1
|
Baz Lomba JA, Pires J, Myrmel M, Arnø JK, Madslien EH, Langlete P, Amato E, Hyllestad S. Effectiveness of environmental surveillance of SARS-CoV-2 as an early-warning system: Update of a systematic review during the second year of the pandemic. JOURNAL OF WATER AND HEALTH 2024; 22:197-234. [PMID: 38295081 PMCID: wh_2023_279 DOI: 10.2166/wh.2023.279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
The aim of this updated systematic review was to offer an overview of the effectiveness of environmental surveillance (ES) of SARS-CoV-2 as a potential early-warning system (EWS) for COVID-19 and new variants of concerns (VOCs) during the second year of the pandemic. An updated literature search was conducted to evaluate the added value of ES of SARS-CoV-2 for public health decisions. The search for studies published between June 2021 and July 2022 resulted in 1,588 publications, identifying 331 articles for full-text screening. A total of 151 publications met our inclusion criteria for the assessment of the effectiveness of ES as an EWS and early detection of SARS-CoV-2 variants. We identified a further 30 publications among the grey literature. ES confirms its usefulness as an EWS for detecting new waves of SARS-CoV-2 infection with an average lead time of 1-2 weeks for most of the publication. ES could function as an EWS for new VOCs in areas with no registered cases or limited clinical capacity. Challenges in data harmonization and variant detection require standardized approaches and innovations for improved public health decision-making. ES confirms its potential to support public health decision-making and resource allocation in future outbreaks.
Collapse
Affiliation(s)
- Jose Antonio Baz Lomba
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway E-mail:
| | - João Pires
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway; ECDC fellowship Programme, Public Health Microbiology path (EUPHEM), European Centre for Disease Prevention and Control (ECDC), Solna, Sweden
| | - Mette Myrmel
- Faculty of Veterinary Medicine, Virology Unit, Norwegian University of Life Science (NMBU), Oslo, Norway
| | - Jorunn Karterud Arnø
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway
| | - Elisabeth Henie Madslien
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway
| | - Petter Langlete
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway
| | - Ettore Amato
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway
| | - Susanne Hyllestad
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
2
|
Song X, Fredj Z, Zheng Y, Zhang H, Rong G, Bian S, Sawan M. Biosensors for waterborne virus detection: Challenges and strategies. J Pharm Anal 2023; 13:1252-1268. [PMID: 38174120 PMCID: PMC10759259 DOI: 10.1016/j.jpha.2023.08.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/20/2023] [Accepted: 08/29/2023] [Indexed: 01/05/2024] Open
Abstract
Waterborne viruses that can be harmful to human health pose significant challenges globally, affecting health care systems and the economy. Identifying these waterborne pathogens is essential for preventing diseases and protecting public health. However, handling complex samples such as human and wastewater can be challenging due to their dynamic and complex composition and the ultralow concentration of target analytes. This review presents a comprehensive overview of the latest breakthroughs in waterborne virus biosensors. It begins by highlighting several promising strategies that enhance the sensing performance of optical and electrochemical biosensors in human samples. These strategies include optimizing bioreceptor selection, transduction elements, signal amplification, and integrated sensing systems. Furthermore, the insights gained from biosensing waterborne viruses in human samples are applied to improve biosensing in wastewater, with a particular focus on sampling and sample pretreatment due to the dispersion characteristics of waterborne viruses in wastewater. This review suggests that implementing a comprehensive system that integrates the entire waterborne virus detection process with high-accuracy analysis could enhance virus monitoring. These findings provide valuable insights for improving the effectiveness of waterborne virus detection, which could have significant implications for public health and environmental management.
