1
|
Zhao R, Lan D, Xia B, Dong M, Mu J, Zhao Y. PET-Based Dual-Modal Probes for In Vivo Imaging. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2409713. [PMID: 39873346 DOI: 10.1002/smll.202409713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/07/2024] [Indexed: 01/30/2025]
Abstract
Molecular imaging has significantly advanced the detection and analysis of in vivo metabolic processes, while single-modal techniques remain limited. Dual-modal imaging, particularly positron emission tomography (PET)-based combinations has emerged as a powerful solution, offering enhanced capabilities through integration with magnetic resonance imaging (MRI) or near-infrared fluorescence (NIRF) imaging. This review highlights recent progress in PET-based dual-modal imaging, focusing on the development of various bimodal probes derived from antibodies, nanoparticles, and peptides, and key applications including image-guided surgery and disease assessment. PET-based dual-modal imaging holds substantial potential for advancing research and diagnostics by improving resolution and providing functional insights. By combining complementary modalities, these systems deliver a more comprehensive view of disease processes, leading to more accurate diagnoses and targeted treatments. Future research prioritizes optimizing probe design for enhanced biocompatibility and safety, facilitating clinical translation, and broadens applications beyond cancer. Through interdisciplinary collaboration, PET-based dual-modal probes are poised to play a pivotal role in improving patient outcomes, particularly in diagnosing and managing complex diseases.
Collapse
Affiliation(s)
- Runge Zhao
- Department of Nuclear Medicine, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Deren Lan
- Department of Nuclear Medicine, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Beibei Xia
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - MengJie Dong
- Department of Nuclear Medicine, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Jing Mu
- Department of Nuclear Medicine, Peking University Shenzhen Hospital, Shenzhen, 518036, China
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Yongsheng Zhao
- Department of Nuclear Medicine, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| |
Collapse
|
2
|
Hu D, Zha M, Zheng H, Gao D, Sheng Z. Recent Advances in Indocyanine Green-Based Probes for Second Near-Infrared Fluorescence Imaging and Therapy. RESEARCH (WASHINGTON, D.C.) 2025; 8:0583. [PMID: 39830366 PMCID: PMC11739436 DOI: 10.34133/research.0583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/11/2024] [Accepted: 12/22/2024] [Indexed: 01/22/2025]
Abstract
Fluorescence imaging, a highly sensitive molecular imaging modality, is being increasingly integrated into clinical practice. Imaging within the second near-infrared biological window (NIR-II; 1,000 to 1,700 nm), also referred to as shortwave infrared, has received substantial attention because of its markedly reduced autofluorescence, deeper tissue penetration, and enhanced spatiotemporal resolution as compared to traditional near-infrared (NIR) imaging. Indocyanine green (ICG), a US Food and Drug Administration-approved NIR fluorophore, has long been used in clinical applications, including blood vessel angiography, vascular perfusion monitoring, and tumor detection. Recent advancements in NIR-II imaging technology have revitalized interest in ICG, revealing its extended tail fluorescence beyond 1,000 nm and reaffirming its potential as a clinically translatable NIR-II fluorophore for in vivo imaging and theranostic applications for diagnosing various diseases. This review emphasizes the notable advances in the use of ICG and its derivatives for NIR-II imaging and image-guided therapy from both fundamental and clinical perspectives. We also provide a concise conclusion and discuss the challenges and future opportunities with NIR-II imaging using clinically approved fluorophores.
Collapse
Affiliation(s)
- Dehong Hu
- Research Center for Advanced Detection Materials and Medical Imaging Devices, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology,
Chinese Academy of Sciences, Shenzhen 518055, P. R. China
- State Key Laboratory of Biomedical lmaging Science and System, Shenzhen 518055, P. R. China
| | - Menglei Zha
- Dongguan Key Laboratory of Chronic Inflammatory Diseases, the First Dongguan Affiliated Hospital,
Guangdong Medical University, Dongguan 523710, P. R. China
| | - Hairong Zheng
- Research Center for Advanced Detection Materials and Medical Imaging Devices, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology,
Chinese Academy of Sciences, Shenzhen 518055, P. R. China
- State Key Laboratory of Biomedical lmaging Science and System, Shenzhen 518055, P. R. China
| | - Duyang Gao
- Research Center for Advanced Detection Materials and Medical Imaging Devices, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology,
Chinese Academy of Sciences, Shenzhen 518055, P. R. China
- State Key Laboratory of Biomedical lmaging Science and System, Shenzhen 518055, P. R. China
| | - Zonghai Sheng
- Research Center for Advanced Detection Materials and Medical Imaging Devices, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology,
Chinese Academy of Sciences, Shenzhen 518055, P. R. China
- State Key Laboratory of Biomedical lmaging Science and System, Shenzhen 518055, P. R. China
| |
Collapse
|
3
|
Raj A, Chandran C S, Dua K, Kamath V, Alex AT. Targeting overexpressed surface proteins: A new strategy to manage the recalcitrant triple-negative breast cancer. Eur J Pharmacol 2024; 981:176914. [PMID: 39154820 DOI: 10.1016/j.ejphar.2024.176914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/08/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive and heterogeneous cancer that lacks all three molecular markers, Estrogen, Progesterone, and Human Epidermal Growth Factor Receptor 2 (HER2). This unique characteristic of TNBC makes it more resistant to hormonal therapy; hence, chemotherapy and surgery are preferred. Active targeting with nanoparticles is more effective in managing TNBC than a passive approach. The surface of TNBC cells overexpresses several cell-specific proteins, which can be explored for diagnostic and therapeutic purposes. Immunohistochemical analysis has revealed that TNBC cells overexpress αVβ3 integrin, Intercellular Adhesion Molecule 1 (ICAM-1), Glucose Transporter 5 (GLUT5), Transmembrane Glycoprotein Mucin 1 (MUC-1), and Epidermal Growth Factor Receptor (EGFR). These surface proteins can be targeted using ligands, such as aptamers, antibodies, and sugar molecules. Targeting the surface proteins of TNBC with ligands helps harmonize treatment and improve patient compliance. In this review, we discuss the proteins expressed, which are limited to αVβ3 integrin proteins, ICAM-1, GLUT-5, MUC1, and EGFR, on the surface of TNBC, the challenges associated with the preclinical setup of breast cancer for targeted nanoformulations, internalization techniques and their challenges, suggestions to overcome the limitations of successful translation of nanoparticles, and the possibility of ligand-conjugated nanoparticles targeting these surface receptors for a better therapeutic outcome.
Collapse
Affiliation(s)
- Alan Raj
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka state, India, 576104.
| | - Sarath Chandran C
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Government Medical College Kannur, Pariyaram, Kerala, India, 670 503; Kerala University of Health Sciences, Thrissur, Kerala, India - 680 596.
