1
|
Toivanen K, Kilpinen S, Ojala K, Merikoski N, Salmikangas S, Sampo M, Böhling T, Sihto H. PDE3A Is a Highly Expressed Therapy Target in Myxoid Liposarcoma. Cancers (Basel) 2023; 15:5308. [PMID: 38001568 PMCID: PMC10669966 DOI: 10.3390/cancers15225308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023] Open
Abstract
Liposarcomas (LPSs) are a heterogeneous group of malignancies that arise from adipose tissue. Although LPSs are among the most common soft-tissue sarcoma subtypes, precision medicine treatments are not currently available. To discover LPS-subtype-specific therapy targets, we investigated RNA sequenced transcriptomes of 131 clinical LPS tissue samples and compared the data with a transcriptome database that contained 20,218 samples from 95 healthy tissues and 106 cancerous tissue types. The identified genes were referred to the NCATS BioPlanet library with Enrichr to analyze upregulated signaling pathways. PDE3A protein expression was investigated with immunohistochemistry in 181 LPS samples, and PDE3A and SLFN12 mRNA expression with RT-qPCR were investigated in 63 LPS samples. Immunoblotting and cell viability assays were used to study LPS cell lines and their sensitivity to PDE3A modulators. We identified 97, 247, and 37 subtype-specific, highly expressed genes in dedifferentiated, myxoid, and pleomorphic LPS subtypes, respectively. Signaling pathway analysis revealed a highly activated hedgehog signaling pathway in dedifferentiated LPS, phospholipase c mediated cascade and insulin signaling in myxoid LPS, and pathways associated with cell proliferation in pleomorphic LPS. We discovered a strong association between high PDE3A expression and myxoid LPS, particularly in high-grade tumors. Moreover, myxoid LPS samples showed elevated expression levels of SLFN12 mRNA. In addition, PDE3A- and SLFN12-coexpressing LPS cell lines SA4 and GOT3 were sensitive to PDE3A modulators. Our results indicate that PDE3A modulators are promising drugs to treat myxoid LPS. Further studies are required to develop these drugs for clinical use.
Collapse
Affiliation(s)
- Kirsi Toivanen
- Department of Pathology, Helsinki University Hospital, University of Helsinki, 00014 Helsinki, Finland; (N.M.); (S.S.); (T.B.); (H.S.)
| | - Sami Kilpinen
- Molecular and Integrative Biosciences Research Programme, University of Helsinki, 00014 Helsinki, Finland;
| | - Kalle Ojala
- HUS Vatsakeskus, Helsinki University Hospital, PL 340, 00290 Helsinki, Finland;
| | - Nanna Merikoski
- Department of Pathology, Helsinki University Hospital, University of Helsinki, 00014 Helsinki, Finland; (N.M.); (S.S.); (T.B.); (H.S.)
| | - Sami Salmikangas
- Department of Pathology, Helsinki University Hospital, University of Helsinki, 00014 Helsinki, Finland; (N.M.); (S.S.); (T.B.); (H.S.)
| | - Mika Sampo
- Department of Pathology, HUSLAB, HUS Diagnostic Center, Helsinki University Hospital, University of Helsinki, 00029 Helsinki, Finland;
| | - Tom Böhling
- Department of Pathology, Helsinki University Hospital, University of Helsinki, 00014 Helsinki, Finland; (N.M.); (S.S.); (T.B.); (H.S.)
| | - Harri Sihto
- Department of Pathology, Helsinki University Hospital, University of Helsinki, 00014 Helsinki, Finland; (N.M.); (S.S.); (T.B.); (H.S.)
