1
|
Choi Y, Choi SA, Koh EJ, Yun I, Park S, Jeon S, Kim Y, Park S, Woo D, Phi JH, Park SH, Kim DS, Kim SH, Choi JW, Lee JW, Jung TY, Bhak J, Lee S, Kim SK. Comprehensive multiomics analysis reveals distinct differences between pediatric choroid plexus papilloma and carcinoma. Acta Neuropathol Commun 2024; 12:93. [PMID: 38867333 PMCID: PMC11167863 DOI: 10.1186/s40478-024-01814-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/02/2024] [Indexed: 06/14/2024] Open
Abstract
Choroid plexus tumors (CPTs) are intraventricular tumors derived from the choroid plexus epithelium and occur frequently in children. The aim of this study was to investigate the genomic and epigenomic characteristics of CPT and identify the differences between choroid plexus papilloma (CPP) and choroid plexus carcinoma (CPC). We conducted multiomics analyses of 20 CPT patients including CPP and CPC. Multiomics analysis included whole-genome sequencing, whole-transcriptome sequencing, and methylation sequencing. Mutually exclusive TP53 and EPHA7 point mutations, coupled with the amplification of chromosome 1, were exclusively identified in CPC. In contrast, amplification of chromosome 9 was specific to CPP. Differential gene expression analysis uncovered a significant overexpression of genes related to cell cycle regulation and epithelial-mesenchymal transition pathways in CPC compared to CPP. Overexpression of genes associated with tumor metastasis and progression was observed in the CPC subgroup with leptomeningeal dissemination. Furthermore, methylation profiling unveiled hypomethylation in major repeat regions, including long interspersed nuclear elements, short interspersed nuclear elements, long terminal repeats, and retrotransposons in CPC compared to CPP, implying that the loss of epigenetic silencing of transposable elements may play a role in tumorigenesis of CPC. Finally, the differential expression of AK1, regulated by both genomic and epigenomic factors, emerged as a potential contributing factor to the histological difference of CPP against CPC. Our results suggest pronounced genomic and epigenomic disparities between CPP and CPC, providing insights into the pathogenesis of CPT at the molecular level.
Collapse
Affiliation(s)
- Yeonsong Choi
- Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
- Korean Genomics Center, UNIST, Ulsan, Republic of Korea
| | - Seung Ah Choi
- Division of Pediatric Neurosurgery, Seoul National University Children's Hospital, Seoul, Republic of Korea
- Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Eun Jung Koh
- Division of Pediatric Neurosurgery, Seoul National University Children's Hospital, Seoul, Republic of Korea
- Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ilsun Yun
- Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
- Korean Genomics Center, UNIST, Ulsan, Republic of Korea
| | - Suhyun Park
- Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
- Korean Genomics Center, UNIST, Ulsan, Republic of Korea
| | | | | | - Sangbeen Park
- Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Donggeon Woo
- Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Ji Hoon Phi
- Division of Pediatric Neurosurgery, Seoul National University Children's Hospital, Seoul, Republic of Korea
- Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Neuroscience Research Institute, Seoul National University Medical Research Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sung-Hye Park
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Dong-Seok Kim
- Department of Pediatric Neurosurgery, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Se Hoon Kim
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jung Won Choi
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Ji Won Lee
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Tae-Young Jung
- Department of Neurosurgery, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Republic of Korea
| | - Jong Bhak
- Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
- Korean Genomics Center, UNIST, Ulsan, Republic of Korea
- Clinomics Inc., Ulsan, Republic of Korea
| | - Semin Lee
- Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea.
- Korean Genomics Center, UNIST, Ulsan, Republic of Korea.
| | - Seung-Ki Kim
- Division of Pediatric Neurosurgery, Seoul National University Children's Hospital, Seoul, Republic of Korea.
- Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea.
- Neuroscience Research Institute, Seoul National University Medical Research Center, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Wang KN, Zhou K, Zhong NN, Cao LM, Li ZZ, Xiao Y, Wang GR, Huo FY, Zhou JJ, Liu B, Bu LL. Enhancing cancer therapy: The role of drug delivery systems in STAT3 inhibitor efficacy and safety. Life Sci 2024; 346:122635. [PMID: 38615745 DOI: 10.1016/j.lfs.2024.122635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/14/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024]
Abstract
The signal transducer and activator of transcription 3 (STAT3), a member of the STAT family, resides in the nucleus to regulate genes essential for vital cellular functions, including survival, proliferation, self-renewal, angiogenesis, and immune response. However, continuous STAT3 activation in tumor cells promotes their initiation, progression, and metastasis, rendering STAT3 pathway inhibitors a promising avenue for cancer therapy. Nonetheless, these inhibitors frequently encounter challenges such as cytotoxicity and suboptimal biocompatibility in clinical trials. A viable strategy to mitigate these issues involves delivering STAT3 inhibitors via drug delivery systems (DDSs). This review delineates the regulatory mechanisms of the STAT3 signaling pathway and its association with cancer. It offers a comprehensive overview of the current application of DDSs for anti-STAT3 inhibitors and investigates the role of DDSs in cancer treatment. The conclusion posits that DDSs for anti-STAT3 inhibitors exhibit enhanced efficacy and reduced adverse effects in tumor therapy compared to anti-STAT3 inhibitors alone. This paper aims to provide an outline of the ongoing research and future prospects of DDSs for STAT3 inhibitors. Additionally, it presents our insights on the merits and future outlook of DDSs in cancer treatment.