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, Faculty of Health, University of Technology Sydney, Sydney, Australia-2007; Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Sydney, Australia-2007.
| | - Venkatesh Kamath
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka state, India, 576104.
| | - Angel Treasa Alex
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka state, India, 576104.
| |
Collapse
|
4
|
Cheng Z, Ma J, Yin L, Yu L, Yuan Z, Zhang B, Tian J, Du Y. Non-invasive molecular imaging for precision diagnosis of metastatic lymph nodes: opportunities from preclinical to clinical applications. Eur J Nucl Med Mol Imaging 2023; 50:1111-1133. [PMID: 36443568 DOI: 10.1007/s00259-022-06056-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 11/18/2022] [Indexed: 11/30/2022]
Abstract
Lymph node metastasis is an indicator of the invasiveness and aggressiveness of cancer. It is a vital prognostic factor in clinical staging of the disease and therapeutic decision-making. Patients with positive metastatic lymph nodes are likely to develop recurrent disease, distant metastasis, and succumb to death in the coming few years. Lymph node dissection and histological analysis are needed to detect whether regional lymph nodes have been infiltrated by cancer cells and determine the likely outcome of treatment and the patient's chances of survival. However, these procedures are invasive, and tissue biopsies are prone to sampling error. In recent years, advanced molecular imaging with novel imaging probes has provided new technologies that are contributing to comprehensive management of cancer, including non-invasive investigation of lymphatic drainage from tumors, identifying metastatic lymph nodes, and guiding surgeons to operate efficiently in patients with complex lesions. In this review, first, we outline the current status of different molecular imaging modalities applied for lymph node metastasis management. Second, we summarize the multi-functional imaging probes applied with the different imaging modalities as well as applications of cancer lymph node metastasis from preclinical studies to clinical translations. Third, we describe the limitations that must be considered in the field of molecular imaging for improved detection of lymph node metastasis. Finally, we propose future directions for molecular imaging technology that will allow more personalized treatment plans for patients with lymph node metastasis.
Collapse
Affiliation(s)
- Zhongquan Cheng
- Department of General Surgery, Capital Medical University, Beijing Friendship Hospital, Beijing, 100050, China.,CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jiaojiao Ma
- Department of Medical Ultrasonics, China-Japan Friendship Hospital, Yinghua East Road 2#, ChaoYang Dist., Beijing, 100029, China
| | - Lin Yin
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100080, China
| | - Leyi Yu
- Department of General Surgery, Capital Medical University, Beijing Friendship Hospital, Beijing, 100050, China
| | - Zhu Yuan
- Department of General Surgery, Capital Medical University, Beijing Friendship Hospital, Beijing, 100050, China.
| | - Bo Zhang
- Department of Medical Ultrasonics, China-Japan Friendship Hospital, Yinghua East Road 2#, ChaoYang Dist., Beijing, 100029, China.
| | - Jie Tian
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China. .,Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine Science and Engineering, Beihang University, Beijing, 100191, China.
| | - Yang Du
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China. .,University of Chinese Academy of Sciences, Beijing, 100080, China.
| |
Collapse
|
5
|
Bose M, Sanders A, De C, Zhou R, Lala P, Shwartz S, Mitra B, Brouwer C, Mukherjee P. Targeting tumor-associated MUC1 overcomes anoikis-resistance in pancreatic cancer. Transl Res 2023; 253:41-56. [PMID: 36031050 DOI: 10.1016/j.trsl.2022.08.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/04/2022] [Accepted: 08/18/2022] [Indexed: 02/01/2023]
Abstract
The third leading cause of cancer-related deaths in the United States is pancreatic cancer, more than 95% of which is pancreatic ductal adenocarcinoma (PDA). The incidence rate of PDA nearly matches its mortality rate and the best treatment till date is surgical resection for which only 25% are eligible. Tumor recurrence and metastasis are the main causes of cancer-related mortality. MUC1 is a transmembrane glycoprotein expressed on most epithelial cells. It is overexpressed and aberrantly glycosylated in cancer and is known as tumor-associated MUC1 (tMUC1). More than 80% of PDAs express tMUC1. A monoclonal antibody called TAB004 has been developed specifically against human tMUC1 extracellular domain. We report that treatment with TAB004 significantly reduced the colony forming potential of multiple PDA cell lines while sparing normal pancreatic epithelial cell line. Binding of TAB004 to tMUC1 compromised desmosomal integrity, induced ER stress and anoikis in PDA cells. The mechanisms underlying TAB004's antitumor effects were found to be reduced activation of the EGFR-PI3K signaling pathway, and degradation of tMUC1, thereby reducing expression of its transcriptional targets, c-Src and c-Myc. This reduction in oncogenic signaling triggered anoikis as indicated by reduced expression of antiapoptotic proteins, PTRH2 and BCL2. TAB004 treatment slowed the growth of PDA xenograft compared to IgG control and enhanced survival of mice when combined with 5-FU. Since TAB004 significantly reduced colony forming potential and triggered anoikis in the PDA cells, we suggest that it could be used as a potential prophylactic agent to curb tumor relapse after surgery, prevent metastasis and help increase the efficacy of chemotherapeutic agents.
Collapse
Affiliation(s)
- Mukulika Bose
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina
| | - Alexa Sanders
- Department of Bioinformatics, University of North Carolina at Charlotte, Charlotte, North Carolina
| | - Chandrav De
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina
| | - Ru Zhou
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina
| | - Priyanka Lala
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina
| | - Sophia Shwartz
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina
| | - Bhaskar Mitra
- Pacific Northwest National Laboratory, Richland, Washington
| | - Cory Brouwer
- Department of Bioinformatics, University of North Carolina at Charlotte, Charlotte, North Carolina
| | - Pinku Mukherjee
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina.
| |
Collapse
|
6
|
Huynh U, Wu P, Qiu J, Prachyathipsakul T, Singh K, Jerry DJ, Gao J, Thayumanavan S. Targeted Drug Delivery Using a Plug-to-Direct Antibody-Nanogel Conjugate. Biomacromolecules 2023; 24:849-857. [PMID: 36639133 PMCID: PMC9928872 DOI: 10.1021/acs.biomac.2c01269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Targeted drug delivery using antibody-drug conjugates has attracted great attention due to its enhanced therapeutic efficacy compared to traditional chemotherapy. However, the development has been limited due to a low drug-to-antibody ratio and laborious linker-payload optimization. Herein, we present a simple and efficient strategy to combine the favorable features of polymeric nanocarriers with antibodies to generate an antibody-nanogel conjugate (ANC) platform for targeted delivery of cytotoxic agents. Our nanogels stably encapsulate several chemotherapeutic agents with a wide range of mechanisms of action and solubility. We showcase the targetability of ANCs and their selective killing of cancer cells over-expressing disease-relevant antigens such as human epidermal growth factor receptor 2, epidermal growth factor receptor, and tumor-specific mucin 1, which cover a broad range of breast cancer cell types while maintaining low to no toxicity to non-targeted cells. Overall, our system represents a versatile approach that could impact next-generation nanomedicine in antibody-targeted therapeutics.
