1
|
Peterka O, Wolrab D, Jirásko R, Kanásová M, Dolečková Z, Holčapek M. Ultrahigh-Performance Supercritical Fluid Chromatography-Mass Spectrometry in the Clinical Lipidomic Analysis. Methods Mol Biol 2025; 2855:305-314. [PMID: 39354315 DOI: 10.1007/978-1-0716-4116-3_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Ultrahigh-performance supercritical fluid chromatography-mass spectrometry (UHPSFC/MS) method is optimized for the high-throughput quantitation of lipids in human serum and plasma with an emphasis on robustness and accurate quantitation. Bridged ethylene hybrid (BEH) silica column (100 × 3 mm; 1.7 μm) is used for the separation of 17 nonpolar and polar lipid classes in 4.4 min using the positive ion electrospray ionization mode. The lipid class separation approach in UHPSFC/MS results in the coelution of all lipid species within one lipid class in one chromatographic peak, including two exogenous internal standards (IS) per lipid class, which provides the optimal conditions for robust quantitation. The method was validated according to European Medicines Agency and Food and Drug Administration recommendations. UHPSFC/MS combined with LipidQuant software allows a semiautomated process to determine lipid concentrations with a total run time of only 8 min including column equilibration, which enables the analysis of 160 samples per day.
Collapse
Affiliation(s)
- Ondřej Peterka
- Department of Analytical Chemistry, University of Pardubice, Faculty of Chemical Technology, Pardubice, Czech Republic
- Lipidica, a.s, Pardubice, Czech Republic
| | - Denise Wolrab
- Department of Analytical Chemistry, University of Pardubice, Faculty of Chemical Technology, Pardubice, Czech Republic
| | - Robert Jirásko
- Department of Analytical Chemistry, University of Pardubice, Faculty of Chemical Technology, Pardubice, Czech Republic
| | | | | | - Michal Holčapek
- Department of Analytical Chemistry, University of Pardubice, Faculty of Chemical Technology, Pardubice, Czech Republic.
| |
Collapse
|
2
|
Chiera F, Costa G, Alcaro S, Artese A. An overview on olfaction in the biological, analytical, computational, and machine learning fields. Arch Pharm (Weinheim) 2024:e2400414. [PMID: 39439128 DOI: 10.1002/ardp.202400414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024]
Abstract
Recently, the comprehension of odor perception has advanced, unveiling the mysteries of the molecular receptors within the nasal passages and the intricate mechanisms governing signal transmission between these receptors, the olfactory bulb, and the brain. This review provides a comprehensive panorama of odors, encompassing various topics ranging from the structural and molecular underpinnings of odorous substances to the physiological intricacies of olfactory perception. It extends to elucidate the analytical methods used for their identification and explores the frontiers of computational methodologies.
Collapse
Affiliation(s)
- Federica Chiera
- Dipartimento di Scienze della Salute, Campus "S. Venuta", Università degli Studi "Magna Græcia" di Catanzaro, Catanzaro, Italy
| | - Giosuè Costa
- Dipartimento di Scienze della Salute, Campus "S. Venuta", Università degli Studi "Magna Græcia" di Catanzaro, Catanzaro, Italy
- Net4Science S.r.l., Università degli Studi "Magna Græcia" di Catanzaro, Catanzaro, Italy
| | - Stefano Alcaro
- Dipartimento di Scienze della Salute, Campus "S. Venuta", Università degli Studi "Magna Græcia" di Catanzaro, Catanzaro, Italy
- Net4Science S.r.l., Università degli Studi "Magna Græcia" di Catanzaro, Catanzaro, Italy
- Associazione CRISEA - Centro di Ricerca e Servizi Avanzati per l'Innovazione Rurale, Loc. Condoleo, Belcastro, Italy
| | - Anna Artese
- Dipartimento di Scienze della Salute, Campus "S. Venuta", Università degli Studi "Magna Græcia" di Catanzaro, Catanzaro, Italy
- Net4Science S.r.l., Università degli Studi "Magna Græcia" di Catanzaro, Catanzaro, Italy
| |
Collapse
|
3
|
Yuan Y, Zeng W. An Overview of Multifaceted Applications and the Future Prospects of Glyceroglycolipids in Plants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39373652 DOI: 10.1021/acs.jafc.4c05923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Glyceroglycolipids (GGLs) are a class of lipid molecules that contain a glycerol backbone and one or more carbohydrate moieties, giving them amphipathic properties with both hydrophilic and hydrophobic regions. This amphipathic nature is fundamental for composing cell membrane lipid bilayers. These compounds are primarily distributed on the inner chloroplast membranes of plants and exhibit a unique structure with numerous biological activities. Moreover, GGLs play a pivotal role in photosynthesis and energy conversion in plants and effectively respond to environmental stressors. This Review discusses the distribution, synthesis pathways, and functions of GGLs in plants and describes the recent updates on various methods for extracting, isolating, and identifying GGLs. Finally, this Review discusses the biological activities of plant GGLs, including their anti-inflammatory, antiviral, and anticancer properties, and highlights their potential applications in the fields of pharmaceuticals, food, and cosmetics. This Review provides insights into GGLs, offering research support for the application of these natural molecules in the realm of holistic health.