Collapse
Affiliation(s)
- Xixi Song
- CenBRAIN Neurotech, School of Engineering, Westlake University, Hangzhou, 310030, China
| | - Zina Fredj
- CenBRAIN Neurotech, School of Engineering, Westlake University, Hangzhou, 310030, China
| | - Yuqiao Zheng
- CenBRAIN Neurotech, School of Engineering, Westlake University, Hangzhou, 310030, China
| | - Hongyong Zhang
- CenBRAIN Neurotech, School of Engineering, Westlake University, Hangzhou, 310030, China
| | - Guoguang Rong
- CenBRAIN Neurotech, School of Engineering, Westlake University, Hangzhou, 310030, China
| | - Sumin Bian
- CenBRAIN Neurotech, School of Engineering, Westlake University, Hangzhou, 310030, China
| | - Mohamad Sawan
- CenBRAIN Neurotech, School of Engineering, Westlake University, Hangzhou, 310030, China
| |
Collapse
|
3
|
Lou EG, Sapoval N, McCall C, Bauhs L, Carlson-Stadler R, Kalvapalle P, Lai Y, Palmer K, Penn R, Rich W, Wolken M, Brown P, Ensor KB, Hopkins L, Treangen TJ, Stadler LB. Direct comparison of RT-ddPCR and targeted amplicon sequencing for SARS-CoV-2 mutation monitoring in wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022. [PMID: 35395314 DOI: 10.2139/ssrn.4022373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Over the course of the COVID-19 pandemic, variants of SARS-CoV-2 have emerged that are more contagious and more likely to cause breakthrough infections. Targeted amplicon sequencing approach is a gold standard for identification and analysis of variants. However, when applied to environmental samples such as wastewater, it remains unclear how sensitive this method is for detecting variant-associated mutations in environmental samples. Here we directly compare a targeted amplicon sequencing approach (using ARTIC v3; hereafter referred to as sequencing) with RT-ddPCR quantification for the detection of five mutations that are characteristic of variants of concern (VoCs) in wastewater samples. In total, 547 wastewater samples were analyzed using both methods in parallel. When we observed positive mutation detections by RT-ddPCR, 42.6% of the detection events were missed by sequencing, due to negative detection or the limited read coverage at the mutation position. Further, when sequencing reported negative or depth-limited mutation detections, 26.7% of those events were instead positive detections by RT-ddPCR, highlighting the relatively poor sensitivity of sequencing. No or weak associations were observed between quantitative measurements of target mutations determined by RT-ddPCR and sequencing. These findings caution the use of quantitative measurements of SARS-CoV-2 variants in wastewater samples determined solely based on sequencing.
Collapse
Affiliation(s)
- Esther G Lou
- Department of Civil and Environmental Engineering, Rice University, 6100 Main Street, MS 519, Houston, TX 77005, United States of America
| | - Nicolae Sapoval
- Department of Computer Science, Rice University, 6100 Main Street, Houston, TX 77005, United States of America
| | - Camille McCall
- Department of Civil and Environmental Engineering, Rice University, 6100 Main Street, MS 519, Houston, TX 77005, United States of America
| | - Lauren Bauhs
- Department of Civil and Environmental Engineering, Rice University, 6100 Main Street, MS 519, Houston, TX 77005, United States of America
| | - Russell Carlson-Stadler
- Department of Civil and Environmental Engineering, Rice University, 6100 Main Street, MS 519, Houston, TX 77005, United States of America
| | - Prashant Kalvapalle
- Systems, Synthetic, and Physical Biology Graduate Program, Rice University, 6100 Main Street, Houston, TX 77005, United States of America
| | - Yanlai Lai
- Houston Health Department, 8000 N. Stadium Dr., Houston, TX 77054, United States of America
| | - Kyle Palmer
- Department of Civil and Environmental Engineering, Rice University, 6100 Main Street, MS 519, Houston, TX 77005, United States of America
| | - Ryker Penn
- Houston Health Department, 8000 N. Stadium Dr., Houston, TX 77054, United States of America
| | - Whitney Rich
- Department of Civil and Environmental Engineering, Rice University, 6100 Main Street, MS 519, Houston, TX 77005, United States of America
| | - Madeline Wolken
- Department of Civil and Environmental Engineering, Rice University, 6100 Main Street, MS 519, Houston, TX 77005, United States of America
| | - Pamela Brown
- Houston Health Department, 8000 N. Stadium Dr., Houston, TX 77054, United States of America
| | - Katherine B Ensor
- Department of Statistics, Rice University, 6100 Main Street MS 138, Houston, TX 77005, United States of America
| | - Loren Hopkins
- Houston Health Department, 8000 N. Stadium Dr., Houston, TX 77054, United States of America; Department of Statistics, Rice University, 6100 Main Street MS 138, Houston, TX 77005, United States of America
| | - Todd J Treangen
- Department of Computer Science, Rice University, 6100 Main Street, Houston, TX 77005, United States of America
| | - Lauren B Stadler
- Department of Civil and Environmental Engineering, Rice University, 6100 Main Street, MS 519, Houston, TX 77005, United States of America.