Collapse
Affiliation(s)
- Uyen Huynh
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Peidong Wu
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Jingyi Qiu
- Department of Biomedical Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | | | - Khushboo Singh
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - D. Joseph Jerry
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Jingjing Gao
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - S. Thayumanavan
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Department of Biomedical Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
7
|
Li Z, Yang D, Guo T, Lin M. Advances in MUC1-Mediated Breast Cancer Immunotherapy. Biomolecules 2022; 12:biom12070952. [PMID: 35883508 PMCID: PMC9313386 DOI: 10.3390/biom12070952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 02/04/2023] Open
Abstract
Breast cancer (BRCA) is the leading cause of death from malignant tumors among women. Fortunately, however, immunotherapy has recently become a prospective BRCA treatment with encouraging achievements and mild safety profiles. Since the overexpression and aberrant glycosylation of MUC1 (human mucin) are closely associated with BRCA, it has become an ideal target for BRCA immunotherapies. In this review, the structure and function of MUC1 are briefly introduced, and the main research achievements in different kinds of MUC1-mediated BRCA immunotherapy are highlighted, from the laboratory to the clinic. Afterward, the future directions of MUC1-mediated BRCA immunotherapy are predicted, addressing, for example, urgent issues in regard to how efficient immunotherapeutic strategies can be generated.
Collapse
Affiliation(s)
- Zhifeng Li
- Medical School of Nantong University, Nantong 226019, China; (Z.L.); (D.Y.)
| | - Dazhuang Yang
- Medical School of Nantong University, Nantong 226019, China; (Z.L.); (D.Y.)
| | - Ting Guo
- Research Center of Clinical Medicine, Jiangsu Taizhou People’s Hospital (Affiliated Hospital 5 of Nantong University), Taizhou 225300, China;
| | - Mei Lin
- Research Center of Clinical Medicine, Jiangsu Taizhou People’s Hospital (Affiliated Hospital 5 of Nantong University), Taizhou 225300, China;
- Correspondence:
| |
Collapse
|
8
|
Safarzadeh Kozani P, Safarzadeh Kozani P, Rahbarizadeh F. CAR T cells redirected against tumor-specific antigen glycoforms: can low-sugar antigens guarantee a sweet success? Front Med 2022; 16:322-338. [PMID: 35687277 DOI: 10.1007/s11684-021-0901-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 09/23/2021] [Indexed: 11/04/2022]
Abstract
Immune-based therapies have experienced a pronounced breakthrough in the past decades as they acquired multiple US Food and Drug Administration (FDA) approvals for various indications. To date, six chimeric antigen receptor T cell (CAR-T) therapies have been permitted for the treatment of certain patients with relapsed/refractory hematologic malignancies. However, several clinical trials of solid tumor CAR-T therapies were prematurely terminated, or they reported life-threatening treatment-related damages to healthy tissues. The simultaneous expression of target antigens by healthy organs and tumor cells is partly responsible for such toxicities. Alongside targeting tumor-specific antigens, targeting the aberrantly glycosylated glycoforms of tumor-associated antigens can also minimize the off-tumor effects of CAR-T therapies. Tn, T, and sialyl-Tn antigens have been reported to be involved in tumor progression and metastasis, and their expression results from the dysregulation of a series of glycosyltransferases and the endoplasmic reticulum protein chaperone, Cosmc. Moreover, these glycoforms have been associated with various types of cancers, including prostate, breast, colon, gastric, and lung cancers. Here, we discuss how underglycosylated antigens emerge and then detail the latest advances in the development of CAR-T-based immunotherapies that target some of such antigens.
Collapse
Affiliation(s)
- Pooria Safarzadeh Kozani
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, P.O. Box 14115/111, Iran
| | - Pouya Safarzadeh Kozani
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, P.O. Box 44771/66595, Iran
| | - Fatemeh Rahbarizadeh
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, P.O. Box 14115/111, Iran. .,Research and Development Center of Biotechnology, Tarbiat Modares University, Tehran, P.O. Box 14115/111, Iran.
| |
Collapse
|
9
|
Alirezapour B, Ashkezari M, Fini M, Rasaee M, Mohammadnejad J, Paknejad M, Maadi E, Yousefnia H, Zolghadri S. Preparation and preclinical characterization of 111In-DTPA-Anti-MUC1 as a radioimmunoconjugate for diagnosis of breast cancer by single-photon emission computed tomography. J Cancer Res Ther 2022; 18:158-167. [DOI: 10.4103/jcrt.jcrt_730_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
10
|
Houvast RD, Vankemmelbeke M, Durrant LG, Wuhrer M, Baart VM, Kuppen PJK, de Geus-Oei LF, Vahrmeijer AL, Sier CFM. Targeting Glycans and Heavily Glycosylated Proteins for Tumor Imaging. Cancers (Basel) 2020; 12:cancers12123870. [PMID: 33371487 PMCID: PMC7767531 DOI: 10.3390/cancers12123870] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Distinguishing malignancy from healthy tissue is essential for oncologic surgery. Targeted imaging during an operation aids the surgeon to operate better. The present tracers for detecting cancer are directed against proteins that are overexpressed on the membrane of tumor cells. This review evaluates the use of tumor-associated sugar molecules as an alternative for proteins to image cancer tissue. These sugar molecules are present as glycans on glycosylated membrane proteins and glycolipids. Due to their location and large numbers per cell, these sugar molecules might be better targets for tumor imaging than proteins. Abstract Real-time tumor imaging techniques are increasingly used in oncological surgery, but still need to be supplemented with novel targeted tracers, providing specific tumor tissue detection based on intra-tumoral processes or protein expression. To maximize tumor/non-tumor contrast, targets should be highly and homogenously expressed on tumor tissue only, preferably from the earliest developmental stage onward. Unfortunately, most evaluated tumor-associated proteins appear not to meet all of these criteria. Thus, the quest for ideal targets continues. Aberrant glycosylation of proteins and lipids is a fundamental hallmark of almost all cancer types and contributes to tumor progression. Additionally, overexpression of glycoproteins that carry aberrant glycans, such as mucins and proteoglycans, is observed. Selected tumor-associated glyco-antigens are abundantly expressed and could, thus, be ideal candidates for targeted tumor imaging. Nevertheless, glycan-based tumor imaging is still in its infancy. In this review, we highlight the potential of glycans, and heavily glycosylated proteoglycans and mucins as targets for multimodal tumor imaging by discussing the preclinical and clinical accomplishments within this field. Additionally, we describe the major advantages and limitations of targeting glycans compared to cancer-associated proteins. Lastly, by providing a brief overview of the most attractive tumor-associated glycans and glycosylated proteins in association with their respective tumor types, we set out the way for implementing glycan-based imaging in a clinical practice.
Collapse
Affiliation(s)
- Ruben D. Houvast
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (R.D.H.); (V.M.B.); (P.J.K.K.); (A.L.V.)
| | - Mireille Vankemmelbeke
- Scancell Limited, University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK; (M.V.); (L.G.D.)
| | - Lindy G. Durrant
- Scancell Limited, University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK; (M.V.); (L.G.D.)
