1
|
Zhang C, Zhang X, Dai S, Yang W. Exploring prognosis and therapeutic strategies for HBV-HCC patients based on disulfidptosis-related genes. Front Genet 2025; 15:1522484. [PMID: 39882072 PMCID: PMC11774838 DOI: 10.3389/fgene.2024.1522484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 12/30/2024] [Indexed: 01/31/2025] Open
Abstract
Background Hepatocellular carcinoma (HCC) accounts for over 80% of primary liver cancers and is the third leading cause of cancer-related deaths worldwide. Hepatitis B virus (HBV) infection is the primary etiological factor. Disulfidptosis is a newly discovered form of regulated cell death. This study aims to develop a novel HBV-HCC prognostic signature related to disulfidptosis and explore potential therapeutic approaches through risk stratification based on disulfidptosis. Methods Transcriptomic data from HBV-HCC patients were analyzed to identify BHDRGs. A prognostic model was established and validated using machine learning, with internal datasets and external datasets for verification. We then performed immune cell infiltration analysis, tumor microenvironment (TME) analysis, and immunotherapy-related analysis based on the prognostic signature. Besides, RT-qPCR and immunohistochemistry were conducted. Results A prognostic model was constructed using five genes (DLAT, STC2, POF1B, S100A9, and CPS1). A corresponding prognostic nomogram was developed based on riskScores, age, stage. Stratification by median risk score revealed a significant correlation between the prognostic signature and TME, tumor immune cell infiltration, immunotherapy efficacy, and drug sensitivity. The results of the experiments indicate that DLAT expression is higher in tumor tissues compared to adjacent tissues. DLAT expression is higher in HBV-HCC tumor tissues compared to normal tissues. Conclusion This study stratifies HBV-HCC patients into distinct subgroups based on BHDRGs, establishing a prognostic model with significant implications for prognosis assessment, TME remodeling, and personalized therapy in HBV-HCC patients.
Collapse
Affiliation(s)
| | | | - Shengjie Dai
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wenjun Yang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
2
|
Esmael N, Lubin I, Tur-Kaspa R, Zemel R. Hepatitis B Virus-Induced Resistance to Sorafenib and Lenvatinib in Hepatocellular Carcinoma Cells: Implications for Cell Viability and Signaling Pathways. Cancers (Basel) 2024; 16:3763. [PMID: 39594719 PMCID: PMC11592932 DOI: 10.3390/cancers16223763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/27/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Background/Objectives: Sorafenib and lenvatinib are tyrosine kinase inhibitors used in hepatocellular carcinoma (HCC) treatment. This study investigates how hepatitis B virus (HBV) infection affects their efficacy in HepG2 hepatoma cells. Methods: HepG2 and HBV-infected HepG2/2215 cells were treated with varying concentrations of both drugs. The cell viability, cell cycle gene expression, cycle progression, and phosphorylation levels of ERK and AKT were analyzed. Results: The HBV-infected cells showed significant alterations in their cell cycle gene expressions, with an 80-fold increase in CCND2 expression and a higher proportion of cells in the G2/M phase, indicating enhanced proliferation. While both drugs decreased HepG2 cell viability in a concentration-dependent manner, HBV infection conferred resistance, as evidenced by the increased viable cells in the HepG2/2215 cultures. Sorafenib and lenvatinib decreased key cyclin and cyclin-dependent kinase expressions in uninfected cells, with less effect on the HBV-infected cells. Both drugs lowered the pERK and pAKT levels in the HepG2 cells. In the HBV-infected cells, sorafenib reduced the pERK and pAKT levels to a lesser extent. However, treatment with lenvatinib elevated the levels of pERK and pAKT. Conclusions: In conclusion, HBV infection increases resistance to both sorafenib and lenvatinib in hepatoma cells by influencing the cell cycle regulatory genes and critical signaling pathways. However, the resistance mechanisms likely differ between the two medications.
Collapse
Affiliation(s)
- Narmen Esmael
- Molecular Hepatology & Transplantation Immunology Research Labs, Felsenstein Medical Research Center, Tel-Aviv University, Beilinson Campus, Rabin Medical Center, Petah Tikva 4941492, Israel; (N.E.); (I.L.); (R.T.-K.)
| | - Ido Lubin
- Molecular Hepatology & Transplantation Immunology Research Labs, Felsenstein Medical Research Center, Tel-Aviv University, Beilinson Campus, Rabin Medical Center, Petah Tikva 4941492, Israel; (N.E.); (I.L.); (R.T.-K.)
| | - Ran Tur-Kaspa
- Molecular Hepatology & Transplantation Immunology Research Labs, Felsenstein Medical Research Center, Tel-Aviv University, Beilinson Campus, Rabin Medical Center, Petah Tikva 4941492, Israel; (N.E.); (I.L.); (R.T.-K.)
