled by the first-time use of novel additives in SFC/UC that exploit chaotropic/kosmotropic properties. A comprehensive view on some fundamental properties, such as the amount of liquid modifier blended with supercritical CO2 (scCO2) and the percentage of water added in the mobile phase is given, to clarify the benefits of using either a chaotropic salt (NaClO4), kosmotropic (HCOONa) or salt with mixed properties (NaOMs - sodium methanesulfonate). With this expanded knowledge, challenging separations of nucleosides, nucleotide, indoles, triazoles and related derivates have been accomplished with UC. Finally, we provide an example of UC delivering a faster and better method for an AbbVie pipeline compound under accelerated stability study. The combined use of scCO2-based chromatography and the novel additive NaClO4 ensures the retention and elution of all degradation species generated at different conditions, where RP-HPLC failed to provide satisfactory performance.
Collapse
Affiliation(s)
- Gioacchino Luca Losacco
- Analytical Research and Development, Small Molecule CMC Development, AbbVie, Inc., 1 North Waukegan Road, North Chicago, IL 60064, USA.
| | - Zachary S Breitbach
- Analytical Research and Development, Small Molecule CMC Development, AbbVie, Inc., 1 North Waukegan Road, North Chicago, IL 60064, USA
| | - Paul L Walsh
- Analytical Research and Development, Small Molecule CMC Development, AbbVie, Inc., 1 North Waukegan Road, North Chicago, IL 60064, USA
| | - Leon Van Haandel
- Analytical Research and Development, Small Molecule CMC Development, AbbVie, Inc., 1 North Waukegan Road, North Chicago, IL 60064, USA
| |
Collapse
|
7
|
Vrobel O, Tarkowski P. Can plant hormonomics be built on simple analysis? A review. PLANT METHODS 2023; 19:107. [PMID: 37833752 PMCID: PMC10576392 DOI: 10.1186/s13007-023-01090-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/08/2023] [Indexed: 10/15/2023]
Abstract
The field of plant hormonomics focuses on the qualitative and quantitative analysis of the hormone complement in plant samples, akin to other omics sciences. Plant hormones, alongside primary and secondary metabolites, govern vital processes throughout a plant's lifecycle. While active hormones have received significant attention, studying all related compounds provides valuable insights into internal processes. Conventional single-class plant hormone analysis employs thorough sample purification, short analysis and triple quadrupole tandem mass spectrometry. Conversely, comprehensive hormonomics analysis necessitates minimal purification, robust and efficient separation and better-performing mass spectrometry instruments. This review summarizes the current status of plant hormone analysis methods, focusing on sample preparation, advances in chromatographic separation and mass spectrometric detection, including a discussion on internal standard selection and the potential of derivatization. Moreover, current approaches for assessing the spatiotemporal distribution are evaluated. The review touches on the legitimacy of the term plant hormonomics by exploring the current status of methods and outlining possible future trends.
Collapse
Affiliation(s)
- Ondřej Vrobel
- Department of Biochemistry, Faculty of Science, Palacky University, Olomouc, Czech Republic
- Czech Advanced Technology and Research Institute, Palacky University, Olomouc, Czech Republic
- Department of Genetic Resources for Vegetables, Medicinal and Special Plants, Crop Research Institute, Olomouc, Czech Republic
| | - Petr Tarkowski
- Czech Advanced Technology and Research Institute, Palacky University, Olomouc, Czech Republic.
- Department of Genetic Resources for Vegetables, Medicinal and Special Plants, Crop Research Institute, Olomouc, Czech Republic.
| |
Collapse
|
8
|
Tisler S, Savvidou P, Jørgensen MB, Castro M, Christensen JH. Supercritical Fluid Chromatography Coupled to High-Resolution Mass Spectrometry Reveals Persistent Mobile Organic Compounds with Unknown Toxicity in Wastewater Effluents. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37307429 DOI: 10.1021/acs.est.3c00120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Broad screening approaches for monitoring wastewater are normally based on reversed-phase liquid chromatography (LC) coupled to high-resolution mass spectrometry (HRMS). This method is not sufficient for the very polar micropollutants, neglected in the past due to a lack of suitable analytical methods. In this study, we used supercritical fluid chromatography (SFC) to detect very polar and yet-undetected micropollutants in wastewater effluents. We tentatively identified 85 compounds, whereas 18 have only rarely been detected and 11 have not previously been detected in wastewater effluents such as 17α-hydroxypregnenolone, a likely transformation product (TP) of steroids, and 1H-indole-3-carboxamide, a likely TP from new synthetic cannabinoids. Suspect screening of 25 effluent wastewater samples from 8 wastewater treatment plants revealed several distinct potential pollution sources such as a pharmaceutical company and a golf court. The analysis of the same samples with LC-HRMS showed clearly how SFC increases the ionization efficiency for low-molecular-weight micropollutants (m/z < 300 Da) by a factor 2 to 87 times, which significantly improved the mass spectra for identifying very polar compounds. In order to assess which micropollutants might be of environmental concern, literature and toxicological databases were screened. There was a lack of available hazard and bio-activity data for regulatory-relevant in vitro and in vivo assays for >50% of the micropollutants. Especially, 70% of the data were lacking for the whole organism (in vivo) tests.