Collapse
Affiliation(s)
- Kang-Ning Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Kan Zhou
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Nian-Nian Zhong
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Lei-Ming Cao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Zi-Zhan Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Yao Xiao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Guang-Rui Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Fang-Yi Huo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Jun-Jie Zhou
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Oral & Maxillofacial, Anyang Sixth People's Hospital, Anyang 45500, China.
| | - Bing Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Oral & Maxillofacial - Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| | - Lin-Lin Bu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Oral & Maxillofacial - Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| |
Collapse
|
3
|
de Groot J, Ott M, Wei J, Kassab C, Fang D, Najem H, O'Brien B, Weathers SP, Matsouka CK, Majd NK, Harrison RA, Fuller GN, Huse JT, Long JP, Sawaya R, Rao G, MacDonald TJ, Priebe W, DeCuypere M, Heimberger AB. A first-in-human Phase I trial of the oral p-STAT3 inhibitor WP1066 in patients with recurrent malignant glioma. CNS Oncol 2022; 11:CNS87. [PMID: 35575067 PMCID: PMC9134932 DOI: 10.2217/cns-2022-0005] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/26/2022] [Indexed: 02/05/2023] Open
Abstract
Aim: To ascertain the maximum tolerated dose (MTD)/maximum feasible dose (MFD) of WP1066 and p-STAT3 target engagement within recurrent glioblastoma (GBM) patients. Patients & methods: In a first-in-human open-label, single-center, single-arm 3 + 3 design Phase I clinical trial, eight patients were treated with WP1066 until disease progression or unacceptable toxicities. Results: In the absence of significant toxicity, the MFD was identified to be 8 mg/kg. The most common adverse event was grade 1 nausea and diarrhea in 50% of patients. No treatment-related deaths occurred; 6 of 8 patients died from disease progression and one was lost to follow-up. Of 8 patients with radiographic follow-up, all had progressive disease. The longest response duration exceeded 3.25 months. The median progression-free survival (PFS) time was 2.3 months (95% CI: 1.7 months-NA months), and 6-month PFS (PFS6) rate was 0%. The median overall survival (OS) rate was 25 months (95% CI: 22.5 months-NA months), with an estimated 1-year OS rate of 100%. Pharmacokinetic (PK) data demonstrated that at 8 mg/kg, the T1/2 was 2-3 h with a dose dependent increase in the Cmax. Immune monitoring of the peripheral blood demonstrated that there was p-STAT3 suppression starting at a dose of 1 mg/kg. Conclusion: Immune analyses indicated that WP1066 inhibited systemic immune p-STAT3. WP1066 had an MFD identified at 8 mg/kg which is the target allometric dose based on prior preclinical modeling in combination with radiation therapy and a Phase II study is being planned for newly diagnosed MGMT promoter unmethylated glioblastoma patients.
Collapse
Affiliation(s)
- John de Groot
- Departments of Neurology & Neurosurgery, University of California San Francisco, 505 Parnassus Ave, San Francisco, CA 94143, USA
| | - Martina Ott
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Jun Wei
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Cynthia Kassab
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Dexing Fang
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Hinda Najem
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, 259 E Erie St, Chicago, IL 60611, USA
- Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, 303 E Superior St, Chicago, IL 60611, USA
| | - Barbara O'Brien
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Shiao-Pei Weathers
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Carlos Kamiya Matsouka
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Nazanin K Majd
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Rebecca A Harrison
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Gregory N Fuller
- Department of Neuropathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Jason T Huse
- Department of Neuropathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - James P Long
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Raymond Sawaya
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Ganesh Rao
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Tobey J MacDonald
- Department of Pediatrics, Emory University School of Medicine, Aflac Cancer & Blood Disorders Center of Children's Healthcare of Atlanta, 1405 Clifton Road NE, Atlanta, GA 30322, USA
| | - Waldemar Priebe
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Michael DeCuypere
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, 259 E Erie St, Chicago, IL 60611, USA
- Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, 303 E Superior St, Chicago, IL 60611, USA
- Department of Neurological Surgery, Ann & Robert H Lurie Children's Hospital of Chicago, 225 E Chicago Ave, Chicago, IL 60611, USA
| | - Amy B Heimberger
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, 259 E Erie St, Chicago, IL 60611, USA
- Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, 303 E Superior St, Chicago, IL 60611, USA
| |
Collapse
|
4
|
Cabral de Carvalho Corrêa D, Tesser-Gamba F, Dias Oliveira I, Saba da Silva N, Capellano AM, de Seixas Alves MT, Benevides Silva FA, Dastoli PA, Cavalheiro S, Caminada de Toledo SR. Molecular profiling of pediatric and adolescent ependymomas: identification of genetic variants using a next-generation sequencing panel. J Neurooncol 2021; 155:13-23. [PMID: 34570300 DOI: 10.1007/s11060-021-03848-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 09/15/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE Ependymoma (EPN) accounts for approximately 10% of all primary central nervous system (CNS) tumors in children and in most cases, chemotherapy is ineffective and treatment remains challenging. We investigated molecular alterations, with a potential prognostic marker and therapeutic target in EPNs of childhood and adolescence, using a next-generation sequencing (NGS) panel specific for pediatric neoplasms. METHODS We selected 61 samples with initial diagnosis of EPN from patients treated at Pediatric Oncology Institute-GRAACC/UNIFESP. All samples were divided according to the anatomical compartment of the CNS - 42 posterior fossa (PF), 14 supratentorial (ST), and five spinal (SP). NGS was performed to identify somatic genetic variants in tumor samples using the Oncomine Childhood Cancer Research Assay® (OCCRA®) panel, from Thermo Fisher Scientific®. RESULTS Genetic variants were identified in 24 of 61 (39.3%) tumors and over 90% of all variants were pathogenic or likely pathogenic. The most commonly variants detected were in CIC, ASXL1, and JAK2 genes and have not been reported in EPN yet. MN1-BEND2 fusion, alteration recently described in a new CNS tumor type, was identified in one ST sample that was reclassified as astroblastoma. Additionally, YAP1-MAMLD1 fusion, a rare event associated with good outcome in ST-EPN, was observed in two patients diagnosed under 2 years old. CONCLUSIONS Molecular profiling by the OCCRA® panel showed novel alterations in pediatric and adolescent EPNs, which highlights the clinical importance in identifying genetic variants for patients' prognosis and therapeutic orientation.