Collapse
|
4
|
Chen QY, Liu ML, Li RY, Jiang B, Liu KY, Xiao YQ, Wang Q, Wang T, Zhao LQ, Wang WT, Liu ZW, Chen LJ, Ma Y, Zhao M. Changes in lipids and medium- and long-chain fatty acids during the spontaneous fermentation of ripened pu-erh tea. Curr Res Food Sci 2024; 9:100831. [PMID: 39281340 PMCID: PMC11402406 DOI: 10.1016/j.crfs.2024.100831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 07/25/2024] [Accepted: 08/27/2024] [Indexed: 09/18/2024] Open
Abstract
During the fermentation of ripened pu-erh tea (RPT), the composition of lipids and other compounds changes significantly. In this study, we conducted industrial fermentation of RPT and observed that the levels of water extract, tea polyphenols, free amino acids, catechins, caffeine, rutin, theophylline, luteolin, and myricetin decreased, while the level of soluble sugar increased. Additionally, the levels of gallic acid, quercetin, ellagic acid, and kaempferol first increased and then decreased during fermentation. We identified a total of 731 lipids, which were classified into seven categories using a lipomics method. Among these lipids, 85 with relatively high contents decreased, while 201 lipids with low contents increased after fermentation. This led to an overall decrease in the sum contents of lipids and dominant lipids, including glycerophospholipids and saccharolipids. We also detected 33 medium- and long-chain fatty acids, with α-linolenic acid (881.202 ± 12.13-1322.263 ± 19.78 μg/g), palmitic acid (797.275 ± 19.56-955.180 ± 30.49 μg/g), and linoleic acid (539.634 ± 15.551-706.869 ± 12.14 μg/g) being the predominant ones. Coenzymes Q9 (62.76-63.57 μg/g) and Q10 (50.82-59.33 μg/g) were also identified in the fermentation process. Our findings shed light on the changes in lipids during the fermentation of RPT and highlight the potential bio-active compounds, such as α-linolenic acid, linoleic acid, Coenzymes Q9, and Q10, in ripened pu-erh tea. This contributes to a better understanding of the fermentation mechanism for RPT.
Collapse
Affiliation(s)
- Qiu-Yue Chen
- College of Tea Science, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Ming-Li Liu
- College of Tea Science, Yunnan Agricultural University, Kunming, Yunnan 650201, China
- Research Institute of Tea Industry, Yibi, Sichuan 644000, China
| | - Ruo-Yu Li
- College of Tea Science, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Bin Jiang
- College of Tea Science, Yunnan Agricultural University, Kunming, Yunnan 650201, China
- College of Wuliangye Technology and Food Engineering & College of Modern Agriculture, Yibin Vocational and Technical College, Yibin 644003, China
| | - Kun-Yi Liu
- College of Tea Science, Yunnan Agricultural University, Kunming, Yunnan 650201, China
- College of Wuliangye Technology and Food Engineering & College of Modern Agriculture, Yibin Vocational and Technical College, Yibin 644003, China
| | - Yan-Qin Xiao
- College of Tea Science, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Qi Wang
- College of Tea Science, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Teng Wang
- College of Tea Science, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Lian-Qin Zhao
- Xiaguan Tuocha (Group) Co., Ltd, Dali, Yunnan 671000, China
| | - Wei-Tao Wang
- Xiaguan Tuocha (Group) Co., Ltd, Dali, Yunnan 671000, China
| | - Zhi-Wei Liu
- College of Tea Science, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Li-Jiao Chen
- College of Tea Science, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Yan Ma
- College of Tea Science, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Ming Zhao
- College of Tea Science, Yunnan Agricultural University, Kunming, Yunnan 650201, China
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan 650201, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| |
Collapse
|
5
|
Gavrilović I, Wüst B, Danaceau J, Braidman E, de la Torre X, Botrè F, Parr MK, Cowan D. Routine application of SFC-MS in doping control: Analysis of 3 × 1000 urine samples using three different SFC-MS instruments. Drug Test Anal 2024; 16:726-736. [PMID: 38361255 DOI: 10.1002/dta.3652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 02/17/2024]
Abstract
Supercritical fluid chromatography-mass spectrometry (SFC-MS) has proved to be a beneficial tool for sample analysis for a wide variety of compounds and, as such, has recently gained the attention of the anti-doping community. We have tested the applicability of SFC-MS for routine doping control analysing approximately 3 × 1000 identical anti-doping samples utilising SFC-MS instruments from three different vendors: Agilent Technologies, Waters Corporation and Shimadzu Corporation. A 'dilute and inject' approach either without or after hydrolysis of glucuronide metabolites was applied. Most of the compounds included in our study demonstrated excellent chromatography, whereas some showed co-elution with endogenous interferences requiring MS discrimination. Retention times typically were very stable within batches (%CV ≤ 0.5%), although this appeared to be analyte and column dependent. Chromatographic peak shape was good (symmetrical) and stable over the period of the testing without any change of column. Our results suggest that SFC-MS is a sensitive, reproducible and robust analytical tool ready to be used in anti-doping laboratories alongside the currently applied techniques such as gas and liquid chromatography coupled to mass spectrometry. Even if instruments are designed slightly differently, all three setups demonstrated their fitness for the purpose in anti-doping testing.