| |
Collapse
|
2
|
Different HSP90 Inhibitors Exert Divergent Effect on Myxoid Liposarcoma In Vitro and In Vivo. Biomedicines 2022; 10:biomedicines10030624. [PMID: 35327426 PMCID: PMC8945459 DOI: 10.3390/biomedicines10030624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/25/2022] [Accepted: 03/03/2022] [Indexed: 12/10/2022] Open
Abstract
The therapeutic options for patients with relapsed or metastatic myxoid liposarcoma (MLS) remain scarce and there is currently no targeted therapy available. Inhibition of the HSP90 family of chaperones has been suggested as a possible therapeutic option for patients with MLS. However, the clinical effect of different HSP90 inhibitors vary considerably and no comparative study in MLS has been performed. Here, we evaluated the effects of the HSP90 inhibitors 17-DMAG, AUY922 and STA-9090 on MLS cell lines and in an MLS patient-derived xenograft (PDX) model. Albeit all drugs inhibited in vitro growth of MLS cell lines, the in vivo responses were discrepant. Whereas 17-DMAG inhibited tumor growth, AUY922 surprisingly led to increased tumor growth and a more aggressive morphological phenotype. In vitro, 17-DMAG and STA-9090 reduced the activity of the MAPK and PI3K/AKT signaling pathways, whereas AUY922 led to a compensatory upregulation of downstream ERK. Furthermore, all three tested HSP90 inhibitors displayed a synergistic combination effect with trabectidin, but not with doxorubicin. In conclusion, our results indicate that different HSP90 inhibitors, albeit having the same target, can vary significantly in downstream effects and treatment outcomes. These results should be considered before proceeding into clinical trials against MLS or other malignancies.
Collapse
|
3
|
Vay C, Schlünder PM, Dizdar L, Esposito I, Ghadimi MPH, Knoefel WT, Krieg A. Targeting abundant survivin expression in liposarcoma: subtype dependent therapy responses to YM155 treatment. J Cancer Res Clin Oncol 2021; 148:633-645. [PMID: 34860309 PMCID: PMC8881260 DOI: 10.1007/s00432-021-03871-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 11/25/2021] [Indexed: 12/23/2022]
Abstract
Purpose Liposarcoma (LPS) represent the largest group of malignant soft tissue tumours comprising a heterogeneous group of subtypes in which the degrees of chemoresistance and radiosensitivity strongly vary. Consequently, it is of utmost interest to establish novel therapeutic regimens based on molecular targets. Methods Immunohistochemical staining of survivin was performed in tissue microarrays comprising 49 primary LPS specimens. LPS cell lines were treated with survivin antagonist YM155 and doxorubicin or etoposide alone as well as in combination. Changes in cell viability were investigated and the synergistic effect of a combined therapy analysed. Results Immunohistochemistry revealed an abundant expression of survivin in LPS that significantly concurred with less-differentiated tumour subtypes and grading. In vitro, we demonstrated the impact of the survivin inhibitor YM155 on dedifferentiated LPS (DDLPS) and, even more imposing, pleomorphic LPS (PLS) tumour cell viability with a strong induction of apoptosis. A combined treatment of doxorubicin or etoposide with YM155 augmented the cytotoxic effects on DDLPS and PLS cells. Conclusion These findings support the significant role of survivin in the oncogenesis and progression of LPS subtypes providing a rationale to target survivin in eligible in-vivo models and to pioneer clinical applications of survivin-specific substances unfolding their therapeutic potential in LPS patients prospectively. Supplementary Information The online version contains supplementary material available at 10.1007/s00432-021-03871-5.