Collapse
Affiliation(s)
- Selina Tisler
- Analytical Chemistry Group, Department of Plant and Environmental Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Pinelopi Savvidou
- Analytical Chemistry Group, Department of Plant and Environmental Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | | | - Mafalda Castro
- Analytical Chemistry Group, Department of Plant and Environmental Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Jan H Christensen
- Analytical Chemistry Group, Department of Plant and Environmental Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| |
Collapse
|
9
|
Si-Hung L, Izumi Y, Bamba T. First proof-of-concept of UC/HILIC for extending the versatility of the current art of supercritical fluid separation. Anal Chim Acta 2023; 1240:340741. [PMID: 36641155 DOI: 10.1016/j.aca.2022.340741] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 12/04/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
Supercritical Fluid Chromatography (SFC), a high-throughput separation technique, has been widely applied as a promising routine method in pharmaceutical, pesticides, and metabolome analysis in the same way as conventional liquid chromatography and gas chromatography. Unified chromatography (UC), an advanced version of SFC, which applied gradient elution with mobile phase changing continuously from supercritical to subcritical and to liquid states, can further extend the SFC applications. UC mostly applying the popular mobile phase of 95%:5%/Methanol:Water with additives allows to analyze many hydrophilic compounds. However, many of phosphorylated metabolites or multi carboxylic acids show very poor peak shapes or even can't be eluted under UC conditions, thus hampering the UC's metabolome coverage. In this study, we proposed the first proof-of-concept of UC/HILIC, a novel strategy to extend the current UC metabolome coverage by employing an aqueous gradient right after the UC gradient on a single packed column in a single measurement. The proposed method showed significant improvement regarding the chromatographic performance and metabolome coverage, while still maintaining the precision and high throughput in comparison with conventional UC methods.
Collapse
Affiliation(s)
- Le Si-Hung
- Division of Metabolomics/Mass Spectrometry Center, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Japan
| | - Yoshihiro Izumi
- Division of Metabolomics/Mass Spectrometry Center, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Japan
| | - Takeshi Bamba
- Division of Metabolomics/Mass Spectrometry Center, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Japan.
| |
Collapse
|
10
|
Selahle SK, Mpupa A, Nqombolo A, Nomngongo PN. A nanostructured o-hydroxyazobenzene porous organic polymer as an effective sorbent for the extraction and preconcentration of selected hormones and insecticides in river water. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
11
|
Dispas A, Sacré PY, Ziemons E, Hubert P. Emerging analytical techniques for pharmaceutical quality control: Where are we in 2022? J Pharm Biomed Anal 2022; 221:115071. [PMID: 36179505 DOI: 10.1016/j.jpba.2022.115071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/05/2022] [Accepted: 09/20/2022] [Indexed: 12/19/2022]
Abstract
Quality control is a fundamental and critical activity in the pharmaceutical industry that guarantees the quality of medicines. QC analyses are currently performed using several well-known techniques, mainly liquid and gas chromatography. However, current trends are focused on the development of new techniques to reduce analysis time and cost, to improve the performances and decrease ecological footprint. In this context, analytical scientists developed and studied emerging technologies based on spectroscopy and chromatography. The present review aims to give an overview of the recent development of vibrational spectroscopy, supercritical fluid chromatography and multi-dimensional chromatography. Selected emerging techniques are discussed using SWOT analysis and published pharmaceutical QC applications are discussed.