- Liver Institute, Beilinson Campus, Rabin Medical Center, Petah Tikva 4941492, Israel
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Romy Zemel
- Molecular Hepatology & Transplantation Immunology Research Labs, Felsenstein Medical Research Center, Tel-Aviv University, Beilinson Campus, Rabin Medical Center, Petah Tikva 4941492, Israel; (N.E.); (I.L.); (R.T.-K.)
| |
Collapse
|
3
|
Lv Z, Liu L, You J, Zhou P, Su Y, Zhao K, Zhang J, Zhu F. Small HBV surface antigen drives regorafenib resistance in HCC via KIAA1429-dependent m6A modification of CCR9. J Med Virol 2024; 96:e29894. [PMID: 39206838 DOI: 10.1002/jmv.29894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/20/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
A substantial body of literature, including our own, points to a connection between hepatitis B virus (HBV) infection and the development of drug resistance in hepatocellular carcinoma (HCC), particularly against sorafenib. However, the influence of HBV on resistance to regorafenib, another therapeutic agent, has been less studied. In this study, we used the GEO database (GSE87630) and clinical samples to demonstrate that C-C motif chemokine receptor 9 (CCR9) was highly expressed in HBV-related HCC and predicted poor overall survival. Its overexpression correlated with HBsAg-positive HCC patients. Both univariate and multivariable Cox regression analysis elucidated CCR9 was an independent risk factor for poor overall survival in HCC patients. Our in vitro findings further revealed that HBV structural proteins, small HBV surface antigen (SHBs), triggered an upregulation of CCR9. Functional assays showed that SHBs enhanced HCC cell proliferation, migration, and invasion, increased ABCB1 and ABCC1 expression, and promoted regorafenib resistance via CCR9. Intriguingly, overexpression of HBV plasmid and an AAV-HBV mouse model both exhibited a significant elevation in global N6-methyladenosine (m6A) levels. Further investigations revealed that SHBs elevated these m6A levels, upregulated CCR9 and stabilized CCR9 mRNA through KIAA1429-mediated m6A modification, with sites 1373 and 1496 on CCR9 mRNA being critical for modification. In conclusion, SHBs promoted HCC progression and regorafenib resistance via KIAA1429-mediated m6A modification of CCR9. Our findings suggested that CCR9 could be a potential prognostic biomarker and a valuable molecular therapeutic target of regorafenib resistance in HBV-related HCC.
Collapse
Affiliation(s)
- Zhao Lv
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Lijuan Liu
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, China
| | - Jian You
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan, China
| | - Ping Zhou
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Yaru Su
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Kexin Zhao
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Jiahang Zhang
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Fan Zhu
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, China
| |
Collapse
|
4
|
Raghav A, Jeong GB. Phase I-IV Drug Trials on Hepatocellular Carcinoma in Asian Populations: A Systematic Review of Ten Years of Studies. Int J Mol Sci 2024; 25:9286. [PMID: 39273237 PMCID: PMC11395253 DOI: 10.3390/ijms25179286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/02/2024] [Accepted: 08/07/2024] [Indexed: 09/15/2024] Open
Abstract
Despite advances in the treatment of hepatocellular carcinoma (HCC) over the last few decades, treatment opportunities for patients with HCC remain limited. HCC is the most common form of liver cancer, accounting for approximately 90% of all cases worldwide. Moreover, apart from the current pharmacological interventions, hepatic resection and liver transplantation are the mainstay curative approaches for patients with HCC. This systematic review included phase I, II, III, and IV clinical trials (CTs) and randomized controlled trials (RCTs) on current treatments for patients with HCC in Asian populations (2013-2023). A total of 427 articles were screened, and 184 non-duplicate publications were identified. After screening the titles and abstracts, 96 publications were excluded, and another 28 were excluded after full-text screening. The remaining 60 eligible RCTs/CTs were finally included. A total of 60 clinical trials fulfilled our inclusion criteria with 36 drugs used as monotherapy or combination therapy for HCC. Most studies used sorafenib alone or in combination with any of the treatment regimens. Lenvatinib or atezolizumab with bevacizumab was used for HCC after initial sorafenib treatment. Eighteen studies compared the efficacy of sorafenib with that of other drugs, including lenvatinib, cabozantinib, tepotinib, tigatuzumab, linifanib, erlotinib, resminostat, brivanib, tislelizumab, selumetinib, and refametinib. This study provides comprehensive insights into effective treatment interventions for HCC in Asian populations. The overall assessment indicates that sorafenib, used alone or in combination with atezolizumab and bevacizumab, has been the first treatment choice in the past decade to achieve better outcomes in patients with HCC in Asian populations.
Collapse
Affiliation(s)
- Alok Raghav
- Department of Anatomy and Cell Biology, College of Medicine, Gachon University, 155 Getbeol-ro, Yeonsu-gu, Incheon 21999, Republic of Korea
| | - Goo Bo Jeong
- Department of Anatomy and Cell Biology, College of Medicine, Gachon University, 155 Getbeol-ro, Yeonsu-gu, Incheon 21999, Republic of Korea
| |
Collapse
|
5
|
Chu X, Tian W, Ning J, Xiao G, Zhou Y, Wang Z, Zhai Z, Tanzhu G, Yang J, Zhou R. Cancer stem cells: advances in knowledge and implications for cancer therapy. Signal Transduct Target Ther 2024; 9:170. [PMID: 38965243 PMCID: PMC11224386 DOI: 10.1038/s41392-024-01851-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/27/2024] [Accepted: 04/28/2024] [Indexed: 07/06/2024] Open
Abstract
Cancer stem cells (CSCs), a small subset of cells in tumors that are characterized by self-renewal and continuous proliferation, lead to tumorigenesis, metastasis, and maintain tumor heterogeneity. Cancer continues to be a significant global disease burden. In the past, surgery, radiotherapy, and chemotherapy were the main cancer treatments. The technology of cancer treatments continues to develop and advance, and the emergence of targeted therapy, and immunotherapy provides more options for patients to a certain extent. However, the limitations of efficacy and treatment resistance are still inevitable. Our review begins with a brief introduction of the historical discoveries, original hypotheses, and pathways that regulate CSCs, such as WNT/β-Catenin, hedgehog, Notch, NF-κB, JAK/STAT, TGF-β, PI3K/AKT, PPAR pathway, and their crosstalk. We focus on the role of CSCs in various therapeutic outcomes and resistance, including how the treatments affect the content of CSCs and the alteration of related molecules, CSCs-mediated therapeutic resistance, and the clinical value of targeting CSCs in patients with refractory, progressed or advanced tumors. In summary, CSCs affect therapeutic efficacy, and the treatment method of targeting CSCs is still difficult to determine. Clarifying regulatory mechanisms and targeting biomarkers of CSCs is currently the mainstream idea.