Collapse
Affiliation(s)
- Christian Vay
- Department of Surgery (A), Heinrich-Heine-University and University Hospital Duesseldorf, Moorenstr. 5, Bldg. 12.46, 40225, Duesseldorf, Germany
| | - Philipp M Schlünder
- Department of Surgery (A), Heinrich-Heine-University and University Hospital Duesseldorf, Moorenstr. 5, Bldg. 12.46, 40225, Duesseldorf, Germany
| | - Levent Dizdar
- Department of Surgery (A), Heinrich-Heine-University and University Hospital Duesseldorf, Moorenstr. 5, Bldg. 12.46, 40225, Duesseldorf, Germany
| | - Irene Esposito
- Institute of Pathology, Heinrich-Heine-University and University Hospital Duesseldorf, Moorenstr. 5, 40225, Duesseldorf, Germany
| | - Markus P H Ghadimi
- Department of General, Visceral, Tumour, and Transplant Surgery, University of Cologne, Kerpener Strasse 62, 50931, Cologne, Germany
| | - Wolfram T Knoefel
- Department of Surgery (A), Heinrich-Heine-University and University Hospital Duesseldorf, Moorenstr. 5, Bldg. 12.46, 40225, Duesseldorf, Germany
| | - Andreas Krieg
- Department of Surgery (A), Heinrich-Heine-University and University Hospital Duesseldorf, Moorenstr. 5, Bldg. 12.46, 40225, Duesseldorf, Germany.
| |
Collapse
|
4
|
Discovery of novel candidates for anti-liposarcoma therapies by medium-scale high-throughput drug screening. PLoS One 2021; 16:e0248140. [PMID: 33690666 PMCID: PMC7946228 DOI: 10.1371/journal.pone.0248140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/21/2021] [Indexed: 12/16/2022] Open
Abstract
Sarcomas are a heterogeneous group of mesenchymal orphan cancers and new treatment alternatives beyond traditional chemotherapeutic regimes are much needed. So far, tumor mutation analysis has not led to significant treatment advances, and we have attempted to bypass this limitation by performing direct drug testing of a library of 353 anti-cancer compounds that are either FDA-approved, in clinical trial, or in advanced stages of preclinical development on a panel of 13 liposarcoma cell lines. We identified and validated six drugs, targeting different mechanisms and with good efficiency across the cell lines: MLN2238 –a proteasome inhibitor, GSK2126458 –a PI3K/mTOR inhibitor, JNJ-26481585 –a histone deacetylase inhibitor, triptolide–a multi-target drug, YM155 –a survivin inhibitor, and APO866 (FK866)–a nicotinamide phosphoribosyl transferase inhibitor. GR50s for those drugs were mostly in the nanomolar range, and in many cases below 10 nM. These drugs had long-lasting effect upon drug withdrawal, limited toxicity to normal cells and good efficacy also against tumor explants. Finally, we identified potential genomic biomarkers of their efficacy. Being approved or in clinical trials, these drugs are promising candidates for liposarcoma treatment.
Collapse
|
5
|
Zuco V, Pasquali S, Tortoreto M, Brich S, Percio S, Dagrada GP, Colombo C, Sanfilippo R, Lauricella C, Gounder M, El Bezawy R, Barisella M, Dei Tos AP, Casali PG, Gronchi A, Stacchiotti S, Zaffaroni N. Selinexor versus doxorubicin in dedifferentiated liposarcoma PDXs: evidence of greater activity and apoptotic response dependent on p53 nuclear accumulation and survivin down-regulation. J Exp Clin Cancer Res 2021; 40:83. [PMID: 33648535 PMCID: PMC7923610 DOI: 10.1186/s13046-021-01886-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/17/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Dedifferentiated liposarcoma (DDLPS), a tumor that lacks effective treatment strategies and is associated with poor outcomes, expresses amplified MDM2 in the presence of wild-type p53. MDM2 ubiquitination of p53 facilitates its XPO1-mediated nuclear export, thus limiting p53 tumor suppressor functions. Consequently, nuclear export is a rational target in DDLPS. We directly compared the antitumor activity of the first-in class XPO1 inhibitor selinexor and doxorubicin, the standard front-line therapy in sarcomas, in DDLPS patient-derived xenografts (PDXs) and primary cell lines. METHODS Drug activity was assessed in three PDXs (and two corresponding cell