Collapse
Affiliation(s)
- Amandine Dispas
- University of Liege (ULiege), CIRM, Laboratory of Pharmaceutical Analytical Chemistry, Liège, Belgium; University of Liege (ULiege), CIRM, Laboratory for the Analysis of Medicines, Liège, Belgium.
| | - Pierre-Yves Sacré
- University of Liege (ULiege), CIRM, Laboratory of Pharmaceutical Analytical Chemistry, Liège, Belgium
| | - Eric Ziemons
- University of Liege (ULiege), CIRM, Laboratory of Pharmaceutical Analytical Chemistry, Liège, Belgium
| | - Philippe Hubert
- University of Liege (ULiege), CIRM, Laboratory of Pharmaceutical Analytical Chemistry, Liège, Belgium
| |
Collapse
|
12
|
Mei J, Huang Y, Crommen J, Zha D, Jiang Z, Zhang T. Quality evaluation of Panax notoginseng (Burk.) F.H. Chen using supercritical fluid chromatography-mass spectrometry and chemical pattern recognition. J Pharm Biomed Anal 2022; 221:115029. [PMID: 36162277 DOI: 10.1016/j.jpba.2022.115029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/29/2022] [Accepted: 09/03/2022] [Indexed: 11/18/2022]
Abstract
An efficient supercritical fluid chromatography-mass spectrometry (SFC-MS) method was developed for the quality evaluation of Panax Notoginseng (Burk) F.H. Chen (P. notoginseng) by combination with chemical pattern recognition (CPR). Design of experiments (DoE) was applied to obtain optimal SFC-MS conditions. Several CPR methods including hierarchical cluster analysis (HCA), principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) were employed to establish a classification model based on the peak areas and contents of 12 components in P. notoginseng in order to evaluate the quality difference according to the collecting time (Chunqi and Dongqi) and medicinal parts (fibrous root, rhizome, branch root, and main root). PLS-DA has proved to be a satisfactory method with accurate discrimination of the selected samples. The characteristic variables based on the variable importance in projection (VIP) values were selected using PLS-DA. Three characteristic components (ginsenoside Rg2, ginsenoside Rg1, ginsenoside Rb1) with higher VIP values (>1) were chosen to further build the CPR model. Subsequently, the model was verified by testing another set of samples and the results indicated that the established model was satisfactory. PLS-DA models based on the peak areas of the 12 selected analytes in 30 batches of P. notoginseng could give accurate classification. The obtained results demonstrate that the developed method using SFC-MS and PLS-DA has a great potential for the quality assessment of P. notoginseng.
Collapse
Affiliation(s)
- Jie Mei
- Institute of Pharmaceutical Analysis, College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine & New Drug Research, Jinan University, Guangzhou 510632, China
| | - Yang Huang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Jacques Crommen
- Laboratory for the Analysis of Medicines, Center for Interdisciplinary Research on Medicines (CIRM), University of Liege, Quartier Hôpital, Avenue Hippocrate 15, 4000 Liege, Belgium
| | - Dingsheng Zha
- Department of Orthopaedics, the First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510630, China.
| | - Zhengjin Jiang
- Institute of Pharmaceutical Analysis, College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine & New Drug Research, Jinan University, Guangzhou 510632, China.
| | - Tingting Zhang
- Institute of Pharmaceutical Analysis, College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine & New Drug Research, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
13
|
Losacco GL, Cohen RD, DaSilva JO, Haidar Ahmad IA, Sherer EC, Mangion I, Regalado EL. Deuterated Modifiers in Sub/Supercritical Fluid Chromatography for Streamlined NMR Structure Elucidation. Anal Chem 2022; 94:12176-12184. [PMID: 36001377 DOI: 10.1021/acs.analchem.2c02623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Isolation and chemical characterization of target components in fast-paced pharmaceutical laboratories can often be challenging, especially when dealing with mixtures of closely related, possibly unstable species. Traditionally, this process involves intense labor and manual intervention including chromatographic method development and optimization, fraction collection, and drying processes prior to NMR analyses for unambiguous structure elucidation. To circumvent these challenges, a foundational framework for the proper utilization of supercritical carbon dioxide (scCO2) and deuterated modifiers (CD3OD) in sub/supercritical fluid chromatography (SFC) is herein introduced. This facilitates a streamlined multicomponent isolation with minimized protic residues, further enabling immediate NMR analysis. In addition to bypassing tedious drying processes and minimizing analyte degradation, this approach (complementary to traditional reversed-phase liquid chromatography, RPLC) delivers highly efficient separations and automated fraction collection using readily available analytical/midscale SFC instrumentation. A series of diverse analytes across a wide spectrum of chemical properties (acid, basic, and neutral), combined with different stationary-phase columns in SFC are investigated using both a protic organic modifier (CH3OH) and its deuterated counterpart (CD3OD). The power of this framework is demonstrated with pharmaceutically relevant applications in the context of target characterization and analysis of complex multicomponent reaction mixtures from modern synthetic chemistry, demonstrating high isolation yields while reducing both the environmental footprint and manual intervention. This workflow enables unambiguous fast-paced structure elucidation on the analytical scale, providing results that are comparable to traditional, but time-consuming, RPLC purification approaches.