Collapse
Affiliation(s)
- Xianjing Chu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Wentao Tian
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jiaoyang Ning
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Gang Xiao
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yunqi Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Ziqi Wang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Zhuofan Zhai
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Guilong Tanzhu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Jie Yang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Rongrong Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China.
| |
Collapse
|
6
|
Varghese N, Majeed A, Nyalakonda S, Boortalary T, Halegoua-DeMarzio D, Hann HW. Review of Related Factors for Persistent Risk of Hepatitis B Virus-Associated Hepatocellular Carcinoma. Cancers (Basel) 2024; 16:777. [PMID: 38398168 PMCID: PMC10887172 DOI: 10.3390/cancers16040777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Chronic hepatitis B virus (HBV) infection is the largest global cause of hepatocellular carcinoma (HCC). Current HBV treatment options include pegylated interferon-alpha and nucleos(t)ide analogues (NAs), which have been shown to be effective in reducing HBV DNA levels to become undetectable. However, the literature has shown that some patients have persistent risk of developing HCC. The mechanism in which this occurs has not been fully elucidated. However, it has been discovered that HBV's covalently closed circular DNA (cccDNA) integrates into the critical HCC driver genes in hepatocytes upon initial infection; additionally, these are not targets of current NA therapies. Some studies suggest that HBV undergoes compartmentalization in peripheral blood mononuclear cells that serve as a sanctuary for replication during antiviral therapy. The aim of this review is to expand on how patients with HBV may develop HCC despite years of HBV viral suppression and carry worse prognosis than treatment-naive HBV patients who develop HCC. Furthermore, HCC recurrence after initial surgical or locoregional treatment in this setting may cause carcinogenic cells to behave more aggressively during treatment. Curative novel therapies which target the life cycle of HBV, modulate host immune response, and inhibit HBV RNA translation are being investigated.
Collapse
Affiliation(s)
- Nevin Varghese
- Department of Medicine, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA; (N.V.); (A.M.); (S.N.); (T.B.); (D.H.-D.)
| | - Amry Majeed
- Department of Medicine, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA; (N.V.); (A.M.); (S.N.); (T.B.); (D.H.-D.)
| | - Suraj Nyalakonda
- Department of Medicine, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA; (N.V.); (A.M.); (S.N.); (T.B.); (D.H.-D.)
| | - Tina Boortalary
- Department of Medicine, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA; (N.V.); (A.M.); (S.N.); (T.B.); (D.H.-D.)
- Division of Gastroenterology and Hepatology, Department of Medicine, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - Dina Halegoua-DeMarzio
- Department of Medicine, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA; (N.V.); (A.M.); (S.N.); (T.B.); (D.H.-D.)
- Division of Gastroenterology and Hepatology, Department of Medicine, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - Hie-Won Hann
- Department of Medicine, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA; (N.V.); (A.M.); (S.N.); (T.B.); (D.H.-D.)
- Division of Gastroenterology and Hepatology, Department of Medicine, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| |
Collapse
|
7
|
Tourkochristou E, Assimakopoulos SF, Thomopoulos K, Marangos M, Triantos C. NAFLD and HBV interplay - related mechanisms underlying liver disease progression. Front Immunol 2022; 13:965548. [PMID: 36544761 PMCID: PMC9760931 DOI: 10.3389/fimmu.2022.965548] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 11/15/2022] [Indexed: 12/08/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) and Hepatitis B virus infection (HBV) constitute common chronic liver diseases with worldwide distribution. NAFLD burden is expected to grow in the coming decade, especially in western countries, considering the increased incidence of diabetes and obesity. Despite the organized HBV vaccinations and use of anti-viral therapies globally, HBV infection remains endemic and challenging public health issue. As both NAFLD and HBV have been associated with the development of progressive fibrosis, cirrhosis and hepatocellular carcinoma (HCC), the co-occurrence of both diseases has gained great research and clinical interest. The causative relationship between NAFLD and HBV infection has not been elucidated so far. Dysregulated fatty acid metabolism and lipotoxicity in NAFLD disease seems to initiate activation of signaling pathways that enhance pro-inflammatory responses and disrupt hepatocyte cell homeostasis, promoting progression of NAFLD disease to NASH, fibrosis and HCC and can affect HBV replication and immune encountering of HBV virus, which may further have impact on liver disease progression. Chronic HBV infection is suggested to have an influence on metabolic changes, which could lead to NAFLD development and the HBV-induced inflammatory responses and molecular pathways may constitute an aggravating factor in hepatic steatosis development. The observed altered immune homeostasis in both HBV infection and NAFLD could be associated with progression to HCC development. Elucidation of the possible mechanisms beyond HBV chronic infection and NAFLD diseases, which could lead to advanced liver disease or increase the risk for severe complications, in the case of HBV-NAFLD co-existence is of high clinical significance in the context of designing effective therapeutic targets.