lines) established from the dedifferentiated component of primary untreated retroperitoneal DDLPS with myogenic (N = 2) and rhabdomyoblastic (N = 1) differentiation from patients who underwent surgery. These models were marked by amplification of MDM2, CDK4 and HMGA2 genes. RESULTS Selinexor was moderately active in the three PDXs but achieved greater tumor response compared to doxorubicin (maximum tumor volume inhibition: 46-80 % vs. 37-60 %). The PDX harboring rhabdomyoblastic dedifferentiation showed the highest sensitivity to both agents. PDX response to selinexor and doxorubicin was not associated with the extent of MDM2 and CDK4 gene amplification. Interestingly, the most chemosensitive PDX model showed the lowest extent of HMGA2 amplification. Selinexor was also more efficient than doxorubicinin in inducing an apoptotic response in PDXs and cell lines. Consistently, an increased nuclear accumulation of p53 was seen in all selinexor-treated models. In addition, a time-dependent decrease of survivin expression, with an almost complete abrogation of the cytoplasmic anti-apoptotic pool of this protein, was observed as a consequence of the decreased acetylation/activation of STAT3 and the increased ubiquitination of nuclear survivin. CONCLUSIONS Selinexor showed a moderate antitumor activity in three DDLPS PDXs, which was, however, consistently higher than doxorubicin across all different models regardless the extent of MDM2 amplification and the histological differentiation. The depletion of survivin protein seems to significantly contribute to the induction of apoptosis through which selinexor exerts its antitumor activity.
Collapse
Affiliation(s)
- Valentina Zuco
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale Tumori, Via Amadeo 42, 20133, Milan, Italy
| | - Sandro Pasquali
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale Tumori, Via Amadeo 42, 20133, Milan, Italy
| | - Monica Tortoreto
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale Tumori, Via Amadeo 42, 20133, Milan, Italy
| | - Silvia Brich
- Department of Pathology, Fondazione IRCCS Istituto Nazionale Tumori, via Venezian 1, 20133, Milan, Italy
| | - Stefano Percio
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale Tumori, Via Amadeo 42, 20133, Milan, Italy
| | - Gian Paolo Dagrada
- Department of Pathology, Fondazione IRCCS Istituto Nazionale Tumori, via Venezian 1, 20133, Milan, Italy
| | - Chiara Colombo
- Sarcoma Service, Department of Surgery, Fondazione IRCCS Istituto Nazionale Tumori, via Venezian 1, 20133, Milan, Italy
| | - Roberta Sanfilippo
- Adult Mesenchymal Tumor and Rare Cancer Unit, Department of Cancer Medicine, Fondazione IRCCS Istituto Nazionale Tumori, via Venezian 1, 20133, Milan, Italy
| | | | - Mrinal Gounder
- Sarcoma Medical Oncology and Early Drug Development, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, 10065, New York, NY, USA
| | - Rihan El Bezawy
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale Tumori, Via Amadeo 42, 20133, Milan, Italy
| | - Marta Barisella
- Department of Pathology, Fondazione IRCCS Istituto Nazionale Tumori, via Venezian 1, 20133, Milan, Italy
| | - Angelo Paolo Dei Tos
- Department of Medicine, University of Padua School of Medicine, Via Giustiniani 2, 35128, Padua, Italy
| | - Paolo Giovanni Casali
- Adult Mesenchymal Tumor and Rare Cancer Unit, Department of Cancer Medicine, Fondazione IRCCS Istituto Nazionale Tumori, via Venezian 1, 20133, Milan, Italy
- Department of Biomedical and Clinical Sciences L. Sacco, University of Milan, Via Grassi 74, 20157, Milan, Italy
| | - Alessandro Gronchi
- Sarcoma Service, Department of Surgery, Fondazione IRCCS Istituto Nazionale Tumori, via Venezian 1, 20133, Milan, Italy
| | - Silvia Stacchiotti
- Adult Mesenchymal Tumor and Rare Cancer Unit, Department of Cancer Medicine, Fondazione IRCCS Istituto Nazionale Tumori, via Venezian 1, 20133, Milan, Italy
| | - Nadia Zaffaroni
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale Tumori, Via Amadeo 42, 20133, Milan, Italy.