Collapse
Affiliation(s)
- Débora Cabral de Carvalho Corrêa
- Department of Pediatrics, Pediatric Oncology Institute-GRAACC, Federal University of Sao Paulo, Sao Paulo, SP, Brazil.,Division of Genetics, Department of Morphology and Genetics, Federal University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Francine Tesser-Gamba
- Department of Pediatrics, Pediatric Oncology Institute-GRAACC, Federal University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Indhira Dias Oliveira
- Department of Pediatrics, Pediatric Oncology Institute-GRAACC, Federal University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Nasjla Saba da Silva
- Department of Pediatrics, Pediatric Oncology Institute-GRAACC, Federal University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Andrea Maria Capellano
- Department of Pediatrics, Pediatric Oncology Institute-GRAACC, Federal University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Maria Teresa de Seixas Alves
- Department of Pediatrics, Pediatric Oncology Institute-GRAACC, Federal University of Sao Paulo, Sao Paulo, SP, Brazil.,Department of Pathology, Federal University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Frederico Adolfo Benevides Silva
- Department of Pediatrics, Pediatric Oncology Institute-GRAACC, Federal University of Sao Paulo, Sao Paulo, SP, Brazil.,Department of Imaging Diagnosis, Federal University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Patrícia Alessandra Dastoli
- Department of Pediatrics, Pediatric Oncology Institute-GRAACC, Federal University of Sao Paulo, Sao Paulo, SP, Brazil.,Department of Neurology and Neurosurgery, Federal University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Sergio Cavalheiro
- Department of Pediatrics, Pediatric Oncology Institute-GRAACC, Federal University of Sao Paulo, Sao Paulo, SP, Brazil.,Department of Neurology and Neurosurgery, Federal University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Silvia Regina Caminada de Toledo
- Department of Pediatrics, Pediatric Oncology Institute-GRAACC, Federal University of Sao Paulo, Sao Paulo, SP, Brazil. .,Division of Genetics, Department of Morphology and Genetics, Federal University of Sao Paulo, Sao Paulo, SP, Brazil. .,Pediatric Oncology Institute-Grupo de Apoio ao Adolescente e à Criança com Câncer/Federal University of Sao Paulo (IOP-GRAACC/UNIFESP), 743 Botucatu Street, 8th Floor - Genetics Laboratory, Vila Clementino, Sao Paulo, SP, 04023-062, Brazil.
| |
Collapse
|
5
|
Servidei T, Meco D, Martini M, Battaglia A, Granitto A, Buzzonetti A, Babini G, Massimi L, Tamburrini G, Scambia G, Ruggiero A, Riccardi R. The BET Inhibitor OTX015 Exhibits In Vitro and In Vivo Antitumor Activity in Pediatric Ependymoma Stem Cell Models. Int J Mol Sci 2021; 22:ijms22041877. [PMID: 33668642 PMCID: PMC7918371 DOI: 10.3390/ijms22041877] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 02/02/2021] [Accepted: 02/10/2021] [Indexed: 12/28/2022] Open
Abstract
Childhood ependymomas are heterogenous chemoresistant neoplasms arising from aberrant stem-like cells. Epigenome deregulation plays a pivotal role in ependymoma pathogenesis, suggesting that epigenetic modifiers hold therapeutic promise against this disease. Bromodomain and extraterminal domain (BET) proteins are epigenome readers of acetylated signals in histones and coactivators for oncogenic and stemness-related transcriptional networks, including MYC/MYCN (Proto-Oncogene, BHLH Transcritpion Factor)-regulated genes. We explored BET inhibition as an anticancer strategy in a panel of pediatric patient-derived ependymoma stem cell models by OTX015-mediated suppression of BET/acetylated histone binding. We found that ependymoma tissues and lines express BET proteins and their targets MYC and MYCN. In vitro, OTX015 reduced cell proliferation by inducing G0/G1-phase accumulation and apoptosis at clinically tolerable doses. Mechanistically, inhibitory p21 and p27 increased in a p53-independent manner, whereas the proliferative driver, phospho-signal transducer and activator of transcription 3 (STAT3), decreased. Upregulation of apoptosis-related proteins and survivin downregulation were correlated with cell line drug sensitivity. Minor alterations of MYC/MYCN expression were reported. In vivo, OTX015 significantly improved survival in 2/3 orthotopic ependymoma models. BET proteins represent promising targets for pharmaceutical intervention with OTX015 against ependymoma. The identification of predictive determinants of sensitivity may help identify ependymoma molecular subsets more likely to benefit from BET inhibitor therapies.
Collapse
Affiliation(s)
- Tiziana Servidei
- UOC Pediatric Oncology, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (D.M.); (A.R.); (R.R.)
- Correspondence: ; Tel.: +39-06-30155165
| | - Daniela Meco
- UOC Pediatric Oncology, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (D.M.); (A.R.); (R.R.)
| | - Maurizio Martini
- Department of Pathology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University of Sacred Heart, 00168 Rome, Italy; (M.M.); (A.G.)
| | - Alessandra Battaglia
- Department of Life Sciences and Public Health, Section of Gynecology and Obstetrics, Catholic University of Sacred Heart, 00168 Rome, Italy;
| | - Alessia Granitto
- Department of Pathology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University of Sacred Heart, 00168 Rome, Italy; (M.M.); (A.G.)
| | - Alexia Buzzonetti
- UOC Oncological Gynecology, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (A.B.); (G.B.); (G.S.)
| | - Gabriele Babini
- UOC Oncological Gynecology, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (A.B.); (G.B.); (G.S.)
| | - Luca Massimi
- UOC Neurochirurgia Infantile, Dipartimento di Scienze Dell’Invecchiamento, Neurologiche, Ortopediche e della Testa-Collo, Fondazione Policlinico Universitario A. Gemelli—IRCCS, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (L.M.); (G.T.)
| | - Gianpiero Tamburrini
- UOC Neurochirurgia Infantile, Dipartimento di Scienze Dell’Invecchiamento, Neurologiche, Ortopediche e della Testa-Collo, Fondazione Policlinico Universitario A. Gemelli—IRCCS, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (L.M.); (G.T.)
| | - Giovanni Scambia
- UOC Oncological Gynecology, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (A.B.); (G.B.); (G.S.)
| | - Antonio Ruggiero
- UOC Pediatric Oncology, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (D.M.); (A.R.); (R.R.)
| | - Riccardo Riccardi
- UOC Pediatric Oncology, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (D.M.); (A.R.); (R.R.)