Collapse
Affiliation(s)
- Evanthia Tourkochristou
- Division of Gastroenterology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| | - Stelios F. Assimakopoulos
- Division of Infectious Diseases, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece,*Correspondence: Stelios F. Assimakopoulos,
| | - Konstantinos Thomopoulos
- Division of Gastroenterology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| | - Markos Marangos
- Division of Infectious Diseases, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| | - Christos Triantos
- Division of Gastroenterology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| |
Collapse
|
8
|
Liu LJ, Lv Z, Xue X, Xing ZY, Zhu F. Canonical WNT Signaling Activated by WNT7B Contributes to L-HBs-Mediated Sorafenib Resistance in Hepatocellular Carcinoma by Inhibiting Mitophagy. Cancers (Basel) 2022; 14:5781. [PMID: 36497264 PMCID: PMC9741164 DOI: 10.3390/cancers14235781] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer death globally, with hepatitis B virus (HBV) infection accounting for over half of all cases. HBV leads to the development of HCC according to a body of literature. Our previous research and other studies also suggest that HBV causes chemotherapeutic treatment resistance, however, the mechanism is uncertain. The WNT family, which encodes secreted signaling molecules, has been linked to carcinogenesis in a variety of malignancies, including HCC. However, little is known regarding WNT7B, a WNT ligand, in the development of HCC and HBV-induced chemoresistance. In this study, the bioinformatics analysis and immunohistochemistry (IHC) staining of clinical samples revealed that WNT7B was overexpressed in HBV-associated HCC tissues versus nontumor liver tissues, which was related to HCC patient survival. Further study in vitro showed that WNT7B and its receptor frizzled-4 (FZD4) were upregulated in response to large hepatitis B surface antigens (L-HBs). L-HBs increased canonical WNT signaling in HCC cells through WNT7B/FZD4. According to functional experiments, WNT7B enhanced the cell proliferation and metastasis in HCC. In vivo and in vitro studies investigated whether L-HBs induced sorafenib resistance by WNT7B in HCC. Interestingly, L-HBs suppressed sorafenib-induced mitophagy by increasing WNT7B/CTNNB1 signaling, resulting in chemoresistance. The findings revealed that WNT7B could be a promising molecular therapeutic target as well as a predictor of sorafenib resistance in HBV-related HCC. The suppression of HBV structural proteins such as L-HBs may play a crucial role in systemic chemotherapy resistance in HBV-associated HCC.
Collapse
Affiliation(s)
| | | | | | | | - Fan Zhu
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy & Immunology, Department of Medical Microbiology, School of Medicine, Wuhan University, Wuhan 430071, China
| |
Collapse
|
9
|
Sun Y, He Y, Tong J, Liu D, Zhang H, He T, Bi Y. All-trans retinoic acid inhibits the malignant behaviors of hepatocarcinoma cells by regulating ferroptosis. Genes Dis 2022; 9:1742-1756. [PMID: 36157492 PMCID: PMC9485287 DOI: 10.1016/j.gendis.2022.04.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/12/2022] [Indexed: 11/28/2022] Open
Affiliation(s)
- Yanting Sun
- Stem Cell Biology and Therapy Laboratory, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, PR China
| | - Yun He
- Department of Pediatric Surgery, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China
| | - Jishuang Tong
- Stem Cell Biology and Therapy Laboratory, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, PR China
| | - Daijiang Liu
- Department of Gastroenterology, Chongqing Emergency Medical Centre, Chongqing 400014, PR China
| | - Haodong Zhang
- Stem Cell Biology and Therapy Laboratory, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, PR China
| | - Tongchuan He
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Centre, Chicago, IL 60637, USA
| | - Yang Bi
- Stem Cell Biology and Therapy Laboratory, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, PR China
- Corresponding author. Stem Cell Biology and Therapy Laboratory, Children's Hospital of Chongqing Medical University, Building 7, Room 905, 136 Zhongshan Er Road, Chongqing 400014, PR China.
