1
|
Sarvutiene J, Prentice U, Ramanavicius S, Ramanavicius A. Molecular imprinting technology for biomedical applications. Biotechnol Adv 2024; 71:108318. [PMID: 38266935 DOI: 10.1016/j.biotechadv.2024.108318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 01/14/2024] [Accepted: 01/20/2024] [Indexed: 01/26/2024]
Abstract
Molecularly imprinted polymers (MIPs), a type of biomimetic material, have attracted considerable interest owing to their cost-effectiveness, good physiochemical stability, favourable specificity and selectivity for target analytes, and widely used for various biological applications. It was demonstrated that MIPs with significant selectivity towards protein-based targets could be applied in medicine, diagnostics, proteomics, environmental analysis, sensors, various in vivo and/or in vitro applications, drug delivery systems, etc. This review provides an overview of MIPs dedicated to biomedical applications and insights into perspectives on the application of MIPs in newly emerging areas of biotechnology. Many different protocols applied for the synthesis of MIPs are overviewed in this review. The templates used for molecular imprinting vary from the minor glycosylated glycan-based structures, amino acids, and proteins to whole bacteria, which are also overviewed in this review. Economic, environmental, rapid preparation, stability, and reproducibility have been highlighted as significant advantages of MIPs. Particularly, some specialized MIPs, in addition to molecular recognition properties, can have high catalytic activity, which in some cases could be compared with other bio-catalytic systems. Therefore, such MIPs belong to the class of so-called 'artificial enzymes'. The discussion provided in this manuscript furnishes a comparative analysis of different approaches developed, underlining their relative advantages and disadvantages highlighting trends and possible future directions of MIP technology.
Collapse
Affiliation(s)
- Julija Sarvutiene
- Department of Nanotechnology, Center for Physical Sciences and Technology (FTMC), Sauletekio av. 3, Vilnius, Lithuania
| | - Urte Prentice
- Department of Nanotechnology, Center for Physical Sciences and Technology (FTMC), Sauletekio av. 3, Vilnius, Lithuania
| | - Simonas Ramanavicius
- Department of Nanotechnology, Center for Physical Sciences and Technology (FTMC), Sauletekio av. 3, Vilnius, Lithuania
| | - Arunas Ramanavicius
- Department of Nanotechnology, Center for Physical Sciences and Technology (FTMC), Sauletekio av. 3, Vilnius, Lithuania.
| |
Collapse
|
2
|
Li Z, Chen F, Zhu N, Zhang L, Xie Z. Tip-Enhanced Sub-Femtomolar Steroid Immunosensing via Micropyramidal Flexible Conducting Polymer Electrodes for At-Home Monitoring of Salivary Sex Hormones. ACS NANO 2023; 17:21935-21946. [PMID: 37922489 DOI: 10.1021/acsnano.3c08315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2023]
Abstract
Noninvasive testing and continuous monitoring of ultralow-concentration hormones in biofluids have attracted increasing interest for health management and personalized medicine, in which saliva could fulfill the demand. Steroid sex hormones such as progesterone (P4) and β-estradiol (E2) are crucial for female wellness and reproduction; however, their concentrations in saliva can vary down to sub-pM and constantly fluctuate over several orders of magnitude. This remains a major obstacle toward user-friendly and reliable monitoring at home with low-cost flexible biosensors. Herein we introduce a 3D micropyramidal electrode architecture to address such challenges and achieve an ultrasensitive flexible electrochemical immunosensor with sub-fM-level detection capability of salivary sex hormones within a few minutes. This is enabled by micropyramidal electrode arrays consisting of a poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) thin film as the coating layer and electrochemically decorated gold nanoparticles (AuNPs) to improve the antibody immobilization. The enhanced mass transport around the 3D tips provided by the micropyramidal architecture is discovered to improve the detection limit by 3 orders of magnitude, pushing it to as low as ∼100 aM for P4 and ∼20 aM for E2, along with a wide linear range up to μM. Accordingly, these hormones down to sub-fM in >1000-fold-diluted saliva samples can be accurately measured by the printed soft immunosensors, thus allowing at-home testing through simple saliva dilution to minimize the interfering substances instead of centrifugation. Finally, monitoring of the female ovarian hormone cycle of both P4 and E2 is successfully demonstrated based on the centrifuge-free saliva testing during a period of 4 weeks. This ultrasensitive and soft 3D microarchitected electrode design is believed to provide a universal platform for a diverse variety of applications spanning from accurate clinical diagnostics and counselling and in vivo detection of bioactive species to environmental and food quality tracing.