| |
Collapse
|
6
|
Abemaciclib, A Selective CDK4/6 Inhibitor, Restricts the Growth of Pediatric Ependymomas. Cancers (Basel) 2020; 12:cancers12123597. [PMID: 33271970 PMCID: PMC7760843 DOI: 10.3390/cancers12123597] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 11/29/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Pediatric ependymomas are malignant pediatric brain tumors, and one-third of patients exhibit recurrence within two years of initial treatment. Therefore, this study aimed to find new agents to overcome these chemoresistant tumors and defer radiotherapy treatment. By using integrated bioinformatics and experimental validation, we demonstrated that abemaciclib, a CDK4/6 inhibitor, effectively inhibited cell proliferation and induced cell death. Therefore, treatment with abemaciclib showed encouraging results in preclinical pediatric ependymoma models and provide a new therapeutic strategy in the future. Abstract Pediatric ependymomas are a type of malignant brain tumor that occurs in children. The overall 10-year survival rate has been reported as being 45–75%. Maximal safe surgical resection combined with adjuvant chemoradiation therapy is associated with the highest overall and progression-free survival rates. Despite aggressive treatment, one-third of ependymomas exhibit recurrence within 2 years of initial treatment. Therefore, this study aimed to find new agents to overcome chemoresistance and defer radiotherapy treatment since, in addition, radiation exposure may cause long-term side effects in the developing brains of young children. By using integrated bioinformatics and through experimental validation, we found that at least one of the genes CCND1 and CDK4 is overexpressed in ependymomas. The use of abemaciclib, a highly selective CDK4/6 inhibitor, effectively inhibited cell proliferation and reduced the expression of cell-cycle-related and DNA-repair-related gene expression via the suppression of RB phosphorylation, which was determined through RNA-seq and Western blot analyses. Furthermore, abemaciclib effectively induced cell death in vitro. The efficiency of abemaciclib was validated in vivo using subcutaneously implanted ependymoma tissues from patient-derived xenografts (PDXs) in mouse models. Treatment with abemaciclib showed encouraging results in preclinical pediatric ependymoma models and represents a potential therapeutic strategy for treating challenging tumors in children.
Collapse
|
7
|
Choi SA, Koh EJ, Kim RN, Byun JW, Phi JH, Yang J, Wang KC, Park AK, Hwang DW, Lee JY, Kim SK. Extracellular vesicle-associated miR-135b and -135a regulate stemness in Group 4 medulloblastoma cells by targeting angiomotin-like 2. Cancer Cell Int 2020; 20:558. [PMID: 33292274 PMCID: PMC7678136 DOI: 10.1186/s12935-020-01645-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 11/09/2020] [Indexed: 12/18/2022] Open
Abstract
Background Extracellular vesicles (EVs) secreted by tumours, including exosomes, are important factors that regulate cell–cell interactions in oncogenesis. Although EV studies are ongoing, the biological understanding of EV-miRNAs derived from brain tumour spheroid-forming cells (BTSCs) of medulloblastoma is poor. Purposes We explored the specific cellular miRNAs and EV-miRNAs in medulloblastoma BTSCs to determine their potential biological function. Methods Bulk tumor cells (BTCs) and BTSCs were cultured under different conditions from medulloblastoma tissues (N = 10). Results Twenty-four miRNAs were simultaneously increased in both cells and EVs derived from BTSCs in comparison to BTCs. After inhibition of miR-135b or miR135a which were the most significantly increased in BTSCs, cell viability, self-renewal and stem cell marker expression decreased remarkably. Through integrated analysis of mRNAs and miRNAs data, we found that angiomotin-like 2 (AMOTL2), which was significantly decreased, was targeted by both miR-135b and miR-135a. STAT6 and GPX8 were targeted only by miR-135a. Importantly, low expression of AMOTL2 was significantly associated with overall poor survival in paediatric Group 3 and Group 4 medulloblastoma patients. Conclusion Our results indicated that inhibition of miR-135b or miR-135a leads to suppress stemness of BTSC through modulation of AMOTL2.
Collapse
Affiliation(s)
- Seung Ah Choi
- Division of Pediatric Neurosurgery, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.,Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Eun Jung Koh
- Division of Pediatric Neurosurgery, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.,Regional Emergency Medical Center, Seoul National University Hospital, Seoul, Korea
| | - Ryong Nam Kim
- Department of Biomedical Engineering, Seoul National University, Seoul, Korea
| | - Jung Woo Byun
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Ji Hoon Phi
- Division of Pediatric Neurosurgery, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.,Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Jeyul Yang
- Division of Pediatric Neurosurgery, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.,Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Kyu-Chang Wang
- Division of Pediatric Neurosurgery, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.,Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Ae Kyung Park
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, Korea
| | - Do Won Hwang
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Ji Yeoun Lee
- Division of Pediatric Neurosurgery, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.,Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea.,Department of Anatomy, Neural Development and Anomaly Lab, Seoul National University College of Medicine, Seoul, Korea
| | - Seung-Ki Kim
- Division of Pediatric Neurosurgery, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea. .,Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
8
|
Pavon LF, Capper D, Sibov TT, de Toledo SRC, Thomale UW, de Souza JG, Cabral FR, Berra CM, Silva da Costa MD, Mendonça Niçacio J, Dastoli PA, de Oliveira DM, Malheiros SMF, da Cruz EF, Malheiros JM, de Oliveira SM, Silva NS, Petrilli AS, Cappellano AM, Brunialti MC, Salomão R, de Paiva Neto MA, Chudzinski-Tavassi AM, Cavalheiro S. New therapeutic target for pediatric anaplastic ependymoma control: study of anti-tumor activity by a Kunitz-type molecule, Amblyomin-X. Sci Rep 2019; 9:9973. [PMID: 31292491 PMCID: PMC6620274 DOI: 10.1038/s41598-019-45799-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 05/30/2019] [Indexed: 11/08/2022] Open
Abstract
EPNs comprise a heterogeneous group of neuroepithelial tumors, accounting for about 10% of all intracranial tumors in children and up to 30% of brain tumors in those younger than 3 years. Actually, the pattern therapy for low-grade EPNs includes complete surgical resection followed by radiation therapy. Total surgical excision is often not possible due to tumor location. The aim of this study was to evaluate, for the first time, the anti-tumor activity of Amblyomin-X in 4 primary cultures derived from pediatric anaplastic posterior fossa EPN, Group A (anaplastic, WHO grade III) and one primary culture of a high grade neuroepithelial tumor with MN1 alteration, which was initially misdiagnosed as EPN: i) by in vitro assays: comparisons of temozolomide and cisplatin; ii) by intracranial xenograft model. Amblyomin-X was able to induce cell death in EPN cells in a more significant percentage compared to cisplatin. The cytotoxic effects of Amblyomin-X were not detected on hFSCs used as control, as opposed to cisplatin-treatment, which promoted a substantial effect in the hAFSCs viability. TEM analysis showed ultrastructural alterations related to the process of cell death: mitochondrial degeneration, autophagosomes and aggregate-like structures. MRI and histopathological analyzes demonstrated significant tumor mass regression. Our results suggest that Amblyomin-X has a selective effect on tumor cells by inducing apoptotic cell death and may be a therapeutic option for Group AEPNs.