| |
Collapse
|
10
|
Zheng C, Liu M, Ge Y, Qian Y, Fan H. HBx increases chromatin accessibility and ETV4 expression to regulate dishevelled-2 and promote HCC progression. Cell Death Dis 2022; 13:116. [PMID: 35121725 PMCID: PMC8816937 DOI: 10.1038/s41419-022-04563-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 01/04/2022] [Accepted: 01/20/2022] [Indexed: 12/24/2022]
Abstract
Hepatitis B virus (HBV) infection is the predominant causes of hepatocellular carcinoma (HCC). HBV X protein (HBx), as the most frequently integrated viral gene sequence following HBV infection, plays a critical role in the pathogenesis of HCC. H3K27ac is a characteristic marker for identifying active enhancers and even indicates chromatin accessibility associated with super-enhancers (SEs). In this study, H3K27ac ChIP-seq was applied for high-quality SE annotation of HBx-induced SEs and chromatin accessibility evaluation. The results indicated that HBx preferentially affects enrichment of H3K27ac in transcription factor signaling pathway genes, including ETV4. RNA-seq indicated that ETV4 is upregulated by HBx and that upregulated ETV4 promotes HCC progression. Interestingly, ETV4 was also included in the 568 cancer driver gene pool obtained by the Integrative OncoGenomics pipeline. However, the biological function and mechanism of ETV4 remain incompletely understood. In vivo and in vitro, we found that increased ETV4 expression promotes HCC cell migration and invasion by upregulating DVL2 and activating Wnt/β-catenin. The mRNA and protein levels of ETV4 are higher in tumor tissues compared with adjacent tissues, and high expression of ETV4 is associated with poor prognosis in HCC patients. In summary, we first confirm that ETV4 is significantly upregulated by HBx and involved in SE-associated chromatin accessibility. Increased expression of ETV4 promotes HCC cell invasion and metastasis by upregulating DVL2. The present study provides insight into the ETV4-DVL2-β-catenin axis in HBV-related HCC, which will be helpful for treating patients with aggressive HCC.
Collapse
Affiliation(s)
- Chuqian Zheng
- Department of Medical Genetics and Developmental Biology, School of Medicine, The Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University, Nanjing, China
| | - Min Liu
- School of Life Science and Technology, Southeast University, Nanjing, China
| | - Yanping Ge
- School of Life Science and Technology, Southeast University, Nanjing, China
| | - Yanyan Qian
- Department of Medical Genetics and Developmental Biology, School of Medicine, The Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University, Nanjing, China
| | - Hong Fan
- Department of Medical Genetics and Developmental Biology, School of Medicine, The Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University, Nanjing, China.
| |
Collapse
|
11
|
Induced Mitochondrial Alteration and DNA Damage via IFNGR-JAK2-STAT1-PARP1 Pathway Facilitates Viral Hepatitis Associated Hepatocellular Carcinoma Aggressiveness and Stemness. Cancers (Basel) 2021; 13:cancers13112755. [PMID: 34199353 PMCID: PMC8199505 DOI: 10.3390/cancers13112755] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/17/2021] [Accepted: 05/28/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Hepatitis virus is a major risk factor for liver cancer. We analyzed possible synergism between momelotinib and sorafenib in hepatitis virus-associated liver cancer. The combined effect of momelotinib and sorafenib both at in vitro and in vivo synergistically sup-presses the proliferation of vHCC cells and effectively reduces the tumor burden. Our results showed that momelotinib effectively suppressed the expression of the IFNGR-JAK-STAT-PARP1 pathway, which results in the downregulation of cancer stem cell genes and enhances the antitumor efficacy of sorafenib by initiating the expression of apoptosis-related genes and inhibiting the DNA repair gene in vHCC cells, thus maximizing its therapeutic potential for patients with HCC. Abstract Background: Hepatitis virus is a major risk factor for liver cancer. The mitochondrial dysfunction IFN gamma-related pathways are activated after virus infection. Jak family-related protein is involved in the downstream of IFN gamma-related pathways. However, the effect of the IFNGR-JAK-STAT pathway acting as functional regulators of their related protein expression on virus infection and hepatocellular carcinoma (HCC) remains unclear. Interestingly, the role of the DNA repair gene (PARP1) in therapy resistant cancers also has not been studied and explored well. In this study, we hypothesized that momelotinib could suppress the progression of HCC by targeting Jak family related and PARP1 DNA repair protein. Based on this observation, we link the relevant targets of the JAK family and the potential applications of targeted therapy inhibitors. Methods: We analyzed possible synergism between momelotinib and sorafenib in hepatitis virus-associated liver cancer. Immunostaining, colony formation assay, cell invasion, migration, and tumorsphere-formation assay were used for drug cytotoxicity, cell viability, and possible molecular mechanism. Result: We first demonstrated that the expression of Jak1 and 2 is significantly upregulated in vHCC than in nvHCC/normal liver tissues. In addition, the gene expression of IFN gamma-related pathways is activated after virus infection. Additionally, we found that momelotinib significantly inhibited the growth of HCC cells and reduces the expression of Jak2, which showed the importance of momelotinib in targeting Jak2 and reducing tumorigenesis in HCC. Meanwhile, momelotinib effectively inhibited the IFNGR-JAK-STAT pathway and reduced the migratory/invasive ability of vHCC cells through down-regulating EMT biomarkers (E-cadherin and vimentin), transcription factor (Slug), and significantly inhibits the DNA damage repair enzyme PARP1. It also induced cell apoptosis of vHCC cells. Furthermore, the combined effect of momelotinib and sorafenib both at in vitro and in vivo synergistically suppresses the proliferation of vHCC cells and effectively reduces the tumor burden. Conclusions: Our results showed that momelotinib effectively suppressed the expression of the IFNGR-JAK-STAT-PARP1 pathway, which results in the downregulation of cancer stem cell genes and enhances the antitumor efficacy of sorafenib by initiating the expression of apoptosis-related genes and inhibiting the DNA repair gene in vHCC cells, thus maximizing its therapeutic potential for patients with HCC.