| |
Collapse
|
4
|
Lou EG, Sapoval N, McCall C, Bauhs L, Carlson-Stadler R, Kalvapalle P, Lai Y, Palmer K, Penn R, Rich W, Wolken M, Brown P, Ensor KB, Hopkins L, Treangen TJ, Stadler LB. Direct comparison of RT-ddPCR and targeted amplicon sequencing for SARS-CoV-2 mutation monitoring in wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 833:155059. [PMID: 35395314 PMCID: PMC8983075 DOI: 10.1016/j.scitotenv.2022.155059] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 05/14/2023]
Abstract
Over the course of the COVID-19 pandemic, variants of SARS-CoV-2 have emerged that are more contagious and more likely to cause breakthrough infections. Targeted amplicon sequencing approach is a gold standard for identification and analysis of variants. However, when applied to environmental samples such as wastewater, it remains unclear how sensitive this method is for detecting variant-associated mutations in environmental samples. Here we directly compare a targeted amplicon sequencing approach (using ARTIC v3; hereafter referred to as sequencing) with RT-ddPCR quantification for the detection of five mutations that are characteristic of variants of concern (VoCs) in wastewater samples. In total, 547 wastewater samples were analyzed using both methods in parallel. When we observed positive mutation detections by RT-ddPCR, 42.6% of the detection events were missed by sequencing, due to negative detection or the limited read coverage at the mutation position. Further, when sequencing reported negative or depth-limited mutation detections, 26.7% of those events were instead positive detections by RT-ddPCR, highlighting the relatively poor sensitivity of sequencing. No or weak associations were observed between quantitative measurements of target mutations determined by RT-ddPCR and sequencing. These findings caution the use of quantitative measurements of SARS-CoV-2 variants in wastewater samples determined solely based on sequencing.
Collapse
Affiliation(s)
- Esther G Lou
- Department of Civil and Environmental Engineering, Rice University, 6100 Main Street, MS 519, Houston, TX 77005, United States of America
| | - Nicolae Sapoval
- Department of Computer Science, Rice University, 6100 Main Street, Houston, TX 77005, United States of America
| | - Camille McCall
- Department of Civil and Environmental Engineering, Rice University, 6100 Main Street, MS 519, Houston, TX 77005, United States of America
| | - Lauren Bauhs
- Department of Civil and Environmental Engineering, Rice University, 6100 Main Street, MS 519, Houston, TX 77005, United States of America
| | - Russell Carlson-Stadler
- Department of Civil and Environmental Engineering, Rice University, 6100 Main Street, MS 519, Houston, TX 77005, United States of America
| | - Prashant Kalvapalle
- Systems, Synthetic, and Physical Biology Graduate Program, Rice University, 6100 Main Street, Houston, TX 77005, United States of America
| | - Yanlai Lai
- Houston Health Department, 8000 N. Stadium Dr., Houston, TX 77054, United States of America
| | - Kyle Palmer
- Department of Civil and Environmental Engineering, Rice University, 6100 Main Street, MS 519, Houston, TX 77005, United States of America
| | - Ryker Penn
- Houston Health Department, 8000 N. Stadium Dr., Houston, TX 77054, United States of America
| | - Whitney Rich
- Department of Civil and Environmental Engineering, Rice University, 6100 Main Street, MS 519, Houston, TX 77005, United States of America
| | - Madeline Wolken
- Department of Civil and Environmental Engineering, Rice University, 6100 Main Street, MS 519, Houston, TX 77005, United States of America
| | - Pamela Brown
- Houston Health Department, 8000 N. Stadium Dr., Houston, TX 77054, United States of America
| | - Katherine B Ensor
- Department of Statistics, Rice University, 6100 Main Street MS 138, Houston, TX 77005, United States of America
| | - Loren Hopkins
- Houston Health Department, 8000 N. Stadium Dr., Houston, TX 77054, United States of America; Department of Statistics, Rice University, 6100 Main Street MS 138, Houston, TX 77005, United States of America
| | - Todd J Treangen
- Department of Computer Science, Rice University, 6100 Main Street, Houston, TX 77005, United States of America
| | - Lauren B Stadler
- Department of Civil and Environmental Engineering, Rice University, 6100 Main Street, MS 519, Houston, TX 77005, United States of America.
| |
Collapse
|
5
|
Zamhuri SA, Soon CF, Nordin AN, Ab Rahim R, Sultana N, Khan MA, Lim GP, Tee KS. A review on the contamination of SARS-CoV-2 in water bodies: Transmission route, virus recovery and recent biosensor detection techniques. SENSING AND BIO-SENSING RESEARCH 2022; 36:100482. [PMID: 35251937 PMCID: PMC8889793 DOI: 10.1016/j.sbsr.2022.100482] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/14/2022] [Accepted: 02/28/2022] [Indexed: 12/11/2022] Open
Abstract
The discovery of SARS-CoV-2 virus in the water bodies has been reported, and the risk of virus transmission to human via the water route due to poor wastewater management cannot be disregarded. The main source of the virus in water bodies is the sewage network systems which connects to the surface water. Wastewater-based epidemiology has been applied as an early surveillance tool to sense SARS-CoV-2 virus in the sewage network. This review discussed possible transmission routes of the SARS-CoV-2 virus and the challenges of the existing method in detecting the virus in wastewater. One significant challenge for the detection of the virus is that the high virus loading is diluted by the sheer volume of the wastewater. Hence, virus preconcentration from water samples prior to the application of virus assay is essential to accurately detect traceable virus loading. The preparation time, materials and conditions, virus type, recovery percentage, and various virus recovery techniques are comprehensively discussed in this review. The practicability of molecular methods such as Polymer-Chain-Reaction (PCR) for the detection of SARS-CoV-2 in wastewater will be revealed. The conventional virus detection techniques have several shortcomings and the potential of biosensors as an alternative is also considered. Biosensing techniques have also been proposed as an alternative to PCR and have reported detection limits of 10 pg/μl. This review serves to guide the reader on the future designs and development of highly sensitive, robust and, cost effective SARS-CoV-2 lab-on-a-chip biosensors for use in complex wastewater.