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
| | - Victor M. Baart
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (R.D.H.); (V.M.B.); (P.J.K.K.); (A.L.V.)
| | - Peter J. K. Kuppen
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (R.D.H.); (V.M.B.); (P.J.K.K.); (A.L.V.)
| | - Lioe-Fee de Geus-Oei
- Department of Radiology, Section of Nuclear Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
- Biomedical Photonic Imaging Group, University of Twente, 7500 AE Enschede, The Netherlands
| | - Alexander L. Vahrmeijer
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (R.D.H.); (V.M.B.); (P.J.K.K.); (A.L.V.)
| | - Cornelis F. M. Sier
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (R.D.H.); (V.M.B.); (P.J.K.K.); (A.L.V.)
- Percuros BV, 2333 ZA Leiden, The Netherlands
- Correspondence: ; Tel.: +31-752662610
| |
Collapse
|
11
|
Bose M, Mukherjee P. Potential of Anti-MUC1 Antibodies as a Targeted Therapy for Gastrointestinal Cancers. Vaccines (Basel) 2020; 8:E659. [PMID: 33167508 PMCID: PMC7712407 DOI: 10.3390/vaccines8040659] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/27/2020] [Accepted: 11/03/2020] [Indexed: 02/06/2023] Open
Abstract
Gastrointestinal cancers (GI) account for 26% of cancer incidences globally and 35% of all cancer-related deaths. The main challenge is to target cancer specific antigens. Mucins are heavily O-glycosylated proteins overexpressed in different cancers. The transmembrane glycoprotein MUC1 is the most likeable target for antibodies, owing to its specific overexpression and aberrant glycosylation in many types of cancers. For the past 30 years, MUC1 has remained a possible diagnostic marker and therapeutic target. Despite initiation of numerous clinical trials, a comprehensively effective therapy with clinical benefit is yet to be achieved. However, the interest in MUC1 as a therapeutic target remains unaltered. For all translational studies, it is important to incorporate updated relevant research findings into therapeutic strategies. In this review we present an overview of the antibodies targeting MUC1 in GI cancers, their potential role in immunotherapy (i.e., antibody-drug and radioimmunoconjugates, CAR-T cells), and other novel therapeutic strategies. We also present our perspectives on how the mechanisms of action of different anti-MUC1 antibodies can target specific hallmarks of cancer and therefore be utilized as a combination therapy for better clinical outcomes.
Collapse
Affiliation(s)
- Mukulika Bose
- Department of Biological Sciences, University of North Carolina, Charlotte, NC 28223, USA;
| | | |
Collapse
|
12
|
Pourjafar M, Samadi P, Saidijam M. MUC1 antibody-based therapeutics: the promise of cancer immunotherapy. Immunotherapy 2020; 12:1269-1286. [PMID: 33019839 DOI: 10.2217/imt-2020-0019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Antibody-based targeted therapies have been able to target cancers with enhanced specificity and high efficacy. In this regard, identifying cancer markers (antigens) that are only present (tumor-specific antigens) or have an increased expression (tumor-associated antigen) on the surface of cancer cells is a crucial step for targeted cancer treatment. Various cancer antigens have already been used for therapeutic and diagnostic purposes. MUC1 is one of the most important tumor markers with high levels of expression in various solid tumors which makes it as a potential target for antibody-based therapies. This review discusses preclinical and clinical results from various platforms based on monoclonal antibodies, nanobodies as well as bispecific antibodies against MUC1. We also highlight unmet challenges that must be overcome to generate more effective cancer immunotherapy strategies.
Collapse
Affiliation(s)
- Mona Pourjafar
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.,Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Pouria Samadi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.,Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Massoud Saidijam
- Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
13
|
Kelly VJ, Wu ST, Gottumukkala V, Coelho R, Palmer K, Nair S, Erick T, Puri R, Ilovich O, Mukherjee P. Preclinical evaluation of an 111In/ 225Ac theranostic targeting transformed MUC1 for triple negative breast cancer. Theranostics 2020; 10:6946-6958. [PMID: 32550914 PMCID: PMC7295045 DOI: 10.7150/thno.38236] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 05/11/2020] [Indexed: 12/17/2022] Open
Abstract
Rationale: Transformed MUC1 (tMUC1) is a cancer-associated antigen that is overexpressed in >90% of triple-negative breast cancers (TNBC), a highly metastatic and aggressive subtype of breast cancer. TAB004, a murine antibody targeting tMUC1, has shown efficacy for the targeted delivery of therapeutics to cancer cells. Our aim was to evaluate humanized TAB004 (hTAB004) as a potential theranostic for TNBC. Methods: The internalization of hTAB004 in tMUC1 expressing HCC70 cells was assessed via fluorescent microscopy. hTAB004 was DOTA-conjugated and radiolabeled with Indium-111 or Actinium-225 and tested for stability and tMUC1 binding (ELISA, flow cytometry). Lastly, in vivo biodistribution (SPECT-CT), dosimetry, and efficacy of hTAB004 were evaluated using a TNBC orthotopic mouse model. Results: hTAB004 was shown to bind and internalize into tMUC1-expressing cells. A production method of 225Ac-DOTA-hTAB004 (yield>97%, RCP>97% SA=5 kBq/µg) and 111In-DOTA-hTAB004 (yield>70%, RCP>99%, SA=884 kBq/µg) was developed. The labeled molecules retained their affinity to tMUC1 and were stable in formulation and mouse serum. In NSG female mice bearing orthotopic HCC70 xenografts, the in vivo tumor concentration of 111In-DOTA-hTAB004 was 65 ± 15 %ID/g (120 h post injection). A single 225Ac-DOTA-hTAB004 dose (18.5 kBq) caused a significant reduction in tumor volume (P<0.001, day 22) and increased survival compared to controls (P<0.007). The human dosimetry results were comparable to other clinically used agents. Conclusion: The results obtained with hTAB004 suggest that the 111In/225Ac-DOTA-hTAB004 combination has significant potential as a theranostic strategy in TNBC and merits further development toward clinical translation.
Collapse
|
14
|
Nguyen KTP, Druhan LJ, Avalos BR, Zhai L, Rauova L, Nesmelova IV, Dréau D. CXCL12-CXCL4 heterodimerization prevents CXCL12-driven breast cancer cell migration. Cell Signal 2019; 66:109488. [PMID: 31785332 DOI: 10.1016/j.cellsig.2019.109488] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/24/2019] [Accepted: 11/26/2019] [Indexed: 02/07/2023]
Abstract
Despite improvements in cancer early detection and treatment, metastatic breast cancer remains deadly. Current therapeutic approaches have very limited efficacy in patients with triple negative breast cancer. Among the many mechanisms associated that contribute to cancer progression, signaling through the CXCL12-CXCR4 is an essential step in cancer cell migration. We previously demonstrated the formation of CXCL12-CXCL4 heterodimers (Carlson et al., 2013). Here, we investigated whether CXCL12-CXCL4 heterodimers alter tumor cell migration. CXCL12 alone dose-dependently promoted the MDA-MB 231 cell migration (p < .05), which could be prevented by blocking the CXCR4 receptor. The addition of CXCL4 inhibited the CXCL12-induced cell migration (p < .05). Using NMR spectroscopy, we identified the CXCL4-CXCL12 binding interface. Moreover, we generated a CXCL4-derived peptide homolog of the binding interface that mimicked the activity of native CXCL4 protein. These results confirm the formation of CXCL12-CXCL4 heterodimers and their inhibitory effects on the migration of breast tumors cells. These findings suggest that specific peptides mimicking heterodimerization of CXCL12 might prevent breast cancer cell migration.