Collapse
|
12
|
Jiang Y, Han Q, Zhao H, Zhang J. The Mechanisms of HBV-Induced Hepatocellular Carcinoma. J Hepatocell Carcinoma 2021; 8:435-450. [PMID: 34046368 PMCID: PMC8147889 DOI: 10.2147/jhc.s307962] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/06/2021] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a common malignancy, and the hepatitis B virus (HBV) is its major pathogenic factor. Over the past decades, it has been confirmed that HBV infection could promote disease progression through a variety of mechanisms, ultimately leading to the malignant transformation of liver cells. Many factors have been identified in the pathogenesis of HBV-associated HCC (HBV-HCC), including HBV gene integration, genomic instability caused by mutation, and activation of cancer-promoting signaling pathways. As research in the progression of HBV-HCC progresses, the role of many new mechanisms, such as epigenetics, exosomes, autophagy, metabolic regulation, and immune suppression, is also being continuously explored. The occurrence of HBV-HCC is a complex process caused by interactions across multiple genes and multiple steps, where the synergistic effects of various cancer-promoting mechanisms accelerate the process of disease evolution from inflammation to tumorigenesis. In this review, we aim to provide a brief overview of the mechanisms involved in the occurrence and development of HBV-HCC, which may contribute to a better understanding of the role of HBV in the occurrence and development of HCC.
Collapse
Affiliation(s)
- Yu Jiang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, Shandong Province, People's Republic of China
| | - Qiuju Han
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, Shandong Province, People's Republic of China
| | - Huajun Zhao
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, Shandong Province, People's Republic of China
| | - Jian Zhang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, Shandong Province, People's Republic of China
| |
Collapse
|
13
|
Zhang S, Li N, Sheng Y, Chen W, Ma Q, Yu X, Lian J, Zeng J, Yang Y, Yan J. Hepatitis B virus induces sorafenib resistance in liver cancer via upregulation of cIAP2 expression. Infect Agent Cancer 2021; 16:20. [PMID: 33757557 PMCID: PMC7988944 DOI: 10.1186/s13027-021-00359-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 03/16/2021] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND HBV promotes cell survival by upregulating the expression of the cellular inhibitor of apoptosis protein 2 (cIAP2), however whether it is involved in HBV-induced sorafenib resistance in liver cancer remains unclear. METHODS cIAP2 overexpression and knockdown was adopted to assess the involvement of cIAP2 in HBV-induced sorafenib resistance. Anti-HBV drug lamivudine and Akt inhibitor were used to investigate the impact of HBV replication on cIAP2 expression and sorafenib resistance. Xenotransplantation mouse model was used to confirm the data on cell lines in vitro. RESULTS Liver cancer cell line HepG2.215 showed increased cIAP2 expression and enhanced resistance to sorafenib. Upon sorafenib treatment, overexpression of cIAP2 in HepG2 lead to decreased cleaved caspase 3 level and increased cell viability, while knockdown of cIAP2 in HepG2.215 resulted in increased level of cleaved caspase 3 and decreased cell viability, suggesting the involvement of cIAP2 in HBV-induced sorafenib resistance. Furthermore, anti-HBV treatment reduced cIAP2 expression and partially restored sorafenib sensitivity in HepG2.215 cells. Xenotransplantation mouse model further confirmed that co-treatment with lamivudine and sorafenib could reduce sorafenib-resistant HepG2.215 tumor cell growth. CONCLUSION cIAP2 is involved in HBV-induced sorafenib resistance in liver cancer and anti-HBV treatments reduce cIAP2 expression and partially restore sorafenib sensibility.
Collapse
Affiliation(s)
- Shouhua Zhang
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang, Jiangxi, China
- Department of General Surgery, Jiangxi Provincial Children's Hospital, Nanchang, China
| | - Nuoya Li
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang, Jiangxi, China
| | - Yanling Sheng
- Department of Ultrasound, The Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Wen Chen
- Department of Surgery, Jiangxi Provincial Cancer Hospital, Nanchang, China
| | - Qiangliang Ma
- Department of dermatology, Ili Kazakh Autonomous State Chinese Medicine Hospital, Xinjiang, Uygur Autonomous Region, China
| | - Xin Yu
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang, Jiangxi, China
| | - Jianping Lian
- Department of Oncology, The Affiliated Hospital of Jinggangshan University, Ji'an, China
| | - Junquan Zeng
- Department of Oncology, The Affiliated Hospital of Jinggangshan University, Ji'an, China
| | - Yipeng Yang
- Department of General Surgery, Xinhua Hospital of Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Rd, Shanghai, China.
| | - Jinlong Yan
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang, Jiangxi, China.
| |
Collapse
|
14
|
Ngo MHT, Jeng HY, Kuo YC, Nanda JD, Brahmadhi A, Ling TY, Chang TS, Huang YH. The Role of IGF/IGF-1R Signaling in Hepatocellular Carcinomas: Stemness-Related Properties and Drug Resistance. Int J Mol Sci 2021; 22:ijms22041931. [PMID: 33669204 PMCID: PMC7919800 DOI: 10.3390/ijms22041931] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/10/2021] [Accepted: 02/10/2021] [Indexed: 12/12/2022] Open
Abstract
Insulin-like Growth Factor (IGF)/IGF-1 Receptor (IGF-1R) signaling is known to regulate stem cell pluripotency and differentiation to trigger cell proliferation, organ development, and tissue regeneration during embryonic development. Unbalanced IGF/IGF-1R signaling can promote cancer cell proliferation and activate cancer reprogramming in tumor tissues, especially in the liver. Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death, with a high incidence and mortality rate in Asia. Most patients with advanced HCC develop tyrosine kinase inhibitor (TKI)-refractoriness after receiving TKI treatment. Dysregulation of IGF/IGF-1R signaling in HCC may activate expression of cancer stemness that leads to TKI refractoriness and tumor recurrence. In this review, we summarize the evidence for dysregulated IGF/IGF-1R signaling especially in hepatitis B virus (HBV)-associated HCC. The regulation of cancer stemness expression and drug resistance will be highlighted. Current clinical treatments and potential therapies targeting IGF/IGF-1R signaling for the treatment of HCC will be discussed.