Collapse
Affiliation(s)
- Lorena Favaro Pavon
- Discipline of Neurosurgery, Federal University of São Paulo, São Paulo, São Paulo, Brazil.
| | - David Capper
- Charité -Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universitätzu Berlin, and Berlin Institute of Health, Department of Neuropathology, Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Tatiana Tais Sibov
- Discipline of Neurosurgery, Federal University of São Paulo, São Paulo, São Paulo, Brazil
| | - Silvia Regina Caminada de Toledo
- Pediatric Oncology Institute, Grupo de Apoio ao Adolescente e à Criança com Câncer (GRAACC), Federal University of São Paulo, São Paulo, São Paulo, Brazil
| | - Ulrich-W Thomale
- Pediatric Neurosurgery, Campus Virchow Klinikum, Charité Universitätsmedizin, Berlin, Germany
| | - Jean Gabriel de Souza
- Laboratory of Molecular Biology, Butantan Institute, São Paulo, São Paulo, Brazil
- Centre of Excellence in New Target Discovery (CENTD), Butantan Institute, São Paulo, São Paulo, Brazil
| | | | - Carolina Maria Berra
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Marcos Devanir Silva da Costa
- Discipline of Neurosurgery, Federal University of São Paulo, São Paulo, São Paulo, Brazil
- Pediatric Oncology Institute, Grupo de Apoio ao Adolescente e à Criança com Câncer (GRAACC), Federal University of São Paulo, São Paulo, São Paulo, Brazil
| | - Jardel Mendonça Niçacio
- Discipline of Neurosurgery, Federal University of São Paulo, São Paulo, São Paulo, Brazil
- Pediatric Oncology Institute, Grupo de Apoio ao Adolescente e à Criança com Câncer (GRAACC), Federal University of São Paulo, São Paulo, São Paulo, Brazil
| | - Patrícia Alessandra Dastoli
- Discipline of Neurosurgery, Federal University of São Paulo, São Paulo, São Paulo, Brazil
- Pediatric Oncology Institute, Grupo de Apoio ao Adolescente e à Criança com Câncer (GRAACC), Federal University of São Paulo, São Paulo, São Paulo, Brazil
| | | | - Suzana M F Malheiros
- Discipline of Neurosurgery, Federal University of São Paulo, São Paulo, São Paulo, Brazil
- Hospital Israelita Albert Einstein, São Paulo, São Paulo, Brazil
| | | | | | | | - Nasjla Saba Silva
- Pediatric Oncology Institute, Grupo de Apoio ao Adolescente e à Criança com Câncer (GRAACC), Federal University of São Paulo, São Paulo, São Paulo, Brazil
| | - Antonio Sérgio Petrilli
- Pediatric Oncology Institute, Grupo de Apoio ao Adolescente e à Criança com Câncer (GRAACC), Federal University of São Paulo, São Paulo, São Paulo, Brazil
| | - Andrea Maria Cappellano
- Pediatric Oncology Institute, Grupo de Apoio ao Adolescente e à Criança com Câncer (GRAACC), Federal University of São Paulo, São Paulo, São Paulo, Brazil
| | - Milena Colò Brunialti
- Laboratory of Immunology and Infectology, Federal University of São Paulo, São Paulo, São Paulo, Brazil
| | - Reinaldo Salomão
- Laboratory of Immunology and Infectology, Federal University of São Paulo, São Paulo, São Paulo, Brazil
| | - Manoel A de Paiva Neto
- Discipline of Neurosurgery, Federal University of São Paulo, São Paulo, São Paulo, Brazil
| | - Ana Marisa Chudzinski-Tavassi
- Laboratory of Molecular Biology, Butantan Institute, São Paulo, São Paulo, Brazil.
- Centre of Excellence in New Target Discovery (CENTD), Butantan Institute, São Paulo, São Paulo, Brazil.