Collapse
Affiliation(s)
- Zhaoxian Li
- School of Materials Science and Engineering, and Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Fubin Chen
- School of Materials Science and Engineering, and Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Nan Zhu
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, 116024, People's Republic of China
| | - Limei Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Zhuang Xie
- School of Materials Science and Engineering, and Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| |
Collapse
|
3
|
Song X, Fredj Z, Zheng Y, Zhang H, Rong G, Bian S, Sawan M. Biosensors for waterborne virus detection: Challenges and strategies. J Pharm Anal 2023; 13:1252-1268. [PMID: 38174120 PMCID: PMC10759259 DOI: 10.1016/j.jpha.2023.08.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/20/2023] [Accepted: 08/29/2023] [Indexed: 01/05/2024] Open
Abstract
Waterborne viruses that can be harmful to human health pose significant challenges globally, affecting health care systems and the economy. Identifying these waterborne pathogens is essential for preventing diseases and protecting public health. However, handling complex samples such as human and wastewater can be challenging due to their dynamic and complex composition and the ultralow concentration of target analytes. This review presents a comprehensive overview of the latest breakthroughs in waterborne virus biosensors. It begins by highlighting several promising strategies that enhance the sensing performance of optical and electrochemical biosensors in human samples. These strategies include optimizing bioreceptor selection, transduction elements, signal amplification, and integrated sensing systems. Furthermore, the insights gained from biosensing waterborne viruses in human samples are applied to improve biosensing in wastewater, with a particular focus on sampling and sample pretreatment due to the dispersion characteristics of waterborne viruses in wastewater. This review suggests that implementing a comprehensive system that integrates the entire waterborne virus detection process with high-accuracy analysis could enhance virus monitoring. These findings provide valuable insights for improving the effectiveness of waterborne virus detection, which could have significant implications for public health and environmental management.
Collapse
Affiliation(s)
- Xixi Song
- CenBRAIN Neurotech, School of Engineering, Westlake University, Hangzhou, 310030, China
| | - Zina Fredj
- CenBRAIN Neurotech, School of Engineering, Westlake University, Hangzhou, 310030, China
| | - Yuqiao Zheng
- CenBRAIN Neurotech, School of Engineering, Westlake University, Hangzhou, 310030, China
| | - Hongyong Zhang
- CenBRAIN Neurotech, School of Engineering, Westlake University, Hangzhou, 310030, China
| | - Guoguang Rong
- CenBRAIN Neurotech, School of Engineering, Westlake University, Hangzhou, 310030, China
| | - Sumin Bian
- CenBRAIN Neurotech, School of Engineering, Westlake University, Hangzhou, 310030, China
| | - Mohamad Sawan
- CenBRAIN Neurotech, School of Engineering, Westlake University, Hangzhou, 310030, China
| |
Collapse
|
4
|
Oladipo AA, Derakhshan Oskouei S, Gazi M. Metal-organic framework-based nanomaterials as opto-electrochemical sensors for the detection of antibiotics and hormones: A review. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2023; 14:631-673. [PMID: 37284550 PMCID: PMC10241095 DOI: 10.3762/bjnano.14.52] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/09/2023] [Indexed: 06/08/2023]
Abstract
Increasing trace levels of antibiotics and hormones in the environment and food samples are concerning and pose a threat. Opto-electrochemical sensors have received attention due to their low cost, portability, sensitivity, analytical performance, and ease of deployment in the field as compared to conventional expensive technologies that are time-consuming and require experienced professionals. Metal-organic frameworks (MOFs) with variable porosity, active functional sites, and fluorescence capacity are attractive materials for developing opto-electrochemical sensors. Herein, the insights into the capabilities of electrochemical and luminescent MOF sensors for detection and monitoring of antibiotics and hormones from various samples are critically reviewed. The detailed sensing mechanisms and detection limits of MOF sensors are addressed. The challenges, recent advances, and future directions for the development of stable, high-performance MOFs as commercially viable next-generation opto-electrochemical sensor materials for the detection and monitoring of diverse analytes are discussed.