Collapse
Affiliation(s)
- Ivana Gavrilović
- Drug Control Centre, King's Forensics, Department of Analytical, Environmental and Forensic Sciences, King's College London, London, UK
| | - Bernhard Wüst
- Agilent Technologies GmbH, Hewlett Packard Straße 8, Waldbronn, Germany
| | | | | | | | - Francesco Botrè
- Laboratorio Antidoping FMSI, Rome, Italy
- REDs - Research and Expertise in Antidoping Sciences, ISSUL - Institute de Sciences du Sport, Université de Lausanne, Lausanne, Switzerland
| | | | - David Cowan
- Department of Analytical, Environmental and Forensic Sciences, King's College London, London, UK
| |
Collapse
|
6
|
Hachem M, Ahmmed MK, Nacir-Delord H. Phospholipidomics in Clinical Trials for Brain Disorders: Advancing our Understanding and Therapeutic Potentials. Mol Neurobiol 2024; 61:3272-3295. [PMID: 37981628 PMCID: PMC11087356 DOI: 10.1007/s12035-023-03793-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 10/31/2023] [Indexed: 11/21/2023]
Abstract
Phospholipidomics is a specialized branch of lipidomics that focuses on the characterization and quantification of phospholipids. By using sensitive analytical techniques, phospholipidomics enables researchers to better understand the metabolism and activities of phospholipids in brain disorders such as Alzheimer's and Parkinson's diseases. In the brain, identifying specific phospholipid biomarkers can offer valuable insights into the underlying molecular features and biochemistry of these diseases through a variety of sensitive analytical techniques. Phospholipidomics has emerged as a promising tool in clinical studies, with immense potential to advance our knowledge of neurological diseases and enhance diagnosis and treatment options for patients. In the present review paper, we discussed numerous applications of phospholipidomics tools in clinical studies, with a particular focus on the neurological field. By exploring phospholipids' functions in neurological diseases and the potential of phospholipidomics in clinical research, we provided valuable insights that could aid researchers and clinicians in harnessing the full prospective of this innovative practice and improve patient outcomes by providing more potent treatments for neurological diseases.
Collapse
Affiliation(s)
- Mayssa Hachem
- Department of Chemistry and Healthcare Engineering Innovation Center, Khalifa University of Sciences and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| | - Mirja Kaizer Ahmmed
- Department of Fishing and Post-Harvest Technology, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Houda Nacir-Delord
- Department of Chemistry, Khalifa University of Sciences and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| |
Collapse
|
7
|
Brandis A, Roy D, Das I, Sheves M, Eisenbach M. Uncommon opsin's retinal isomer is involved in mammalian sperm thermotaxis. Sci Rep 2024; 14:10699. [PMID: 38729974 PMCID: PMC11087470 DOI: 10.1038/s41598-024-61488-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/06/2024] [Indexed: 05/12/2024] Open
Abstract
In recent years it became apparent that, in mammals, rhodopsin and other opsins, known to act as photosensors in the visual system, are also present in spermatozoa, where they function as highly sensitive thermosensors for thermotaxis. The intriguing question how a well-conserved protein functions as a photosensor in one type of cells and as a thermosensor in another type of cells is unresolved. Since the moiety that confers photosensitivity on opsins is the chromophore retinal, we examined whether retinal is substituted in spermatozoa with a thermosensitive molecule. We found by both functional assays and mass spectrometry that retinal is present in spermatozoa and required for thermotaxis. Thus, starvation of mice for vitamin A (a precursor of retinal) resulted in loss of sperm thermotaxis, without affecting motility and the physiological state of the spermatozoa. Thermotaxis was restored after replenishment of vitamin A. Using reversed-phase ultra-performance liquid chromatography mass spectrometry, we detected the presence of retinal in extracts of mouse and human spermatozoa. By employing UltraPerformance convergence chromatography, we identified a unique retinal isomer in the sperm extracts-tri-cis retinal, different from the photosensitive 11-cis isomer in the visual system. The facts (a) that opsins are thermosensors for sperm thermotaxis, (b) that retinal is essential for thermotaxis, and (c) that tri-cis retinal isomer uniquely resides in spermatozoa and is relatively thermally unstable, suggest that tri-cis retinal is involved in the thermosensing activity of spermatozoa.