| |
Collapse
|
6
|
Heijs B, Holst-Bernal S, de Graaff MA, Briaire-de Bruijn IH, Rodriguez-Girondo M, van de Sande MAJ, Wuhrer M, McDonnell LA, Bovée JVMG. Molecular signatures of tumor progression in myxoid liposarcoma identified by N-glycan mass spectrometry imaging. J Transl Med 2020; 100:1252-1261. [PMID: 32341520 DOI: 10.1038/s41374-020-0435-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/14/2020] [Accepted: 04/14/2020] [Indexed: 12/21/2022] Open
Abstract
Myxoid liposarcoma (MLS) is the second most common subtype of liposarcoma, accounting for ~6% of all sarcomas. MLS is characterized by a pathognomonic FUS-DDIT3, or rarely EWSR1-DDIT3, gene fusion. The presence of ≥5% hypercellular round cell areas is associated with a worse prognosis for the patient and is considered high grade. The prognostic significance of areas with moderately increased cellularity (intermediate) is currently unknown. Here we have applied matrix-assisted laser desorption/ionization mass spectrometry imaging to analyze the spatial distribution of N-linked glycans on an MLS microarray in order to identify molecular markers for tumor progression. Comparison of the N-glycan profiles revealed that increased relative abundances of high-mannose type glycans were associated with tumor progression. Concomitantly, an increase of the average number of mannoses on high-mannose glycans was observed. Although overall levels of complex-type glycans decreased, an increase of tri- and tetra-antennary N-glycans was observed with morphological tumor progression and increased tumor histological grade. The high abundance of tri-antennary N-glycan species was also associated with poor disease-specific survival. These findings mirror recent observations in colorectal cancer, breast cancer, ovarian cancer, and cholangiocarcinoma, and are in line with a general role of high-mannose glycans and higher-antennary complex-type glycans in cancer progression.
Collapse
Affiliation(s)
- Bram Heijs
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands.
| | - Stephanie Holst-Bernal
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Marieke A de Graaff
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Mar Rodriguez-Girondo
- Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Liam A McDonnell
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands.,Fondazione Pisana per la Scienza ONLUS, Pisa, Italy
| | - Judith V M G Bovée
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
7
|
Xu CP, Qi Y, Cui Z, Yang YJ, Wang J, Hu YJ, Yu B, Wang FZ, Yang QP, Sun HT. Discovery of novel elongator protein 2 inhibitors by compound library screening using surface plasmon resonance. RSC Adv 2019; 9:1696-1704. [PMID: 35518050 PMCID: PMC9059734 DOI: 10.1039/c8ra09640f] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 12/26/2018] [Indexed: 12/13/2022] Open
Abstract
Tumour necrosis factor-α (TNF-α) is a pleiotropic cytokine that becomes elevated in chronic inflammatory states, including slowing down osteogenic differentiation, which leads to bone dysplasia in long-term inflammatory microenvironments. The elongator complex plays a role in gene regulation and association with various cellular activities, including the downstream signal transduction of TNF-α in osteogenic cells. To find an inhibitor of Elongator Protein 2 (Elp2), we performed a compound library screen and verified the pharmaceutical effects of candidate compounds on the mouse myoblast cell (C2C12) and mouse osteoblastic cells (MC3T3-E1). The commercial FDA-approved drug (FD) library and the bioactive compound (BC) library were used as candidate libraries. After a label-free, high-throughput affinity measurement with surface plasmon resonance (SPRi), seven kinds of compounds showed binding affinity with mouse Elp2 protein. The seven candidates were then used to perform an inhibition test with TNF-α-induced C2C12 and MC3T3-E1 cell lines. One candidate compound reduced the differentiation suppression caused by TNF-α with resuscitated alkaline phosphatase (ALP) activity, mineralization intensity and expression of osteogenic differentiation marker genes. The results of our study provide a competitive candidate to mitigate the TNF-α-induced osteogenic differentia.