Collapse
Affiliation(s)
- Akeem Adeyemi Oladipo
- Polymeric Materials Research Laboratory, Chemistry Department, Faculty of Arts and Science, Eastern Mediterranean University, TR North Cyprus, Famagusta, via Mersin 10, Türkiye
| | - Saba Derakhshan Oskouei
- Polymeric Materials Research Laboratory, Chemistry Department, Faculty of Arts and Science, Eastern Mediterranean University, TR North Cyprus, Famagusta, via Mersin 10, Türkiye
| | - Mustafa Gazi
- Polymeric Materials Research Laboratory, Chemistry Department, Faculty of Arts and Science, Eastern Mediterranean University, TR North Cyprus, Famagusta, via Mersin 10, Türkiye
| |
Collapse
|
5
|
Li Q, Zhao JH, Lai HJ, Liu B, Zhang M, Xiao NL, Wang HD, Jin T. Benzoyl isothiocyanate modified surface of silica gel as the extraction material for adsorbing steroid hormones in water. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:1206-1214. [PMID: 36807579 DOI: 10.1039/d2ay01852g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Steroid hormones have been listed as priority pollutants in the environment, and their detection and pollution control deserve our extensive attention. In this study, a modified silica gel adsorbent material was synthesized by benzoyl isothiocyanate reaction with hydroxyl groups on the silica gel surface. The modified silica gel was used as a solid phase extraction filler for the extraction of steroid hormones from water, which was further analyzed by the HPLC-MS/MS method. The FT-IR, TGA, XPS, and SEM analysis indicated that benzoyl isothiocyanate was successfully grafted on the surface of silica gel to form a bond with an isothioamide group and benzene ring as the tail chain. The modified silica gel synthesized at 40 °C showed excellent adsorption and recovery rates for three steroid hormones in water. Methanol at pH 9.0 was selected as the optimal eluent. The adsorption capacity of the modified silica gel for epiandrosterone, progesterone, and megestrol acetate was 6822 ng mg-1, 13 899 ng mg-1, and 14 301 ng mg-1, respectively. Under optimal conditions, the limit of detection (LOD) and limit of quantification (LOQ) for 3 steroid hormones by modified silica gel extraction with HPLC-MS/MS detection were 0.02-0.88 μg L-1 and 0.06-2.22 μg L-1, respectively. The recovery rate of epiandrosterone, progesterone, and megestrol was between 53.7% and 82.9%, respectively. The modified silica gel has been successfully used to analyze steroid hormones in wastewater and surface water.