Collapse
Affiliation(s)
- Alexander Brandis
- Department of Life Sciences Core Facilities, The Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Debarun Roy
- Department of Biomolecular Sciences, The Weizmann Institute of Science, 7610001, Rehovot, Israel
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Ishita Das
- Department of Molecular Chemistry and Materials Science, The Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Mordechai Sheves
- Department of Molecular Chemistry and Materials Science, The Weizmann Institute of Science, 7610001, Rehovot, Israel.
| | - Michael Eisenbach
- Department of Biomolecular Sciences, The Weizmann Institute of Science, 7610001, Rehovot, Israel.
| |
Collapse
|
8
|
Gerhardtova I, Jankech T, Majerova P, Piestansky J, Olesova D, Kovac A, Jampilek J. Recent Analytical Methodologies in Lipid Analysis. Int J Mol Sci 2024; 25:2249. [PMID: 38396926 PMCID: PMC10889185 DOI: 10.3390/ijms25042249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/09/2024] [Accepted: 02/11/2024] [Indexed: 02/25/2024] Open
Abstract
Lipids represent a large group of biomolecules that are responsible for various functions in organisms. Diseases such as diabetes, chronic inflammation, neurological disorders, or neurodegenerative and cardiovascular diseases can be caused by lipid imbalance. Due to the different stereochemical properties and composition of fatty acyl groups of molecules in most lipid classes, quantification of lipids and development of lipidomic analytical techniques are problematic. Identification of different lipid species from complex matrices is difficult, and therefore individual analytical steps, which include extraction, separation, and detection of lipids, must be chosen properly. This review critically documents recent strategies for lipid analysis from sample pretreatment to instrumental analysis and data interpretation published in the last five years (2019 to 2023). The advantages and disadvantages of various extraction methods are covered. The instrumental analysis step comprises methods for lipid identification and quantification. Mass spectrometry (MS) is the most used technique in lipid analysis, which can be performed by direct infusion MS approach or in combination with suitable separation techniques such as liquid chromatography or gas chromatography. Special attention is also given to the correct evaluation and interpretation of the data obtained from the lipid analyses. Only accurate, precise, robust and reliable analytical strategies are able to bring complex and useful lipidomic information, which may contribute to clarification of some diseases at the molecular level, and may be used as putative biomarkers and/or therapeutic targets.
Collapse
Affiliation(s)
- Ivana Gerhardtova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, SK-845 10 Bratislava, Slovakia
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, SK-842 15 Bratislava, Slovakia
| | - Timotej Jankech
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, SK-845 10 Bratislava, Slovakia
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, SK-842 15 Bratislava, Slovakia
| | - Petra Majerova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, SK-845 10 Bratislava, Slovakia
| | - Juraj Piestansky
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, SK-845 10 Bratislava, Slovakia
- Toxicological and Antidoping Center, Faculty of Pharmacy, Comenius University in Bratislava, Odbojarov 10, SK-832 32 Bratislava, Slovakia
- Department of Galenic Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Odbojarov 10, SK-832 32 Bratislava, Slovakia
| | - Dominika Olesova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, SK-845 10 Bratislava, Slovakia
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, SK-845 05 Bratislava, Slovakia
| | - Andrej Kovac
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, SK-845 10 Bratislava, Slovakia
- Department of Pharmacology and Toxicology, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 68/73, SK-041 81 Kosice, Slovakia
| | - Josef Jampilek
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, SK-845 10 Bratislava, Slovakia
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, SK-842 15 Bratislava, Slovakia
| |
Collapse
|
9
|
Peterka O, Maccelli A, Jirásko R, Vaňková Z, Idkowiak J, Hrstka R, Wolrab D, Holčapek M. HILIC/MS quantitation of low-abundant phospholipids and sphingolipids in human plasma and serum: Dysregulation in pancreatic cancer. Anal Chim Acta 2024; 1288:342144. [PMID: 38220279 DOI: 10.1016/j.aca.2023.342144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/09/2023] [Accepted: 12/14/2023] [Indexed: 01/16/2024]
Abstract
A new hydrophilic interaction liquid chromatography - mass spectrometry method is developed for low-abundant phospholipids and sphingolipids in human plasma and serum. The optimized method involves the Cogent Silica type C hydride column, the simple sample preparation by protein precipitation, and the removal of highly abundant lipid classes using the postcolumn valve directed to waste during two elution windows. The method allows a highly confident and sensitive identification of low-abundant lipid classes in human plasma (246 lipid species from 24 lipid subclasses) based on mass accuracy and retention dependencies in both polarity modes. The method is validated for quantitation using two internal standards (if available) for each lipid class and applied to human plasma and serum samples obtained from patients with pancreatic ductal adenocarcinoma (PDAC), healthy controls, and NIST SRM 1950. Multivariate data analysis followed by various statistical projection methods is used to determine the most dysregulated lipids. Significant downregulation is observed for lysophospholipids with fatty acyl composition 16:0, 18:0, 18:1, and 18:2. Distinct trends are observed for phosphatidylethanolamines (PE) in relation to the bonding type of fatty acyls, where most PE with acyl bonds are upregulated, while ether/plasmenyl PE are downregulated. For the sphingolipid category, sphingolipids with very long N-acyl chains are downregulated, while sphingolipids with shorter N-acyl chains were upregulated in PDAC. These changes are consistently observed for various classes of sphingolipids, ranging from ceramides to glycosphingolipids, indicating a possible metabolic disorder in ceramide biosynthesis caused by PDAC.