Collapse
Affiliation(s)
- Siti Adibah Zamhuri
- Microelectronics and Nanotechnology-Shamsuddin Research Centre, Universiti Tun Hussein Onn Malaysia, 86400, Parit Raja, Batu Pahat, Johor, Malaysia
| | - Chin Fhong Soon
- Microelectronics and Nanotechnology-Shamsuddin Research Centre, Universiti Tun Hussein Onn Malaysia, 86400, Parit Raja, Batu Pahat, Johor, Malaysia
- Faculty of Electrical and Electronic Engineering, Universiti Tun Hussein Onn Malaysia, 86400, Parit Raja, Batu Pahat, Johor, Malaysia
| | - Anis Nurashikin Nordin
- Department of Electrical and Computer Engineering, Kulliyah of Engineering, International University of Islam Malaysia, 53100, Jalan Gombak, Kuala Lumpur, Malaysia
| | - Rosminazuin Ab Rahim
- Department of Electrical and Computer Engineering, Kulliyah of Engineering, International University of Islam Malaysia, 53100, Jalan Gombak, Kuala Lumpur, Malaysia
| | | | - Muhammad Arif Khan
- Microelectronics and Nanotechnology-Shamsuddin Research Centre, Universiti Tun Hussein Onn Malaysia, 86400, Parit Raja, Batu Pahat, Johor, Malaysia
| | - Gim Pao Lim
- Microelectronics and Nanotechnology-Shamsuddin Research Centre, Universiti Tun Hussein Onn Malaysia, 86400, Parit Raja, Batu Pahat, Johor, Malaysia
| | - Kian Sek Tee
- Faculty of Electrical and Electronic Engineering, Universiti Tun Hussein Onn Malaysia, 86400, Parit Raja, Batu Pahat, Johor, Malaysia
| |
Collapse
|
6
|
Kadadou D, Tizani L, Wadi VS, Banat F, Alsafar H, Yousef AF, Barceló D, Hasan SW. Recent advances in the biosensors application for the detection of bacteria and viruses in wastewater. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2022; 10:107070. [PMID: 34976725 PMCID: PMC8701687 DOI: 10.1016/j.jece.2021.107070] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/11/2021] [Accepted: 12/21/2021] [Indexed: 05/21/2023]
Abstract
The presence of disease-causing pathogens in wastewater can provide an excellent diagnostic tool for infectious diseases. Biosensors are far superior to conventional methods used for regular infection screening and surveillance testing. They are rapid, sensitive, inexpensive portable and carry no risk of exposure in their detection schemes. In this context, this review summarizes the most recently developed biosensors for the detection of bacteria and viruses in wastewater. The review also provides information on the new detection methods aimed at screening for SARS-CoV-2, which has now caused more than 4 million deaths. In addition, the review highlights the potential behind on-line and real-time detection of pathogens in wastewater pipelines. Most of the biosensors reported were not targeted to wastewater samples due to the complexity of the matrix. However, this review highlights on the performance factors of recently developed biosensors and discusses the importance of nanotechnology in amplifying the output signals, which in turn increases the accuracy and reliability of biosensors. Current research on the applicability of biosensors in wastewater promises a dramatic change to the conventional approach in the field of medical screening.
Collapse
Affiliation(s)
- Dana Kadadou
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
- Department of Chemical Engineering, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - Lina Tizani
- Center for Biotechnology (BTC), Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - Vijay S Wadi
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
- Department of Chemical Engineering, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - Fawzi Banat
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
- Department of Chemical Engineering, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - Habiba Alsafar
- Center for Biotechnology (BTC), Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
- Emirates Bio-research center, Ministry of Interior, Abu Dhabi, United Arab Emirates
- Department of Biomedical Engineering, College of Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Ahmed F Yousef
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
- Department of Chemistry, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - Damià Barceló
- Catalan Institute for Water Research (ICRA-CERCA), H2O Building, Scientific and Technological Park of the University of Girona, Emili Grahit 101, 17003 Girona, Spain
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Carrer de Jordi Girona 1826, 08034 Barcelona, Spain
| | - Shadi W Hasan
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
- Department of Chemical Engineering, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
| |
Collapse
|