Collapse
Affiliation(s)
- Qiang Li
- Guangzhou Institute of Chemistry, Chinese Academy of Sciences, No. 368, Xingke Road, Tianhe District, Guangzhou 510650, Guangdong Province, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jia-Hui Zhao
- CAS Testing Technical Services (Guangzhou) Co. Ltd., Guangzhou 510650, China
| | - Hua-Jie Lai
- Guangzhou Institute of Chemistry, Chinese Academy of Sciences, No. 368, Xingke Road, Tianhe District, Guangzhou 510650, Guangdong Province, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Testing Technical Services (Guangzhou) Co. Ltd., Guangzhou 510650, China
- New Materials Research Institute of CASCHEM (Chongqing) Co. Ltd., Chongqing 400714, China
| | - Bo Liu
- Guangzhou Institute of Chemistry, Chinese Academy of Sciences, No. 368, Xingke Road, Tianhe District, Guangzhou 510650, Guangdong Province, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Testing Technical Services (Guangzhou) Co. Ltd., Guangzhou 510650, China
- New Materials Research Institute of CASCHEM (Chongqing) Co. Ltd., Chongqing 400714, China
| | - Miao Zhang
- Guangzhou Institute of Chemistry, Chinese Academy of Sciences, No. 368, Xingke Road, Tianhe District, Guangzhou 510650, Guangdong Province, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ning-Lan Xiao
- Guangzhou Institute of Chemistry, Chinese Academy of Sciences, No. 368, Xingke Road, Tianhe District, Guangzhou 510650, Guangdong Province, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hao-Dong Wang
- Guangzhou Institute of Chemistry, Chinese Academy of Sciences, No. 368, Xingke Road, Tianhe District, Guangzhou 510650, Guangdong Province, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tao Jin
- Guangzhou Institute of Chemistry, Chinese Academy of Sciences, No. 368, Xingke Road, Tianhe District, Guangzhou 510650, Guangdong Province, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Testing Technical Services (Guangzhou) Co. Ltd., Guangzhou 510650, China
- New Materials Research Institute of CASCHEM (Chongqing) Co. Ltd., Chongqing 400714, China
- CAS Engineering Laboratory for Special Fine Chemicals, Chinese Academy of Sciences, Guangzhou 510650, China
- Guangdong Provincial Key Laboratory of Organic Polymer Materials for Electronics, Guangzhou 510650, China
| |
Collapse
|
6
|
Høj PH, Møller-Sørensen J, Wissing AL, Alatraktchi FA. Electrochemical biosensors for monitoring of selected pregnancy hormones during the first trimester: A systematic review. Talanta 2023; 258:124396. [PMID: 36870154 DOI: 10.1016/j.talanta.2023.124396] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 02/27/2023]
Abstract
The hormones human chorionic gonadotropin, progesterone, estrogen and four of its metabolites (estradiol, estrone, estriol, estetrol), as well as relaxin play an essential role in the development of the fetus during the first trimester. Imbalances in these hormones during the first trimester have been directly linked to miscarriages. However, frequent monitoring of the hormones is limited by the current conventional centralized analytical tools that do not allow a rapid response time. Electrochemical sensing is considered an ideal tool to detect hormones owing to its advantages such as quick response, user-friendliness, low economic costs, and possibility of use in point-of-care settings. Electrochemical detection of pregnancy hormones is an emerging field that has been demonstrated primarily at research level. Thus, it is timely with a comprehensive overview of the characteristics of the reported detection techniques. This is the first extensive review focusing on the advances related to electrochemical detection of hormones linked to the first trimester of pregnancy. Additionally, this review offers insights into the main challenges that must be addressed imminently to ensure progress from research to clinical applications.
Collapse
Affiliation(s)
- Pernille Hagen Høj
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Jon Møller-Sørensen
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | | | | |
Collapse
|
7
|
Biochemical analysis based on optical detection integrated microfluidic chip. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2022.116865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
8
|
Mohan B, Singh G, Pombeiro AJL, Solovev AA, Sharma PK, Chen Q. Metal-organic frameworks (MOFs) for milk safety and contaminants monitoring. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
9
|
A Colorimetric Detection of Noradrenaline in Wastewater Using Citrate-Capped Colloidal Gold Nanoparticles Probe. COLLOIDS AND INTERFACES 2022. [DOI: 10.3390/colloids6040061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This study reports a simple, fast, and low-cost detection of noradrenaline (NA) in wastewater using citrate-capped colloidal gold nanoparticles (AuNPs). The addition of NA to citrate-capped colloidal AuNPs generates a colour modulation that the bare eye can detect due to the aggregation of the colloidal AuNPs. The relationship between the NA concentration and colloidal AuNPs aggregation was further monitored by ultraviolet–visible light (UV–vis) spectroscopy in an aqueous solution. The method displayed a linear range of 0–500 μM with R2 = 0.99 and an LOD and LOQ of 42.2 and 140.5 μM. Application in an environmental sample collected from the Darville Wastewater Treatment Plant shows that this work provided a cost-effective and spectrophotometric method that could be used for monitoring contamination in wastewater.
Collapse
|