Collapse
Affiliation(s)
- Ondřej Peterka
- University of Pardubice, Faculty of Chemical Technology, Department of Analytical Chemistry, Studentská 573, 532 10, Pardubice, Czech Republic
| | - Alessandro Maccelli
- University of Pardubice, Faculty of Chemical Technology, Department of Analytical Chemistry, Studentská 573, 532 10, Pardubice, Czech Republic
| | - Robert Jirásko
- University of Pardubice, Faculty of Chemical Technology, Department of Analytical Chemistry, Studentská 573, 532 10, Pardubice, Czech Republic
| | - Zuzana Vaňková
- University of Pardubice, Faculty of Chemical Technology, Department of Analytical Chemistry, Studentská 573, 532 10, Pardubice, Czech Republic
| | - Jakub Idkowiak
- University of Pardubice, Faculty of Chemical Technology, Department of Analytical Chemistry, Studentská 573, 532 10, Pardubice, Czech Republic
| | - Roman Hrstka
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Denise Wolrab
- University of Pardubice, Faculty of Chemical Technology, Department of Analytical Chemistry, Studentská 573, 532 10, Pardubice, Czech Republic; University of Vienna, Department of Analytical Chemistry, Währinger Strasse 38, 1090, Vienna, Austria
| | - Michal Holčapek
- University of Pardubice, Faculty of Chemical Technology, Department of Analytical Chemistry, Studentská 573, 532 10, Pardubice, Czech Republic.
| |
Collapse
|
10
|
De Luca C, Felletti S, Franchina FA, Bozza D, Compagnin G, Nosengo C, Pasti L, Cavazzini A, Catani M. Recent developments in the high-throughput separation of biologically active chiral compounds via high performance liquid chromatography. J Pharm Biomed Anal 2024; 238:115794. [PMID: 37890321 DOI: 10.1016/j.jpba.2023.115794] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023]
Abstract
Bioactive compounds, including active pharmaceutical ingredients (APIs), are often chiral molecules where stereoisomers have different biological and therapeutic activity. Nevertheless, the preparation of these molecules can lead to racemic or scalemic mixtures (it is not trivial to produce just the optically pure compound). The evaluation of the enantiomeric purity of bioactive compounds, and therefore quality, is indeed of fundamental importance for regulatory scopes. Chiral high performance liquid chromatography (HPLC) is the gold standard technique to separate and to purify enantiomers. This comes from the wide availability of commercial chiral stationary phases (CSPs) and operational modes, which makes the technique extremely versatile. In recent years, the most relevant trend in the field of chiral analytical HPLC has been the development of CSPs suitable for fast or even ultrafast separations, thus favoring the high throughput screening of biologically active chiral compounds. This process has somehow lagged behind compared to achiral HPLC, due to a series of practical and fundamental issues. The experience has shown how in chiral chromatography even very basic concepts, such as the supposed kinetic superiority of core-shell (pellicular) particles over fully porous ones to improve the chromatographic efficiency, cannot be taken for granted. In this review, the most relevant fundamental and practical features that must be taken into consideration to design successful high-throughput, fast enantioseparations will be discussed. Afterwards, the main classes of CSPs and the most relevant, recent (last five-year) high-throughput applications in the field of the separation of chiral bioactive compounds (for pharmaceutical, forensic, food, and omics applications) will be considered.
Collapse
Affiliation(s)
- Chiara De Luca
- Department of Chemical, Pharrmaceutical and Agricultural Sciences, University of Ferrara, via L. Borsari 46, Ferrara 44121, Italy
| | - Simona Felletti
- Department of Environmental and Prevention Sciences, University of Ferrara, via L. Borsari 46, Ferrara 44121, Italy
| | - Flavio Antonio Franchina
- Department of Chemical, Pharrmaceutical and Agricultural Sciences, University of Ferrara, via L. Borsari 46, Ferrara 44121, Italy
| | - Desiree Bozza
- Department of Chemical, Pharrmaceutical and Agricultural Sciences, University of Ferrara, via L. Borsari 46, Ferrara 44121, Italy
| | - Greta Compagnin
- Department of Chemical, Pharrmaceutical and Agricultural Sciences, University of Ferrara, via L. Borsari 46, Ferrara 44121, Italy
| | - Chiara Nosengo
- Department of Chemical, Pharrmaceutical and Agricultural Sciences, University of Ferrara, via L. Borsari 46, Ferrara 44121, Italy
| | - Luisa Pasti
- Department of Environmental and Prevention Sciences, University of Ferrara, via L. Borsari 46, Ferrara 44121, Italy
| | - Alberto Cavazzini
- Department of Chemical, Pharrmaceutical and Agricultural Sciences, University of Ferrara, via L. Borsari 46, Ferrara 44121, Italy.