Collapse
Affiliation(s)
- Chang-Peng Xu
- Department of Orthopaedics, Guangdong Second Provincial General Hospital Guangzhou Guangdong P. R. China
| | - Yong Qi
- Department of Orthopaedics, Guangdong Second Provincial General Hospital Guangzhou Guangdong P. R. China
| | - Zhuang Cui
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University Guangzhou Guangdong P. R. China
| | - Ya-Jun Yang
- Department of Pharmacology, Guangdong Medical College Zhanjiang Guangdong P. R. China
| | - Jian Wang
- Department of Orthopaedics, The Inner Mongolia People's Hospital Hohhot Inner Mongolia P. R. China
| | - Yan-Jun Hu
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University Guangzhou Guangdong P. R. China
| | - Bin Yu
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University Guangzhou Guangdong P. R. China
| | - Fa-Zheng Wang
- Department of Orthopaedics, The First People's Hospital of Kashgar Prefecture Kashgar Xinjiang P. R. China
| | - Qing-Po Yang
- Department of Orthopaedics, The First People's Hospital of Kashgar Prefecture Kashgar Xinjiang P. R. China
| | - Hong-Tao Sun
- Department of Orthopaedics, Guangdong Second Provincial General Hospital Guangzhou Guangdong P. R. China
| |
Collapse
|
8
|
Minchenko OH, Kharkova AP, Hnatiuk OS. ERN1 modifies the effect of glutamine deprivation on tumor growth related factors expression in U87 glioma cells. UKRAINIAN BIOCHEMICAL JOURNAL 2018. [DOI: 10.15407/ubj90.03.049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
9
|
The Possible Mechanisms of HSV-TK/Hyperthermia Combined with 131I-antiAFPMcAb-GCV Nanospheres to Treat Hepatoma. Anal Cell Pathol (Amst) 2018; 2018:8941908. [PMID: 29854577 PMCID: PMC5960551 DOI: 10.1155/2018/8941908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 02/14/2018] [Indexed: 11/18/2022] Open
Abstract
Our previous findings showed a good therapeutic effect of the combination of suicide gene HSV-TK, nuclide 131I, and magnetic fluid hyperthermia (MFH) on hepatoma by using magnetic nanoparticles as linkers, far better than any monotherapy involved, with no adverse effects. This combination therapy might be an eligible strategy to treat hepatic cancer. However, it is not clear how the combination regimen took the therapeutic effects. In the current study, to explore the possible mechanisms of radionuclide-gene therapy combined with MFH to treat hepatoma at tissue, cellular, and molecular levels and to provide theoretical and experimental data for its clinical application, we examined the apoptosis induction of the combination therapy and investigated the expression of the proteins related to apoptosis such as survivin, livin, bcl-2, p53, and nucleus protein Ki67 involved in cell proliferation, detected VEGF, and MVD involved in angiogenesis of tumor tissues and analyzed the pathologic changes after treatment. The results showed that the combination therapy significantly induced the hepatoma cell apoptosis. The expression of survivin, VEGF, bcl-2, p53, livin, Ki67, and VEGF proteins and microvascular density (MVD) were all decreased after treatment. The therapeutic mechanisms may be involved in the downregulation of Ki67 expression leading to tumor cell proliferation repression and inhibition of survivin, bcl-2, p53, and livin protein expression inducing tumor cell apoptosis, negatively regulating VEGF protein expression, and reducing vascular endothelial cells, which results in tumor angiogenesis inhibition and microvascular density decrease and tumor cell necrosis. These findings offer another basic data support and theoretical foundation for the clinical application of the combination therapy.
Collapse
|