Collapse
Affiliation(s)
- Gioacchino Luca Losacco
- Analytical Research and Development, MRL, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Ryan D Cohen
- Analytical Research and Development, MRL, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Jimmy O DaSilva
- Analytical Research and Development, MRL, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Imad A Haidar Ahmad
- Analytical Research and Development, MRL, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Edward C Sherer
- Analytical Research and Development, MRL, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Ian Mangion
- Analytical Research and Development, MRL, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Erik L Regalado
- Analytical Research and Development, MRL, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| |
Collapse
|
14
|
Roy D, Tarafder A, Miller L. Additives in chiral packed column super/subcritical fluid chromatography: A little goes a long way. J Chromatogr A 2022; 1676:463216. [DOI: 10.1016/j.chroma.2022.463216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 10/18/2022]
|
15
|
Neumann J, Schmidtsdorff S, Schmidt AH, Parr MK. Application of Sub‐/Supercritical fluid chromatography for the fingerprinting of a complex therapeutic peptide. J Sep Sci 2022; 45:3095-3104. [DOI: 10.1002/jssc.202200393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/17/2022] [Accepted: 07/03/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Jonas Neumann
- Chromicent GmbH Johann‐Hittorf‐Str. 8 12489 Berlin Germany
- Freie Universität Berlin Königin‐Luise‐Str. 2+4 14195 Berlin Germany
| | - Sebastian Schmidtsdorff
- Chromicent GmbH Johann‐Hittorf‐Str. 8 12489 Berlin Germany
- Freie Universität Berlin Königin‐Luise‐Str. 2+4 14195 Berlin Germany
| | | | - Maria K. Parr
- Freie Universität Berlin Königin‐Luise‐Str. 2+4 14195 Berlin Germany
| |
Collapse
|
16
|
Edge T, James M, Pipe C, Bylikin S, Field J, Euerby M. An Assessment of Stationary Phase Selectivity in SFC. LCGC NORTH AMERICA 2022. [DOI: 10.56530/lcgc.na.ml7572h4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Supercritical fluid chromatography (SFC) has seen a recent resurgence in interest following investment in the development of instrument technology by numerous instrument manufacturers. Increased focus on sustainability in chromatographic science, coupled with the orthogonality to reversed phase HPLC, is likely to further drive the uptake of SFC in many sectors. As with any form of chromatography, optimizing separation selectivity is a key variable in providing adequate resolution and accurate identification and quantification of target analytes. Stationary phase chemistry can be readily exploited to substantially alter the separation selectivity obtained. This article examines and characterizes the selectivity differences offered by three prototype SFC phases.
Collapse
|
17
|
Deidda R, Losacco GL, Schelling C, Regalado EL, Veuthey JL, Guillarme D. Sub/supercritical fluid chromatography versus liquid chromatography for peptide analysis. J Chromatogr A 2022; 1676:463282. [DOI: 10.1016/j.chroma.2022.463282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 10/17/2022]
|
18
|
Roy D, Miller L. Exploring the utility of natural deep eutectic solvents as additives in super/subcritical fluid chromatography- insights into chiral recognition mechanism. Anal Chim Acta 2022; 1200:339584. [DOI: 10.1016/j.aca.2022.339584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 11/29/2022]
|
19
|
Effect of the injection of water-containing diluents on band broadening in analytical supercritical fluid chromatography. J Chromatogr A 2022; 1673:463056. [DOI: 10.1016/j.chroma.2022.463056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/24/2022] [Accepted: 04/11/2022] [Indexed: 11/17/2022]
|
20
|
Plachká K, Gazárková T, Škop J, Guillarme D, Svec F, Nováková L. Fast Optimization of Supercritical Fluid Chromatography-Mass Spectrometry Interfacing Using Prediction Equations. Anal Chem 2022; 94:4841-4849. [PMID: 35274936 DOI: 10.1021/acs.analchem.2c00154] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The effect of makeup solvent composition in ultrahigh-performance supercritical fluid chromatography-triple quadrupole mass spectrometry using electrospray ionization was studied using a set of 91 compounds, 3 stationary phases, and 2 organic modifiers of the mobile phase. The 24 tested makeup solvents included pure alcohols and methanol in combination with commonly used additives such as water, formic and acetic acid, ammonia, and ammonia salts with varying molarity. The behavioral trends for different makeup solvent additives were established in the first step. Subsequently, the correlations between physicochemical properties and the MS responses were calculated using the Pearson correlation test and matrix plots. The regression analysis was performed using five descriptors: molecular weight, pKa, log P, number of hydrogen donors/acceptors, and the MS responses obtained with methanol as the makeup solvent. The resulting regression equations had a high prediction rate calculated as R2-predicted coefficient, especially when 10 mmol/L ammonium in methanol was used as an organic modifier of the mobile phase in positive mode. The trueness of these equations was tested via the comparison between experimental and predicted responses expressed as R2. Values of R2 > 0.8 were found for 88% of the proposed equations. Thus, the MS response could be measured using only one makeup solvent and the responses of other makeup solvents could be easily estimated. The suitability and applicability of determined regression equations was confirmed by the analysis of 13 blind probes, i.e., compounds not included in the original set of analytes. Moreover, the predicted and experimental responses followed the same increasing/decreasing trend enabling one to predict makeup solvent compositions leading to the highest sensitivity.