| | - Martina Catani
- Department of Chemical, Pharrmaceutical and Agricultural Sciences, University of Ferrara, via L. Borsari 46, Ferrara 44121, Italy
| |
Collapse
|
11
|
Zhang JJ, Gao Y, Xu X, Zhao ML, Xi BN, Shu Y, Li C, Shen Y. In Situ Rapid Analysis of Squalene, Tocopherols, and Sterols in Walnut Oils Based on Supercritical Fluid Chromatography-Quadrupole Time-of-Flight Mass Spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:16371-16380. [PMID: 37867462 DOI: 10.1021/acs.jafc.3c05857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Quantification of liposoluble micronutrients in large-scale vegetable oil samples is urgently needed, because their health benefits are increasingly emphasized. However, current analytical methods are limited to either labor-intensive preparation processes or time-consuming chromatography separation. In this work, an online oil matrix separation strategy for direct, rapid, and simultaneous determination of squalene, tocopherols, and phytosterols in walnut oil (WO) was developed on the basis of the lipid class separation mode of supercritical fluid chromatography. A single run was completed in 13 min containing 6 min of column cleaning and balancing. Satisfactory limit of detections (0.05-0.20 ng/mL), limit of quantifications (0.15-0.45 ng/mL), recoveries (70.61-101.44%), and matrix effects (78.43-91.62%) were achieved, indicating the reliability of this method. In addition, eight sterol esters were identified in WO, which have not previously been reported. The proposed method was applied to characterize the liposoluble micronutrient profile of WO samples obtained from different walnut cultivars, geographical origins, and processes.
Collapse
Affiliation(s)
- Jing-Jing Zhang
- School of Chemical Engineering, Northwest University, Xi'an, Shaanxi 710069, People's Republic of China
| | - Yan Gao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an, Shaanxi 710127, People's Republic of China
| | - Xiao Xu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an, Shaanxi 710127, People's Republic of China
| | - Mei-Ling Zhao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an, Shaanxi 710127, People's Republic of China
| | - Bo-Nan Xi
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an, Shaanxi 710127, People's Republic of China
| | - Yu Shu
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, People's Republic of China
| | - Cong Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an, Shaanxi 710127, People's Republic of China
| | - Yehua Shen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an, Shaanxi 710127, People's Republic of China
| |
Collapse
|
12
|
Shi C, Zi Y, Huang S, Chen J, Wang X, Zhong J. Development and application of lipidomics for food research. ADVANCES IN FOOD AND NUTRITION RESEARCH 2023; 104:1-42. [PMID: 37236729 DOI: 10.1016/bs.afnr.2022.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Lipidomics is an emerging and promising omics derived from metabolomics to comprehensively analyze all of lipid molecules in biological matrices. The purpose of this chapter is to introduce the development and application of lipidomics for food research. First, three aspects of sample preparation are introduced: food sampling, lipid extraction, and transportation and storage. Second, five types of instruments for data acquisition are summarized: direct infusion-mass spectrometry (MS), chromatographic separation-MS, ion mobility-MS, MS imaging, and nuclear magnetic resonance spectroscopy. Third, data acquisition and analysis software are described for the lipidomics software development. Fourth, the application of lipidomics for food research is discussed such as food origin and adulteration analysis, food processing research, food preservation research, and food nutrition and health research. All the contents suggest that lipidomics is a powerful tool for food research based on its ability of lipid component profile analysis.