Collapse
Affiliation(s)
- Mai-Huong Thi Ngo
- International PhD Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (M.-H.T.N.); (J.D.N.); (A.B.)
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Han-Yin Jeng
- Research Center of Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei 11031, Taiwan; (H.-Y.J.); (Y.-C.K.)
| | - Yung-Che Kuo
- Research Center of Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei 11031, Taiwan; (H.-Y.J.); (Y.-C.K.)
| | - Josephine Diony Nanda
- International PhD Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (M.-H.T.N.); (J.D.N.); (A.B.)
| | - Ageng Brahmadhi
- International PhD Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (M.-H.T.N.); (J.D.N.); (A.B.)
| | - Thai-Yen Ling
- Department and Graduate Institute of Pharmacology, National Taiwan University, Taipei 11031, Taiwan
- Correspondence: (T.-Y.L.); (T.-S.C.); (Y.-H.H.); Tel.: +886-2-2312-3456 (ext. 8-8322) (T.-Y.L.); +886-5-3621-000 (ext. 2242) (T.-S.C.); +886-2-2736-1661 (ext. 3150) (Y.-H.H.)
| | - Te-Sheng Chang
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 33382, Taiwan
- Division of Internal Medicine, Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan
- Correspondence: (T.-Y.L.); (T.-S.C.); (Y.-H.H.); Tel.: +886-2-2312-3456 (ext. 8-8322) (T.-Y.L.); +886-5-3621-000 (ext. 2242) (T.-S.C.); +886-2-2736-1661 (ext. 3150) (Y.-H.H.)
| | - Yen-Hua Huang
- International PhD Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (M.-H.T.N.); (J.D.N.); (A.B.)
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Research Center of Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei 11031, Taiwan; (H.-Y.J.); (Y.-C.K.)
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Center for Reproductive Medicine, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Comprehensive Cancer Center, Taipei Medical University, Taipei 11031, Taiwan
- Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
- PhD Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Correspondence: (T.-Y.L.); (T.-S.C.); (Y.-H.H.); Tel.: +886-2-2312-3456 (ext. 8-8322) (T.-Y.L.); +886-5-3621-000 (ext. 2242) (T.-S.C.); +886-2-2736-1661 (ext. 3150) (Y.-H.H.)
| |
Collapse
|
15
|
Madkour MM, Anbar HS, El-Gamal MI. Current status and future prospects of p38α/MAPK14 kinase and its inhibitors. Eur J Med Chem 2021; 213:113216. [PMID: 33524689 DOI: 10.1016/j.ejmech.2021.113216] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/08/2021] [Accepted: 01/15/2021] [Indexed: 12/26/2022]
Abstract
P38α (which is also named MAPK14) plays a pivotal role in initiating different disease states such as inflammatory disorders, neurodegenerative diseases, cardiovascular cases, and cancer. Inhibitors of p38α can be utilized for treatment of these diseases. In this article, we reviewed the structural and biological characteristics of p38α, its relationship to the fore-mentioned disease states, as well as the recently reported inhibitors and classified them according to their chemical structures. We focused on the articles published in the literature during the last decade (2011-2020).
Collapse
Affiliation(s)
- Moustafa M Madkour
- College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Hanan S Anbar
- Department of Clinical Pharmacy and Pharmacotherapeutics, Dubai Pharmacy College for Girls, Dubai, 19099, United Arab Emirates
| | - Mohammed I El-Gamal
- College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates; Department of Medicinal Chemistry, Faculty of Pharmacy, University of Mansoura, Mansoura, 35516, Egypt.