Collapse
Affiliation(s)
- Kateřina Plachká
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Tat'ána Gazárková
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Jan Škop
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Davy Guillarme
- Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, CMU-Rue Michel Servet 1, 1211 Geneva 4, Switzerland.,School of Pharmaceutical Sciences, University of Geneva, CMU-Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| | - Frantisek Svec
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Lucie Nováková
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| |
Collapse
|
21
|
Gazárková T, Plachká K, Svec F, Nováková L. Current state of supercritical fluid chromatography-mass spectrometry. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116544] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
22
|
Analysis of short-chain bioactive peptides by unified chromatography-electrospray ionization mass spectrometry. Part II. Comparison to reversed-phase ultra-high performance liquid chromatography. J Chromatogr A 2022; 1663:462771. [PMID: 34973481 DOI: 10.1016/j.chroma.2021.462771] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/18/2021] [Accepted: 12/20/2021] [Indexed: 01/16/2023]
Abstract
In the first part of this study, a unified chromatography (UC) analysis method, which is similar to supercritical fluid chromatography (SFC) but with wide mobile phase gradients of pressurized CO2 and solvent, was developed to analyse short-chain peptides, with UV and mass spectrometry (MS) detection. In this second part, the method is compared to a reference reversed-phase ultra-high-performance liquid chromatography (RP-UHPLC) method, based on the analysis of 43 peptides, including 10 linear peptides and 33 cyclic ones. First, the orthogonality between the two methods was examined, based on the retention patterns. As the UC method was developed on a polar stationary phase (Ascentis Express OH5), the elution orders and selectivities were expected to be significantly different from RPLC on a non-polar stationary phase (ACQUITY CSH C18). Secondly, the success rate of the methods was examined, based on successful retention / elution of the peptides and the absence of observed co-elutions between the main peak and impurities. A successful analysis was obtained for 81% of the peptides in UC and 67% in RPLC. Thirdly, the performance of the methods for the intended application of impurity profiling of peptide drug candidates was assessed, based on the comparison of peak purities, the number of impurities detected and the thorough examination of impurity profiles. Excellent complementarity of the two methods for the specific task of impurity profiling, and for the separation of isomeric species was observed, with only one isomeric pair in this set remaining unresolved. The method sensitivity was however better with RPLC than UC. Finally, the operational costs in terms of solvent cost per analysis were the same between the two methods.
Collapse
|
23
|
West C, Lesellier E. Selection of SFC stationary and mobile phases. SEP SCI TECHNOL 2022. [DOI: 10.1016/b978-0-323-88487-7.00008-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
24
|
Li B, Guo W, Chi H, Zhang Z, Ramsey ED. Key measurements performed using on-line supercritical fluid chromatography to support process design and development. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2021.116479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Broeckhoven K. Advances in the limits of separation power in supercritical fluid chromatography. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2021.116489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
26
|
Reactions of two primary aromatic amines in modified supercritical carbon dioxide to synthesize sulfonamides: On-line SFC to perform solubility measurements and method to monitor reaction progress. J Supercrit Fluids 2022. [DOI: 10.1016/j.supflu.2021.105419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
27
|
Si-Hung L, Bamba T. Current state and future perspectives of supercritical fluid chromatography. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116550] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
28
|
Khater S, Ferguson P, Grand-Guillaume-Perrenoud A. Method development approaches for small-molecule analytes. SEP SCI TECHNOL 2022. [DOI: 10.1016/b978-0-323-88487-7.00005-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
29
|
Jambo H, Hubert P, Dispas A. Supercritical fluid chromatography for pharmaceutical quality control: Current challenges and perspectives. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2021.116486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
30
|
Effect of water addition to super/sub-critical fluid mobile-phases for achiral and chiral separations. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116464] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|