| | - Sérgio Cavalheiro
- Discipline of Neurosurgery, Federal University of São Paulo, São Paulo, São Paulo, Brazil
- Pediatric Oncology Institute, Grupo de Apoio ao Adolescente e à Criança com Câncer (GRAACC), Federal University of São Paulo, São Paulo, São Paulo, Brazil
| |
Collapse
|
9
|
Kim DK, Choi SA, Eun KM, Kim SK, Kim DW, Phi JH. Tumour necrosis factor alpha and interleukin-5 inhibit olfactory regeneration via apoptosis of olfactory sphere cells in mice models of allergic rhinitis. Clin Exp Allergy 2019; 49:1139-1149. [PMID: 30980570 DOI: 10.1111/cea.13401] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 04/02/2019] [Accepted: 04/03/2019] [Indexed: 01/15/2023]
Abstract
BACKGROUND Olfactory dysfunction is frequently experienced by patients with allergic rhinitis. It is thought to result from structural and functional changes occurring in the olfactory mucosa caused by inflammation. However, the current understanding of the pathophysiology of olfactory dysfunction in allergic rhinitis remains unclear. OBJECTIVE To investigate the mechanism by which the olfactory neural cells are damaged in allergic rhinitis. METHODS Olfactory sphere cells (OSCs) were established after dissociation and serial cultures of cells from the mouse olfactory mucosa. Viability and proliferation of OSCs were compared between control and allergic rhinitis mice models, and olfactory stem cell markers were analysed in vivo. To elucidate which cytokines have an inhibitory effect on OSCs, viability and apoptotic markers of OSCs were investigated. RESULTS Olfactory sphere cells were successfully isolated from the olfactory mucosa of mice, and these cells expressed markers of neural stem cells. To investigate the neural differentiation, we performed the immunocytochemical staining and found significantly elevated expressions of Tuji1, GFAP and O4 on OSCs. On the comparison of the characteristics of OSCs between control and allergic rhinitis model, we detected significantly fewer neurospheres, reduced clonogenic capacity and decreased expression of olfactory neural stem cell markers in allergic rhinitis model. When OSCs were treated with several major allergic cytokines were treated on OSCs, only TNF-α showed an inhibitory effect on OSCs. Interestingly, IL-5 had an inhibitory effect on the viability of OSCs in combination with TNF-α, whereas IL-5 alone does not have an effect. Moreover, TNF-α combined with IL-5 significantly increased the apoptotic expression, compared with TNF-α or IL-5 alone. Additionally, allergic rhinitis mice models showed the increased apoptotic expression. CONCLUSION AND CLINICAL RELEVANCE Allergic rhinitis mice models showed lower expression of OSCs, and TNF-α combined with IL-5 had an apoptotic effect on OSCs. Therefore, these cytokines may be therapeutic targets for olfactory dysfunction in patients with allergic rhinitis.
Collapse
Affiliation(s)
- Dong-Kyu Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Chuncheon Sacred Heart Hospital and Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, South Korea
| | - Seung Ah Choi
- Division of Pediatric Neurosurgery, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Kyoung Mi Eun
- Department of Otorhinolaryngology-Head and Neck Surgery, Boramae Medical Center, Seoul National University College of Medicine, Seoul, South Korea
| | - Seung-Ki Kim
- Division of Pediatric Neurosurgery, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Dae Woo Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Boramae Medical Center, Seoul National University College of Medicine, Seoul, South Korea
| | - Ji Hoon Phi
- Division of Pediatric Neurosurgery, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
10
|
Griesinger AM, Witt DA, Grob ST, Georgio Westover SR, Donson AM, Sanford B, Mulcahy Levy JM, Wong R, Moreira DC, DeSisto JA, Balakrishnan I, Hoffman LM, Handler MH, Jones KL, Vibhakar R, Venkataraman S, Foreman NK. NF-κB upregulation through epigenetic silencing of LDOC1 drives tumor biology and specific immunophenotype in Group A ependymoma. Neuro Oncol 2018; 19:1350-1360. [PMID: 28510691 DOI: 10.1093/neuonc/nox061] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background Inflammation has been identified as a hallmark of high-risk Group A (GpA) ependymoma (EPN). Chronic interleukin (IL)-6 secretion from GpA tumors drives an immune suppressive phenotype by polarizing infiltrating monocytes. This study determines the mechanism by which IL-6 is dysregulated in GpA EPN. Methods Twenty pediatric GpA and 21 pediatric Group B (GpB) EPN had gene set enrichment analysis for MSigDB Hallmark gene sets performed. Protein and RNA from patients and cell lines were used to validate transcriptomic findings. GpA cell lines 811 and 928 were used for in vitro experiments performed in this study. Results The nuclear factor-kappaB (NF-κB) pathway is a master regulator of IL-6 and a signaling pathway enriched in GpA compared with GpB EPN. Knockdown of NF-κB led to significant downregulation of IL-6 in 811 and 928. NF-κB activation was independent of tumor necrosis factor alpha (TNF-α) stimulation in both cell lines, suggesting that NF-κB hyperactivation is mediated through an alternative mechanism. Leucine zipper downregulated in cancer 1 (LDOC1) is a known transcriptional repressor of NF-κB. In many cancers, LDOC1 promoter is methylated, which inhibits gene transcription. We found decreased LDOC1 gene expression in GpA compared with GpB EPN, and in other pediatric brain tumors. EPN cells treated with 5AZA-DC, demethylated LDOC1 regulatory regions, upregulated LDOC1 expression, and concomitantly decreased IL-6 secretion. Stable knockdown of LDOC1 in EPN cell lines resulted in a significant increase in gene transcription of v-rel avian reticuloendotheliosis viral oncogene homolog A, which correlated to an increase in NF-κB target genes. Conclusion These results suggest that epigenetic silencing of LDOC1 in GpA EPN regulates tumor biology and drives inflammatory immune phenotype.