Collapse
Affiliation(s)
- Cuiping Shi
- Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ye Zi
- Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai, China
| | - Shudan Huang
- Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai, China
| | - Jiahui Chen
- Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai, China
| | - Xichang Wang
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai, China
| | - Jian Zhong
- Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
13
|
Kozlov O, Horáková E, Rademacherová S, Maliňák D, Andrýs R, Prchalová E, Lísa M. Direct Chiral Supercritical Fluid Chromatography-Mass Spectrometry Analysis of Monoacylglycerol and Diacylglycerol Isomers for the Study of Lipase-Catalyzed Hydrolysis of Triacylglycerols. Anal Chem 2023; 95:5109-5116. [PMID: 36893116 DOI: 10.1021/acs.analchem.3c00053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
The fast and selective separation method of intact monoacylglycerol (MG) and diacylglycerol (DG) isomers using chiral supercritical fluid chromatography-mass spectrometry (SFC-MS) was developed and employed to study lipase selectivity in the hydrolysis of triacylglycerols (TGs). The synthesis of 28 enantiomerically pure MG and DG isomers was performed in the first stage using the most commonly occurring fatty acids in biological samples such as palmitic, stearic, oleic, linoleic, linolenic, arachidonic, and docosahexaenoic acids. To develop the SFC separation method, different chromatographic conditions such as column chemistry, mobile phase composition and gradient, flow rate, backpressure, and temperature were carefully assessed. Our SFC-MS method used a chiral column based on a tris(3,5-dimethylphenylcarbamate) derivative of amylose and neat methanol as a mobile phase modifier, which provides baseline separation of all the tested enantiomers in 5 min. This method was used to evaluate hydrolysis selectivity of lipases from porcine pancreas (PPL) and Pseudomonas fluorescens (PFL) using nine TGs differing in acyl chain length (14-22 carbon atoms) and number of double bonds (0-6) and three DG regioisomer/enantiomers as hydrolysis intermediate products. PFL exhibited preference of the fatty acyl hydrolysis from the sn-1 position of TG more pronounced for the substrates with long polyunsaturated acyls, while PPL did not show considerable stereoselectivity to TGs. Conversely, PPL preferred hydrolysis from the sn-1 position of prochiral sn-1,3-DG regioisomer, whereas PFL exhibited no preference. Both lipases showed selectivity for the hydrolysis of outer positions of DG enantiomers. The results show complex reaction kinetics of lipase-catalyzed hydrolysis given by different stereoselectivities for substrates.
Collapse
Affiliation(s)
- Oleksandr Kozlov
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Rokitanského 62, 50003 Hradec Králové, Czech Republic
| | - Eliška Horáková
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Rokitanského 62, 50003 Hradec Králové, Czech Republic
| | - Sára Rademacherová
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Rokitanského 62, 50003 Hradec Králové, Czech Republic
| | - Dávid Maliňák
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Rokitanského 62, 50003 Hradec Králové, Czech Republic
| | - Rudolf Andrýs
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Rokitanského 62, 50003 Hradec Králové, Czech Republic
| | - Eliška Prchalová
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Rokitanského 62, 50003 Hradec Králové, Czech Republic
| | - Miroslav Lísa
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Rokitanského 62, 50003 Hradec Králové, Czech Republic
| |
Collapse
|
14
|
Yang N, Hu W, He J, Wu X, Zou T, Zheng J, Zhao C, Wang M. Ultra-high performance liquid chromatography-quadrupole/time-of-flight mass spectrometry-based lipidomics reveals key lipid molecules as potential therapeutic targets of Polygonum cuspidatum against hyperlipidemia in a hamster model. J Sep Sci 2023; 46:e2200844. [PMID: 36815210 DOI: 10.1002/jssc.202200844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/28/2023] [Accepted: 02/19/2023] [Indexed: 02/24/2023]
Abstract
Polygonum cuspidatum is a homology of traditional medicine and functional food widely distributed around the world. Our previous study on the hyperlipidemic animal model demonstrated that Polygonum cuspidatum was effective in ameliorating hyperlipidemia, which is characterized by lipid disorders. Herein, the regulatory effect of Polygonum cuspidatum on lipid metabolism needs to be known if its hypolipidemic mechanism is desired to clarify. In this study, an ultra-high performance liquid chromatography-quadrupole/time-of-flight mass spectrometry-based lipidomic strategy was first applied to investigate the lipidomic patterns of high-fat diet-induced hyperlipidemic hamsters when treated with Polygonum cuspidatum. The results showed that Polygonum cuspidatum improved the lipidomic profile of hyperlipidemia. A total of 65 differential lipids related to the hypolipidemic effect of Polygonum cuspidatum were screened out and identified, and these differential lipids covered various categories, such as phosphatidylcholines, phosphatidylethanolamines, triacylglycerols, sphingomyelins and so on. Orally administrated Polygonum cuspidatum restored these differential lipids back to normal or nearly normal levels. This study adopted lipidomics to reveal the key lipid molecules as potential therapeutic targets of Polygonum cuspidatum against hyperlipidemia, which would provide a scientific basis for its clinical application.