Collapse
Affiliation(s)
- Khanh T P Nguyen
- Department of Biological Sciences, UNC Charlotte, Charlotte, NC, United States of America
| | - Lawrence J Druhan
- Department of Hematologic Oncology & Blood Disorders, Levine Cancer Institute, Atrium Health, Charlotte, NC, United States of America; Center for Biomedical Engineering and Science, UNC Charlotte, Charlotte, NC, United States of America
| | - Belinda R Avalos
- Department of Hematologic Oncology & Blood Disorders, Levine Cancer Institute, Atrium Health, Charlotte, NC, United States of America; Center for Biomedical Engineering and Science, UNC Charlotte, Charlotte, NC, United States of America
| | - Li Zhai
- Department of Pediatrics, The Children's Hospital of Philadelphia, PA, United States of America
| | - Lubica Rauova
- Department of Pediatrics, The Children's Hospital of Philadelphia, PA, United States of America; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Irina V Nesmelova
- Center for Biomedical Engineering and Science, UNC Charlotte, Charlotte, NC, United States of America; Department of Physics and Optical Science, UNC Charlotte, Charlotte, NC, United States of America
| | - Didier Dréau
- Department of Biological Sciences, UNC Charlotte, Charlotte, NC, United States of America; Center for Biomedical Engineering and Science, UNC Charlotte, Charlotte, NC, United States of America.
| |
Collapse
|
15
|
Curry JM, Besmer DM, Erick TK, Steuerwald N, Das Roy L, Grover P, Rao S, Nath S, Ferrier JW, Reid RW, Mukherjee P. Indomethacin enhances anti-tumor efficacy of a MUC1 peptide vaccine against breast cancer in MUC1 transgenic mice. PLoS One 2019; 14:e0224309. [PMID: 31693710 PMCID: PMC6834267 DOI: 10.1371/journal.pone.0224309] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 10/10/2019] [Indexed: 01/27/2023] Open
Abstract
In recent years, vaccines against tumor antigens have shown potential for combating invasive cancers, including primary tumors and metastatic lesions. This is particularly pertinent for breast cancer, which is the second-leading cause of cancer-related death in women. MUC1 is a glycoprotein that is normally expressed on glandular epithelium, but is overexpressed and under-glycosylated in most human cancers, including the majority of breast cancers. This under-glycosylation exposes the MUC1 protein core on the tumor-associated form of the protein. We have previously shown that a vaccine consisting of MUC1 core peptides stimulates a tumor-specific immune response. However, this immune response is dampened by the immunosuppressive microenvironment within breast tumors. Thus, in the present study, we investigated the effectiveness of MUC1 vaccination in combination with four different drugs that inhibit different components of the COX pathway: indomethacin (COX-1 and COX-2 inhibitor), celecoxib (COX-2 inhibitor), 1-methyl tryptophan (indoleamine 2,3 dioxygenase inhibitor), and AH6809 (prostaglandin E2 receptor antagonist). These treatment regimens were explored for the treatment of orthotopic MUC1-expressing breast tumors in mice transgenic for human MUC1. We found that the combination of vaccine and indomethacin resulted in a significant reduction in tumor burden. Indomethacin did not increase tumor-specific immune responses over vaccine alone, but rather appeared to reduce the proliferation and increase apoptosis of tumor cells, thus rendering them susceptible to immune cell killing.
Collapse
Affiliation(s)
- Jennifer M. Curry
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, United States of America
| | - Dahlia M. Besmer
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, United States of America
| | - Timothy K. Erick
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, United States of America
| | - Nury Steuerwald
- Molecular Biology and Genomics Laboratory, Carolinas Medical Center, Charlotte, NC, United States of America
| | - Lopamudra Das Roy
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, United States of America
| | - Priyanka Grover
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, United States of America
| | - Shanti Rao
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, United States of America
| | - Sritama Nath
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, United States of America
| | - Jacob W. Ferrier
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, United States of America
| | - Robert W. Reid
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, United States of America
| | - Pinku Mukherjee
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, United States of America
- OncoTAb, Inc., Charlotte, NC, United States of America
- * E-mail:
| |
Collapse
|
16
|
Wang W, Hu Z. Targeting Peptide-Based Probes for Molecular Imaging and Diagnosis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1804827. [PMID: 30537222 DOI: 10.1002/adma.201804827] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 09/19/2018] [Indexed: 05/27/2023]
Abstract
A series of novel peptide-based molecular probes for different biomarkers is highlighted herein. These probes can provide targeted recognition with high affinity, high specificity, high penetration, and rapid excretion ability. These sensitive peptides can achieve rapid and specific detection when they are conjugated with imaging moieties or are formed into nanoprobes, which can be adapted for in vivo molecular imaging in targeted diagnosis and therapy.
Collapse
Affiliation(s)
- Weizhi Wang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, P. R. China
| | - Zhiyuan Hu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, P. R. China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Centre for Neuroscience Research, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350108, Fujian, P. R. China
| |
Collapse
|
17
|
Yazdanifar M, Zhou R, Grover P, Williams C, Bose M, Moore LJ, Wu ST, Maher J, Dreau D, Mukherjee P. Overcoming Immunological Resistance Enhances the Efficacy of A Novel Anti-tMUC1-CAR T Cell Treatment against Pancreatic Ductal Adenocarcinoma. Cells 2019; 8:cells8091070. [PMID: 31514488 PMCID: PMC6770201 DOI: 10.3390/cells8091070] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/07/2019] [Accepted: 09/09/2019] [Indexed: 12/11/2022] Open
Abstract
Chimeric antigen receptor (CAR) T cells have shown remarkable success in treating hematologic cancers. However, this efficacy has yet to translate to treatment in solid tumors. Pancreatic ductal adenocarcinoma (PDA) is a fatal malignancy with poor prognosis and limited treatment options. We have developed a second generation CAR T cell using the variable fragments of a novel monoclonal antibody, TAB004, which specifically binds the tumor-associated-MUC1 (tMUC1). tMUC1 is overexpressed on ~85% of all human PDA. We present data showing that TAB004-derived CAR T cells specifically bind to tMUC1 on PDA cells and show robust killing activity; however, they do not bind or kill normal epithelial cells. We further demonstrated that the tMUC1-CAR T cells control the growth of orthotopic pancreatic tumors in vivo. We witnessed that some PDA cells (HPAFII and CFPAC) were refractory to CAR T cell treatment. qPCR analysis of several genes revealed overexpression of indoleamine 2, 3-dioxygenases-1 (IDO1), cyclooxygenase 1 and 2 (COX1/2), and galectin-9 (Gal-9) in resistant PDA cells. We showed that combination of CAR T cells and biological inhibitors of IDO1, COX1/2, and Gal-9 resulted in significant enhancement of CAR T cell cytotoxicity against PDA cells. Overcoming PDA resistance is a significant advancement in the field.