Collapse
Affiliation(s)
- Andrea M Griesinger
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado; Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, Colorado; Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, Colorado; Department of Neurosurgery, University of Colorado Denver, Aurora, Colorado
| | - Davis A Witt
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado; Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, Colorado; Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, Colorado; Department of Neurosurgery, University of Colorado Denver, Aurora, Colorado
| | - Sydney T Grob
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado; Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, Colorado; Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, Colorado; Department of Neurosurgery, University of Colorado Denver, Aurora, Colorado
| | - Sabrina R Georgio Westover
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado; Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, Colorado; Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, Colorado; Department of Neurosurgery, University of Colorado Denver, Aurora, Colorado
| | - Andrew M Donson
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado; Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, Colorado; Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, Colorado; Department of Neurosurgery, University of Colorado Denver, Aurora, Colorado
| | - Bridget Sanford
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado; Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, Colorado; Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, Colorado; Department of Neurosurgery, University of Colorado Denver, Aurora, Colorado
| | - Jean M Mulcahy Levy
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado; Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, Colorado; Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, Colorado; Department of Neurosurgery, University of Colorado Denver, Aurora, Colorado
| | - Randall Wong
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado; Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, Colorado; Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, Colorado; Department of Neurosurgery, University of Colorado Denver, Aurora, Colorado
| | - Daniel C Moreira
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado; Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, Colorado; Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, Colorado; Department of Neurosurgery, University of Colorado Denver, Aurora, Colorado
| | - John A DeSisto
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado; Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, Colorado; Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, Colorado; Department of Neurosurgery, University of Colorado Denver, Aurora, Colorado
| | - Ilango Balakrishnan
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado; Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, Colorado; Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, Colorado; Department of Neurosurgery, University of Colorado Denver, Aurora, Colorado
| | - Lindsey M Hoffman
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado; Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, Colorado; Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, Colorado; Department of Neurosurgery, University of Colorado Denver, Aurora, Colorado
| | - Michael H Handler
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado; Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, Colorado; Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, Colorado; Department of Neurosurgery, University of Colorado Denver, Aurora, Colorado
| | - Kenneth L Jones
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado; Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, Colorado; Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, Colorado; Department of Neurosurgery, University of Colorado Denver, Aurora, Colorado
| | - Rajeev Vibhakar
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado; Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, Colorado; Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, Colorado; Department of Neurosurgery, University of Colorado Denver, Aurora, Colorado
| | - Sujatha Venkataraman
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado; Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, Colorado; Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, Colorado; Department of Neurosurgery, University of Colorado Denver, Aurora, Colorado
| | - Nicholas K Foreman
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado; Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, Colorado; Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, Colorado; Department of Neurosurgery, University of Colorado Denver, Aurora, Colorado
| |
Collapse
|
11
|
Ferguson SD, Zhou S, Xiu J, Hashimoto Y, Sanai N, Kim L, Kesari S, de Groot J, Spetzler D, Heimberger AB. Ependymomas overexpress chemoresistance and DNA repair-related proteins. Oncotarget 2018; 9:7822-7831. [PMID: 29487694 PMCID: PMC5814261 DOI: 10.18632/oncotarget.23288] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 10/05/2017] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND After surgery and radiation, treatment options for ependymoma are few making recurrence a challenging issue. Specifically, the efficacy of chemotherapy at recurrence is limited. We performed molecular profiling on a cohort of ependymoma cases in order to uncover therapeutic targets and to elucidate the molecular mechanisms contributing to treatment resistance. RESULTS This ependymoma cohort showed minimal alterations in gene amplifications and mutations but had high expression rates of DNA synthesis and repair enzymes such as RRM1 (47%), ERCC1 (48%), TOPO1 (62%) and class III β-tublin (TUBB3) (57%), which are also all associated with chemoresistance. This cohort also had high expression rates of transporter proteins that mediate multi-drug resistance including BCRP (71%) and MRP1 (43%). Subgroup analyses showed that cranial ependymomas expressed the DNA synthesis enzyme TS significantly more frequently than spinal lesions did (57% versus 15%; p = 0.0328) and that increased TS expression was correlated with increased tumor grade (p = 0.0009). High-grade lesions were also significantly associated with elevated expression of TOP2A (p = 0.0092) and TUBB3 (p = 0.0157). MATERIALS AND METHODS We reviewed the characteristics of 41 ependymomas (21 cranial, 20 spinal; 8 grade I, 11 grade II, 22 grade III) that underwent multiplatform profiling with immunohistochemistry, next-generation sequencing, and in situ hybridization. CONCLUSIONS Ependymomas are enriched with proteins involved in chemoresistance and in DNA synthesis and repair, which is consistent with the meager clinical effectiveness of conventional systemic therapy in ependymoma. Adjuvant therapies that combine conventional chemotherapy with the inhibition of chemoresistance-related proteins may represent a novel treatment paradigm for this difficult disease.
Collapse
Affiliation(s)
- Sherise D. Ferguson
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shouhao Zhou
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Yuuri Hashimoto
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nader Sanai
- Division of Neurosurgical Oncology, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Lyndon Kim
- Department of Neurological Surgery and Medical Oncology, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - Santosh Kesari
- Department of Translational Neurosciences and Neurotherapeutics, Pacific Neuroscience Institute and John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, USA
| | - John de Groot
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David Spetzler
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Amy B. Heimberger
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
12
|
Servidei T, Meco D, Muto V, Bruselles A, Ciolfi A, Trivieri N, Lucchini M, Morosetti R, Mirabella M, Martini M, Caldarelli M, Lasorella A, Tartaglia M, Riccardi R. Novel SEC61G- EGFR Fusion Gene in Pediatric Ependymomas Discovered by Clonal Expansion of Stem Cells in Absence of Exogenous Mitogens. Cancer Res 2017; 77:5860-5872. [PMID: 29092923 DOI: 10.1158/0008-5472.can-17-0790] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 07/13/2017] [Accepted: 08/30/2017] [Indexed: 11/16/2022]
Abstract
The basis for molecular and cellular heterogeneity in ependymomas of the central nervous system is not understood. This study suggests a basis for this phenomenon in the selection for mitogen-independent (MI) stem-like cells with impaired proliferation but increased intracranial tumorigenicity. MI ependymoma cell lines created by selection for EGF/FGF2-independent proliferation exhibited constitutive activation of EGFR, AKT, and STAT3 and sensitization to the antiproliferative effects of EGFR tyrosine kinase inhibitors (TKI). One highly tumorigenic MI line harbored membrane-bound, constitutively active, truncated EGFR. Two EGFR mutants (ΔN566 and ΔN599) were identified as products of intrachromosomal rearrangements fusing the 3' coding portion of the EGFR gene to the 5'-UTR of the SEC61G, yielding products lacking the entire extracellular ligand-binding domain of the receptor while retaining the transmembrane and tyrosine kinase domains. EGFR TKI efficiently targeted ΔN566/ΔN599-mutant-mediated signaling and prolonged the survival of mice bearing intracranial xenografts of MI cells harboring these mutations. RT-PCR sequencing of 16 childhood ependymoma samples identified SEC61G-EGFR chimeric mRNAs in one infratentorial ependymoma WHO III, arguing that this fusion occurs in a small proportion of these tumors. Our findings demonstrate how in vitro culture selections applied to genetically heterogeneous tumors can help identify focal mutations that are potentially pharmaceutically actionable in rare cancers. Cancer Res; 77(21); 5860-72. ©2017 AACR.