Collapse
Affiliation(s)
- Na Yang
- Department of Pharmacy, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, P. R. China.,Department of Pharmacy, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, P. R. China
| | - Wei Hu
- Department of Pharmacy, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, P. R. China.,Department of Pharmacy, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, P. R. China
| | - Jun He
- Department of Pharmacy, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Xu Wu
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, P. R. China
| | - Ting Zou
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, P. R. China
| | - Jiahui Zheng
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, P. R. China
| | - Chongbo Zhao
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, P. R. China
| | - Min Wang
- Department of Pharmacy, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, P. R. China.,Department of Pharmacy, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, P. R. China
| |
Collapse
|
15
|
Nutritional lipidomics for the characterization of lipids in food. ADVANCES IN FOOD AND NUTRITION RESEARCH 2023. [PMID: 37516469 DOI: 10.1016/bs.afnr.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Lipids represent one out of three major macronutrient classes in the human diet. It is estimated to account for about 15-20% of the total dietary intake. Triacylglycerides comprise the majority of them, estimated 90-95%. Other lipid classes include free fatty acids, phospholipids, cholesterol, and plant sterols as minor components. Various methods are used for the characterization of nutritional lipids, however, lipidomics approaches become increasingly attractive for this purpose due to their wide coverage, comprehensiveness and holistic view on composition. In this chapter, analytical methodologies and workflows utilized for lipidomics profiling of food samples are outlined with focus on mass spectrometry-based assays. The chapter describes common lipid extraction protocols, the distinct instrumental mass-spectrometry based analytical platforms for data acquisition, chromatographic and ion-mobility spectrometry methods for lipid separation, briefly mentions alternative methods such as gas chromatography for fatty acid profiling and mass spectrometry imaging. Critical issues of important steps of lipidomics workflows such as structural annotation and identification, quantification and quality assurance are discussed as well. Applications reported over the period of the last 5years are summarized covering the discovery of new lipids in foodstuff, differential profiling approaches for comparing samples from different origin, species, varieties, cultivars and breeds, and for food processing quality control. Lipidomics as a powerful tool for personalized nutrition and nutritional intervention studies is briefly discussed as well. It is expected that this field is significantly growing in the near future and this chapter gives a short insight into the power of nutritional lipidomics approaches.
Collapse
|
16
|
Holcapek M. New Frontiers in Lipidomics. LCGC EUROPE 2022. [DOI: 10.56530/lcgc.eu.fk2081h4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
In this extended special feature to celebrate the 35th anniversary edition of LCGC Europe, leading figures from the separation science community explore contemporary trends in separation science and identify possible future developments.
Collapse
|
17
|
Song R, Wang X, Deng S, Tao N. Lipidomic analysis and triglyceride profiles of fish oil: Preparation through silica gel column and enzymatic treatment. Food Res Int 2022; 162:112100. [DOI: 10.1016/j.foodres.2022.112100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/08/2022]
|
18
|
Bautista JS, Falabella M, Flannery PJ, Hanna MG, Heales SJ, Pope SA, Pitceathly RD. Advances in methods to analyse cardiolipin and their clinical applications. Trends Analyt Chem 2022; 157:116808. [PMID: 36751553 PMCID: PMC7614147 DOI: 10.1016/j.trac.2022.116808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Cardiolipin (CL) is a mitochondria-exclusive phospholipid, primarily localised within the inner mitochondrial membrane, that plays an essential role in mitochondrial architecture and function. Aberrant CL content, structure, and localisation have all been linked to impaired mitochondrial activity and are observed in the pathophysiology of cancer and neurological, cardiovascular, and metabolic disorders. The detection, quantification, and localisation of CL species is a valuable tool to investigate mitochondrial dysfunction and the pathophysiological mechanisms underpinning several human disorders. CL is measured using liquid chromatography, usually combined with mass spectrometry, mass spectrometry imaging, shotgun lipidomics, ion mobility spectrometry, fluorometry, and radiolabelling. This review summarises available methods to analyse CL, with a particular focus on modern mass spectrometry, and evaluates their advantages and limitations. We provide guidance aimed at selecting the most appropriate technique, or combination of techniques, when analysing CL in different model systems, and highlight the clinical contexts in which measuring CL is relevant.
Collapse
Affiliation(s)
- Javier S. Bautista
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Micol Falabella
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Padraig J. Flannery
- Neurometabolic Unit, The National Hospital for Neurology and Neurosurgery, London, UK,Neurogenetics Unit, Rare and Inherited Disease Laboratory, North Thames Genomic Laboratory Hub, London, UK
| | - Michael G. Hanna
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK,NHS Highly Specialised Service for Rare Mitochondrial Disorders, Queen Square Centre for Neuromuscular Diseases, The National Hospital for Neurology and Neurosurgery, London, UK
| | - Simon J.R. Heales
- Neurometabolic Unit, The National Hospital for Neurology and Neurosurgery, London, UK,NHS Highly Specialised Service for Rare Mitochondrial Disorders, Queen Square Centre for Neuromuscular Diseases, The National Hospital for Neurology and Neurosurgery, London, UK,Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Simon A.S. Pope
- Neurometabolic Unit, The National Hospital for Neurology and Neurosurgery, London, UK,Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Robert D.S. Pitceathly
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK,NHS Highly Specialised Service for Rare Mitochondrial Disorders, Queen Square Centre for Neuromuscular Diseases, The National Hospital for Neurology and Neurosurgery, London, UK, Corresponding author. Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK. (R.D.S. Pitceathly)
| |
Collapse
|