Collapse
Affiliation(s)
- Mahboubeh Yazdanifar
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, NC 28223, USA; (M.Y.); (R.Z.); (P.G.); (C.W.); (M.B.); (L.J.M.); (S.-t.W.); (D.D.)
| | - Ru Zhou
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, NC 28223, USA; (M.Y.); (R.Z.); (P.G.); (C.W.); (M.B.); (L.J.M.); (S.-t.W.); (D.D.)
| | - Priyanka Grover
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, NC 28223, USA; (M.Y.); (R.Z.); (P.G.); (C.W.); (M.B.); (L.J.M.); (S.-t.W.); (D.D.)
| | - Chandra Williams
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, NC 28223, USA; (M.Y.); (R.Z.); (P.G.); (C.W.); (M.B.); (L.J.M.); (S.-t.W.); (D.D.)
| | - Mukulika Bose
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, NC 28223, USA; (M.Y.); (R.Z.); (P.G.); (C.W.); (M.B.); (L.J.M.); (S.-t.W.); (D.D.)
| | - Laura J. Moore
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, NC 28223, USA; (M.Y.); (R.Z.); (P.G.); (C.W.); (M.B.); (L.J.M.); (S.-t.W.); (D.D.)
| | - Shu-ta Wu
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, NC 28223, USA; (M.Y.); (R.Z.); (P.G.); (C.W.); (M.B.); (L.J.M.); (S.-t.W.); (D.D.)
| | - John Maher
- King’s College London, School of Cancer and Pharmaceutical Sciences, Guy’s Hospital Campus, Great Maze Pond, London SE1 9RT, UK;
| | - Didier Dreau
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, NC 28223, USA; (M.Y.); (R.Z.); (P.G.); (C.W.); (M.B.); (L.J.M.); (S.-t.W.); (D.D.)
| | - Pinku Mukherjee
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, NC 28223, USA; (M.Y.); (R.Z.); (P.G.); (C.W.); (M.B.); (L.J.M.); (S.-t.W.); (D.D.)
- Correspondence:
| |
Collapse
|
18
|
Zhou R, Yazdanifar M, Roy LD, Whilding LM, Gavrill A, Maher J, Mukherjee P. CAR T Cells Targeting the Tumor MUC1 Glycoprotein Reduce Triple-Negative Breast Cancer Growth. Front Immunol 2019; 10:1149. [PMID: 31178870 PMCID: PMC6543840 DOI: 10.3389/fimmu.2019.01149] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 05/07/2019] [Indexed: 12/02/2022] Open
Abstract
Antibody-derived chimeric antigen receptor (CAR) T cell therapy has achieved gratifying breakthrough in hematologic malignancies but has shown limited success in solid tumor immunotherapy. Monoclonal antibody, TAB004, specifically recognizes the aberrantly glycosylated tumor form of MUC1 (tMUC1) in all subtypes of breast cancer including 95% of triple-negative breast cancer (TNBC) while sparing recognition of normal tissue MUC1. We transduced human T cells with MUC28z, a chimeric antigen receptor comprising of the scFv of TAB004 coupled to CD28 and CD3ζ. MUC28z was well-expressed on the surface of engineered activated human T cells. MUC28z CAR T cells demonstrated significant target-specific cytotoxicity against a panel of human TNBC cells. Upon recognition of tMUC1 on TNBC cells, MUC28z CAR T cells increased production of Granzyme B, IFN-γ and other Th1 type cytokines and chemokines. A single dose of MUC28z CAR T cells significantly reduced TNBC tumor growth in a xenograft model. Thus, MUC28z CAR T cells have high therapeutic potential against tMUC1-positive TNBC tumors with minimal damage to normal breast epithelial cells.
Collapse
Affiliation(s)
- Ru Zhou
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, United States
| | - Mahboubeh Yazdanifar
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, United States
| | - Lopamudra Das Roy
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, United States
| | - Lynsey M Whilding
- School of Cancer and Pharmaceutical Sciences, King's College London, Guy's Hospital Campus, London, United Kingdom
| | - Artemis Gavrill
- School of Cancer and Pharmaceutical Sciences, King's College London, Guy's Hospital Campus, London, United Kingdom
| | - John Maher
- School of Cancer and Pharmaceutical Sciences, King's College London, Guy's Hospital Campus, London, United Kingdom
| | - Pinku Mukherjee
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, United States
| |
Collapse
|
19
|
Dréau D, Moore LJ, Wu M, Roy LD, Dillion L, Porter T, Puri R, Momin N, Wittrup KD, Mukherjee P. Combining the Specific Anti-MUC1 Antibody TAB004 and Lip-MSA-IL-2 Limits Pancreatic Cancer Progression in Immune Competent Murine Models of Pancreatic Ductal Adenocarcinoma. Front Oncol 2019; 9:330. [PMID: 31114758 PMCID: PMC6503151 DOI: 10.3389/fonc.2019.00330] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 04/11/2019] [Indexed: 12/19/2022] Open
Abstract
Immunotherapy regimens have shown success in subsets of cancer patients; however, their efficacy against pancreatic ductal adenocarcinoma (PDA) remain unclear. Previously, we demonstrated the potential of TAB004, a monoclonal antibody targeting the unique tumor-associated form of MUC1 (tMUC1) in the early detection of PDA. In this study, we evaluated the therapeutic benefit of combining the TAB004 antibody with Liposomal-MSA-IL-2 in immune competent and human MUC1 transgenic (MUC1.Tg) mouse models of PDA and investigated the associated immune responses. Treatment with TAB004 + Lip-MSA-IL-2 resulted in significantly improved survival and slower tumor growth compared to controls in MUC1.Tg mice bearing an orthotopic PDA.MUC1 tumor. Similarly, in the spontaneous model of PDA that expresses human MUC1, the combination treatment stalled the progression of pancreatic intraepithelial pre-neoplastic (PanIN) lesion to adenocarcinoma. Treatment with the combination elicited a robust systemic and tumor-specific immune response with (a) increased percentages of systemic and tumor infiltrated CD45+CD11b+ cells, (b) increased levels of myeloperoxidase (MPO), (c) increased antibody-dependent cellular cytotoxicity/phagocytosis (ADCC/ADCP), (d) decreased percentage of immune regulatory cells (CD8+CD69+ cells), and (e) reduced circulating levels of immunosuppressive tMUC1. We report that treatment with a novel antibody against tMUC1 in combination with a unique formulation of IL-2 can improve survival and lead to stable disease in appropriate models of PDA by reducing tumor-induced immune regulation and promoting recruitment of CD45+CD11b+ cells, thereby enhancing ADCC/ADCP.