Collapse
Affiliation(s)
- Tiziana Servidei
- UOC Oncologia Pediatrica, Fondazione Policlinico Universitario "A. Gemelli," Rome, Italy.
| | - Daniela Meco
- UOC Oncologia Pediatrica, Fondazione Policlinico Universitario "A. Gemelli," Rome, Italy
| | - Valentina Muto
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Alessandro Bruselles
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Andrea Ciolfi
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Nadia Trivieri
- Mendel Institute, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | | | - Roberta Morosetti
- UOC Neurologia, Fondazione Policlinico Universitario "A. Gemelli," Rome, Italy
| | | | | | | | - Anna Lasorella
- Department of Pediatrics, Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Riccardo Riccardi
- UOC Oncologia Pediatrica, Fondazione Policlinico Universitario "A. Gemelli," Rome, Italy
| |
Collapse
|
13
|
Phi JH, Choi SA, Kwak PA, Lee JY, Wang KC, Hwang DW, Kim SK. Panobinostat, a histone deacetylase inhibitor, suppresses leptomeningeal seeding in a medulloblastoma animal model. Oncotarget 2017; 8:56747-56757. [PMID: 28915627 PMCID: PMC5593598 DOI: 10.18632/oncotarget.18132] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 04/25/2017] [Indexed: 11/29/2022] Open
Abstract
Leptomeningeal seeding is a strong negative prognostic factor for medulloblastoma (MB). The mechanism of leptomeningeal seeding is unclear but may involve epigenetic regulation. In this study, we evaluated the feasibility of a histone deacetylase (HDAC) inhibitor, panobinostat, in the suppression of MB leptomeningeal seeding. Panobinostat decreased the cell viability and proliferation, inducing cell cycle arrest and apoptosis in MB cell lines. The migration and adhesion capabilities were significantly decreased. Panobinostat effectively down-regulated protein expression of CCND1 and ID3 which has been associated with leptomeningeal seeding of MB. After panobinostat treatment, neurophil-like cellular processes developed and expression of synaptophysin and NeuroD1 was increased, indicating neuronal differentiation. In MB leptomeningeal seeding in vivo model, the panobinostat-treated group showed significantly decreased spinal leptomeningeal seeding and a survival benefit. The findings demonstrate that panobinostat suppresses MB leptomeningeal seeding through the down-regulation of ID3 and the induction of neuronal differentiation. An HDAC inhibitor might be a potent treatment option for the treatment of MB patients with leptomeningeal seeding.
Collapse
Affiliation(s)
- Ji Hoon Phi
- Division of Pediatric Neurosurgery, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul, Korea.,Adolescent Cancer Center, Seoul National University Cancer Hospital, Seoul, Korea.,Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Seung Ah Choi
- Division of Pediatric Neurosurgery, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul, Korea.,Adolescent Cancer Center, Seoul National University Cancer Hospital, Seoul, Korea
| | - Pil Ae Kwak
- Division of Pediatric Neurosurgery, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul, Korea.,Adolescent Cancer Center, Seoul National University Cancer Hospital, Seoul, Korea
| | - Ji Yeoun Lee
- Division of Pediatric Neurosurgery, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul, Korea.,Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea.,Department of Anatomy, Seoul National University Hospital, Seoul, Korea
| | - Kyu-Chang Wang
- Division of Pediatric Neurosurgery, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul, Korea.,Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Do Won Hwang
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Seung-Ki Kim
- Division of Pediatric Neurosurgery, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul, Korea.,Adolescent Cancer Center, Seoul National University Cancer Hospital, Seoul, Korea.,Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
14
|
Li Y, Huang S, Li Y, Zhang W, He K, Zhao M, Lin H, Li D, Zhang H, Zheng Z, Huang C. Decreased expression of LncRNA SLC25A25-AS1 promotes proliferation, chemoresistance, and EMT in colorectal cancer cells. Tumour Biol 2016; 37:14205-14215. [PMID: 27553025 DOI: 10.1007/s13277-016-5254-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 07/15/2016] [Indexed: 12/28/2022] Open
Abstract
Increasing evidence suggests that long non-coding RNAs (lncRNAs) are aberrantly expressed in colorectal cancer (CRC); however, only few CRC-related lncRNAs have been characterized. In this study, we aimed to dig out potential dysregulated lncRNAs that are highly involved in CRC development. Using a lncRNA-mining approach, we performed lncRNA expression profiling in a large CRC cohort from Gene Expression Ominus (GEO), GSE39582 test series (N = 585). We identified 31 downregulated lncRNAs and 16 upregulated lncRNAs from the GSE39582 test series patients (566 tumor patients and 19 normal controls). The reliability of lncRNA expression profiles was further confirmed by RT-qPCR in carcinoma tissues and paired adjacent normal tissues from 30 CRC patients, also in the serum from 109 CRC patients, and 99 normal individuals. We demonstrated that the expression of SLC25A25-AS1, which has not been reported previously, was significantly decreased in both the tumor tissues (27 out of 30) and serum of CRC patients. SLC25A25-AS1 overexpression significantly inhibited proliferation and colony formation in colorectal cancer cell lines, and downregulation of SLC25A25-AS1 obviously enhanced chemoresistance and promoted EMT process in vitro associated with Erk and p38 signaling pathway activation. Therefore, SLC25A25-AS1 was determined to play a tumor suppressive role in CRC. Our results might provide a lncRNA-based target for CRC treatment.
Collapse
Affiliation(s)
- Yuan Li
- Department of Etiology and Carcinogenesis and State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Shengkai Huang
- Department of Etiology and Carcinogenesis and State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Yan Li
- Department of Etiology and Carcinogenesis and State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Weilong Zhang
- Department of Etiology and Carcinogenesis and State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Kun He
- Department of Gastroenterology, Peking Union Medical College Hospital, Beijing, 100730, China
| | - Mei Zhao
- Department of Etiology and Carcinogenesis and State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Hong Lin
- Department of Etiology and Carcinogenesis and State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Dongdong Li
- Department of Etiology and Carcinogenesis and State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Honggang Zhang
- Department of Medical Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Zhaoxu Zheng
- Department of Abdomen Surgery, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Changzhi Huang
- Department of Etiology and Carcinogenesis and State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100021, China.
| |
Collapse
|