Collapse
Affiliation(s)
- Didier Dréau
- Department of Biological Sciences, UNC Charlotte, Charlotte, NC, United States
| | | | - Mike Wu
- OncoTab Inc., Charlotte, NC, United States
| | | | | | - Travis Porter
- Department of Biological Sciences, UNC Charlotte, Charlotte, NC, United States
| | - Rahul Puri
- OncoTab Inc., Charlotte, NC, United States
| | - Noor Momin
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - K Dane Wittrup
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Pinku Mukherjee
- Department of Biological Sciences, UNC Charlotte, Charlotte, NC, United States.,OncoTab Inc., Charlotte, NC, United States
| |
Collapse
|
20
|
Wu ST, Fowler AJ, Garmon CB, Fessler AB, Ogle JD, Grover KR, Allen BC, Williams CD, Zhou R, Yazdanifar M, Ogle CA, Mukherjee P. Treatment of pancreatic ductal adenocarcinoma with tumor antigen specific-targeted delivery of paclitaxel loaded PLGA nanoparticles. BMC Cancer 2018; 18:457. [PMID: 29685122 PMCID: PMC5914049 DOI: 10.1186/s12885-018-4393-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 04/17/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDA) remains the most aggressive cancers with a 5-year survival below 10%. Systemic delivery of chemotherapy drugs has severe side effects in patients with PDA and does not significantly improve overall survival rate. It is highly desirable to advance the therapeutic efficacy of chemotherapeutic drugs by targeting their delivery and increasing accumulation at the tumor site. MUC1 is a membrane-tethered glycoprotein that is aberrantly overexpressed in > 80% of PDA thus making it an attractive antigenic target. METHODS Poly lactic-co-glycolic acid nanoparticles (PLGA NPs) conjugated to a tumor specific MUC1 antibody, TAB004, was used as a nanocarrier for targeted delivery into human PDA cell lines in vitro and in PDA tumors in vivo. The PLGA NPs were loaded with fluorescent imaging agents, fluorescein diacetate (FDA) and Nile Red (NR) or isocyanine green (ICG) for in vitro and in vivo imaging respectively or with a chemotherapeutic drug, paclitaxel (PTX) for in vitro cytotoxicity assays. Confocal microscopy was used to visualize internalization of the nanocarrier in vitro in PDA cells with high and low MUC1 expression. The in vivo imaging system (IVIS) was used to visualize in vivo tumor targeting of the nanocarrier. MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide) assay was used to determine in vitro cell survival of cells treated with PTX-loaded nanocarrier. One-sided t-test comparing treatment groups at each concentration and two-way ANOVAs comparing internalization of antibody and PLGA nanoparticles. RESULTS In vitro, TAB004-conjugated ICG-nanocarriers were significantly better at internalizing in PDA cells than its non-conjugated counterpart. Similarly, TAB004-conjugated PTX-nanocarriers were significantly more cytotoxic in vitro against PDA cells than its non-conjugated counterpart. In vivo, TAB004-conjugated ICG-nanocarriers showed increased accumulation in the PDA tumor compared to the non-conjugated nanocarrier while sparing normal organs. CONCLUSIONS The study provides promising data for future development of a novel MUC1-targeted nanocarrier for direct delivery of imaging agents or drugs into the tumor microenvironment.
Collapse
MESH Headings
- Animals
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/immunology
- Antigens, Neoplasm/metabolism
- Antineoplastic Agents, Immunological/administration & dosage
- Antineoplastic Agents, Immunological/chemistry
- Antineoplastic Agents, Immunological/pharmacokinetics
- Biomarkers, Tumor
- Carcinoma, Pancreatic Ductal/drug therapy
- Carcinoma, Pancreatic Ductal/immunology
- Carcinoma, Pancreatic Ductal/mortality
- Carcinoma, Pancreatic Ductal/pathology
- Cell Line, Tumor
- Cell Survival
- Disease Models, Animal
- Drug Liberation
- Endocytosis
- Female
- Gene Expression
- Humans
- Mice
- Molecular Targeted Therapy
- Mucin-1/immunology
- Nanoparticles/chemistry
- Nanoparticles/ultrastructure
- Paclitaxel/administration & dosage
- Paclitaxel/chemistry
- Paclitaxel/pharmacokinetics
- Pancreatic Neoplasms/drug therapy
- Pancreatic Neoplasms/immunology
- Pancreatic Neoplasms/pathology
- Polyethylene Glycols/chemistry
- Polylactic Acid-Polyglycolic Acid Copolymer
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Shu-ta Wu
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223 USA
| | - Anthony J. Fowler
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223 USA
| | - Corey B. Garmon
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223 USA
| | - Adam B. Fessler
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223 USA
| | - Joshua D. Ogle
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223 USA
| | - Kajal R. Grover
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223 USA
| | - Bailey C. Allen
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223 USA
| | - Chandra D. Williams
- Department of Animal Laboratory Resources, University of North Carolina at Charlotte, Charlotte, NC 28223 USA
| | - Ru Zhou
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223 USA
| | - Mahboubeh Yazdanifar
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223 USA
| | - Craig A. Ogle
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223 USA
| | - Pinku Mukherjee
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223 USA
| |
Collapse
|
21
|
Wu ST, Williams CD, Grover PA, Moore LJ, Mukherjee P. Early detection of pancreatic cancer in mouse models using a novel antibody, TAB004. PLoS One 2018; 13:e0193260. [PMID: 29462213 PMCID: PMC5819830 DOI: 10.1371/journal.pone.0193260] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 02/07/2018] [Indexed: 01/05/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDA) is the fourth-leading cause of cancer death in the United States with a 5-year overall survival rate of 8% for all stages combined. But this decreases to 3% for the majority of patients that present with stage IV PDA at time of diagnosis. The lack of distinct early symptoms for PDA is one of the primary reasons for the late diagnosis. Common symptoms like weight loss, abdominal and back pains, and jaundice are often mistaken for symptoms of other issues and do not appear until the cancer has progressed to a late stage. Thus the development of novel imaging platforms for PDA is crucial for the early detection of the disease. MUC1 is a tumor-associated antigen (tMUC1) expressed on 80% of PDA. The goal of this study was to determine the targeting and detection capabilities of a tMUC1 specific antibody, TAB004. TAB004 antibody conjugated to a near infrared fluorescent probe was injected intraperitoneally into immune competent orthotopic and spontaneous models of PDA. Results show that fluorophore conjugated TAB004 specifically targets a) 1 week old small tumor in the pancreas in an orthotopic PDA model and b) very early pre-neoplastic lesions (PanIN lesions) that develop in the spontaneous PDA model before progression to adenocarcinoma. Thus, TAB004 is a promising antibody to deliver imaging agents directly to the pancreatic tumor microenvironment, significantly affecting early detection of PDA.
Collapse
Affiliation(s)
- Shu-ta Wu
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina, United States of America
| | - Chandra D. Williams
- Department of Animal Laboratory Resources, University of North Carolina at Charlotte, Charlotte, North Carolina, United States of America
| | - Priyanka A. Grover
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina, United States of America
| | - Laura J. Moore
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina, United States of America
| | - Pinku Mukherjee
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
22
|
Roy LD, Dillon LM, Zhou R, Moore LJ, Livasy C, El-Khoury JM, Puri R, Mukherjee P. A tumor specific antibody to aid breast cancer screening in women with dense breast tissue. Genes Cancer 2017; 8:536-549. [PMID: 28680538 PMCID: PMC5489651 DOI: 10.18632/genesandcancer.134] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Screening for breast cancer has predominantly been done using mammography. Unfortunately, mammograms miss 50% cancers in women with dense breast tissue. Multi-modal screenings offer the best chance of enhancing breast cancer screening effectiveness. We evaluated the use of TAB004, an antibody that recognizes the tumor form of the glycoprotein MUC1 (tMUC1), to aid early detection of breast cancer. Our experimental approach was to follow tMUC1 from the tissue into circulation. We found that 95% of human breast cancer tissues across all subtypes stained positive for TAB004. In breast cancer cell lines, we showed that the amount of tMUC1 released from tumor cells is proportional to the cell's tMUC1 expression level. Finally, we showed that TAB004 can be used to assess circulating tMUC1 levels, which when monitored in the context of cancer immunoediting, can aid earlier diagnosis of breast cancer regardless of breast tissue density. In a blinded pilot study with banked serial samples, tMUC1 levels increased significantly up to 2 years before diagnosis. Inclusion of tMUC1 monitoring as part of a multi-modal screening strategy may lead to earlier stage diagnosis of women whose cancers are missed by mammography.
Collapse
Affiliation(s)
- Lopamudra Das Roy
- OncoTAb, Inc., Charlotte, NC, USA.,University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Lloye M Dillon
- OncoTAb, Inc., Charlotte, NC, USA.,University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Ru Zhou
- University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Laura J Moore
- University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Chad Livasy
- Carolinas Pathology Group, Carolinas Medical Center, Charlotte, NC, USA.,University of North Carolina at Chapel Hill, Charlotte, NC, USA
| | | | | | - Pinku Mukherjee
- OncoTAb, Inc., Charlotte, NC, USA.,University of North Carolina at Charlotte, Charlotte, NC, USA
| |
Collapse
|
23
|
Dréau D, Moore LJ, Alvarez-Berrios MP, Tarannum M, Mukherjee P, Vivero-Escoto JL. Mucin-1-Antibody-Conjugated Mesoporous Silica Nanoparticles for Selective Breast Cancer Detection in a Mucin-1 Transgenic Murine Mouse Model. J Biomed Nanotechnol 2016; 12:2172-2184. [PMID: 28522938 PMCID: PMC5431076 DOI: 10.1166/jbn.2016.2318] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mucin-1 (MUC1), a transmembrane glycoprotein is aberrantly expressed on ~90% of breast cancer and is an excellent target for nanoparticulate targeted imaging. In this study, the development of a dye-doped NIR emitting mesoporous silica nanoparticles platform conjugated to tumor-specific MUC1 antibody (ab-tMUC1-NIR-MSN) for in vivo optical detection of breast adenocarcinoma tissue is reported. The structural properties, the in vitro and in vivo performance of this nanoparticle-based probe were evaluated. In vitro studies showed that the MSN-based optical imaging nanoprobe is non-cytotoxic and targets efficiently mammary cancer cells overexpressing human tMUC1 protein. In vivo experiments with female C57BL/6 mice indicated that this platform accumulates mainly in the liver and did not induce short-term toxicity. In addition, we demonstrated that the ab-tMUC1-NIR-MSN nanoprobe specifically detects mammary gland tumors overexpressing human tMUC1 in a human MUC1 transgenic mouse model.
Collapse
Affiliation(s)
- Didier Dréau
- Department of Biological Sciences, The University of North Carolina at Charlotte, 9201 University City Blvd, Charlotte NC 28223, USA
- The Center for Biomedical Engineering and Science, The University of North Carolina at Charlotte, Charlotte NC 28223, USA
| | - Laura Jeffords Moore
- Department of Biological Sciences, The University of North Carolina at Charlotte, 9201 University City Blvd, Charlotte NC 28223, USA
| | - Merlis P. Alvarez-Berrios
- Department of Chemistry, The University of North Carolina at Charlotte, Charlotte NC 28223, USA; 9201 University City Blvd, Charlotte NC 28223, USA
| | - Mubin Tarannum
- Department of Chemistry, The University of North Carolina at Charlotte, Charlotte NC 28223, USA; 9201 University City Blvd, Charlotte NC 28223, USA
- The Center for Biomedical Engineering and Science, The University of North Carolina at Charlotte, Charlotte NC 28223, USA
| | - Pinku Mukherjee
- Department of Biological Sciences, The University of North Carolina at Charlotte, 9201 University City Blvd, Charlotte NC 28223, USA
- The Center for Biomedical Engineering and Science, The University of North Carolina at Charlotte, Charlotte NC 28223, USA
| | - Juan L. Vivero-Escoto
- Department of Chemistry, The University of North Carolina at Charlotte, Charlotte NC 28223, USA; 9201 University City Blvd, Charlotte NC 28223, USA
- The Center for Biomedical Engineering and Science, The University of North Carolina at Charlotte, Charlotte NC 28223, USA
| |
Collapse
|
24
|
Yazdanifar M, Zhou R, Mukherjee P. Emerging immunotherapeutics in adenocarcinomas: A focus on CAR-T cells. CURRENT TRENDS IN IMMUNOLOGY 2016; 17:95-115. [PMID: 28659689 PMCID: PMC5484157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
More than 80% of all cancers arise from epithelial cells referred to as carcinomas. Adenocarcinomas are the most common type of carcinomas arising from the specialized epithelial cells that line the ducts of our major organs. Despite many advances in cancer therapies, metastatic and treatment-refractory cancers remain the 2nd leading cause of death. Immunotherapy has offered potential opportunities with specific targeting of tumor cells and inducing remission in many cancer patients. Numerous therapies using antibodies as antagonists or checkpoint inhibitors/immune modulators, peptide or cell vaccines, cytokines, and adoptive T cell therapies have been developed. The most innovative immunotherapy approach so far has been the use of engineered T cell, also referred to as chimeric antigen receptor T cells (CAR-T cells). CAR-T cells are genetically modified naïve T cells that express a chimeric molecule which comprises of the antigen-recognition domains (scFv) of an anti-tumor antibody and one, two, or three intracellular signaling domains of the T cell receptor (TCR). When these engineered T cells recognize and bind to the tumor antigen target via the scFv fragment, a signal is sent to the intracellular TCR domains of the CAR, leading to activation of the T cells to become cytolytic against the tumor cells. CAR-T cell therapy has shown tremendous success for certain hematopoietic malignancies, but this success has not been extrapolated to adenocarcinomas. This is due to multiple factors associated with adenocarcinoma that are different from hematopoietic tumors. Although many advances have been made in targeting multiple cancers by CAR-T cells, clinical trials have shown adverse effects and toxicity related to this treatment. New strategies are yet to be devised to manage side effects associated with CAR-T cell therapies. In this review, we report some of the promising immunotherapeutic strategies being developed for treatment of most common adenocarcinomas with particular emphasis on the future generation of CAR-T cell therapy.
Collapse
Affiliation(s)
| | | | - Pinku Mukherjee
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, NC 28223, USA
| |
Collapse
|