| |
Collapse
|
16
|
Yu Z, Feng H, Zhuo Y, Li M, Zhu X, Huang L, Zhang X, Zhou Z, Zheng C, Jiang Y, Le F, Yu DY, Cheng AS, Sun X, Gao Y. Bufalin inhibits hepatitis B virus-associated hepatocellular carcinoma development through androgen receptor dephosphorylation and cell cycle-related kinase degradation. Cell Oncol (Dordr) 2020; 43:1129-1145. [PMID: 32623699 DOI: 10.1007/s13402-020-00546-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2020] [Indexed: 12/30/2022] Open
Abstract
PURPOSE Hepatitis B virus (HBV)-associated hepatocellular carcinoma (HCC), which has a male predominance, lacks effective therapeutic options. Previously, the cardiac glycoside analogue bufalin has been found to inhibit HBV infection and HCC development. As yet, however, its molecular role in HBV-associated HCC has remained obscure. METHODS Colony formation and soft agar assays, xenograft and orthotopic mouse models and HBV X protein (HBx) transgenic mice with exposure to diethylnitrosamine were used to evaluate the effect of bufalin on HBV-associated HCC growth and tumorigenicity. HBx-induced oncogenic signaling regulated by bufalin was assessed using PCR array, chromatin immunoprecipitation, site-directed mutagenesis, luciferase reporter, transcription and protein expression assays. Synergistic HCC therapeutic effects were examined using combinations of bufalin and sorafenib. RESULTS We found that bufalin exerted a more profound effect on inhibiting the proliferation of HBV-associated HCC cells than of non HBV-associated HCC cells. Bufalin significantly inhibited HBx-induced malignant transfromation in vitro and tumorigenicity in vivo. Androgen receptor (AR) signaling was found to be a target of bufalin resistance to HBV-associated hepatocarcinogenesis. We also found that bufalin induced both AR dephosphorylation and cell cycle-related kinase (CCRK) degradation to inhibit β-catenin/TCF signaling, which subsequently led to cell cycle arrest via cyclin D1 down-regulation and p21 up-regulation, resulting in HCC regression. Furthermore, we found that bufalin reduced > 60% diethylnitrosamine-induced hepatocarcinogenesis in HBx transgenic mice, and improved the sensitivity of refractory HBV-associated HCC cells to sorafenib treatment. CONCLUSION Our results indicate that bufalin acts as a potential anti-HCC therapeutic candidate to block HBx-induced AR/CCRK/β-catenin signaling by targeting AR and CCRK, which may provide a novel strategy for the treatment of HBV-associated HCC.
Collapse
Affiliation(s)
- Zhuo Yu
- Liver Disease Department, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, No.528. Zhangheng Road, Pudong New District, Shanghai, People's Republic of China.
| | - Hai Feng
- Department of pharmacology, School of Pharmacy, Harbin Medical University, Harbin, People's Republic of China
| | - Yunhui Zhuo
- Liver Disease Department, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, No.528. Zhangheng Road, Pudong New District, Shanghai, People's Republic of China
| | - Man Li
- Laboratory of Cellular Immunity, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Xiaojun Zhu
- Liver Disease Department, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, No.528. Zhangheng Road, Pudong New District, Shanghai, People's Republic of China
| | - Lingying Huang
- Liver Disease Department, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, No.528. Zhangheng Road, Pudong New District, Shanghai, People's Republic of China
| | - Xin Zhang
- Laboratory of Cellular Immunity, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Zhenhua Zhou
- Laboratory of Cellular Immunity, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Chao Zheng
- Liver Disease Department, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, No.528. Zhangheng Road, Pudong New District, Shanghai, People's Republic of China
| | - Yun Jiang
- Liver Disease Department, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, No.528. Zhangheng Road, Pudong New District, Shanghai, People's Republic of China
| | - Fan Le
- Liver Disease Department, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, No.528. Zhangheng Road, Pudong New District, Shanghai, People's Republic of China
| | - Dae-Yeul Yu
- Disease Model Research Laboratory, Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 305-806, Republic of Korea
| | - Alfred Szelok Cheng
- School of Biomedical Sciences, State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China
| | - Xuehua Sun
- Liver Disease Department, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, No.528. Zhangheng Road, Pudong New District, Shanghai, People's Republic of China.
| | - Yueqiu Gao
- Liver Disease Department, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, No.528. Zhangheng Road, Pudong New District, Shanghai, People's Republic of China. .,Laboratory of Cellular Immunity, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China.
| |
Collapse
|
17
|
Wan Z, Liu T, Wang L, Wang R, Zhang H. MicroRNA-216a-3p promotes sorafenib sensitivity in hepatocellular carcinoma by downregulating MAPK14 expression. Aging (Albany NY) 2020; 12:18192-18208. [PMID: 33021963 PMCID: PMC7585128 DOI: 10.18632/aging.103670] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 06/01/2020] [Indexed: 01/27/2023]
Abstract
We investigated MAPK14-dependent resistance to sorafenib in hepatocellular carcinoma (HCC). Bioinformatics analysis and dual luciferase reporter assays in HCC cell lines showed that miR-216a-3p directly binds to the 3'UTR of MAPK14 mRNA and downregulates MAPK14 protein expression. Consequently, miR-216a-3p expression correlates inversely with MAPK14 protein levels in HCC patient tissues. miR-216a-3p overexpression significantly increases the sorafenib sensitivity of HCC cells by suppressing MAPK14 expression and reducing the subsequent activation of the MEK/ERK and ATF2 signaling pathways. The growth of xenograft tumors derived from miR-216a-3p-overexpression HCC cells was significantly diminished in sorafenib-treated Balb/c nude mice compared to controls. High miR-216a-3p levels in HCC tissue samples prior to treatment correlated with a better sorafenib response and favorable prognosis. Our findings thus demonstrate that miR-216a-3p enhances sorafenib sensitivity in HCC cells and tumor tissues by decreasing MAPK14 levels, thereby inhibiting the MAPK14-dependent MEK/ERK and ATF2 signaling.
Collapse
Affiliation(s)
- Zhong Wan
- Department of Pharmacy, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China,Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Tingyu Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China
| | - Liang Wang
- Department of Pharmacy, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China
| | - Rong Wang
- Department of Pharmacy, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201999, China
| | - Hai Zhang
- Department of Pharmacy, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China
| |
Collapse
|
18
|
Wang M, Wang L, Pu L, Li K, Feng T, Zheng P, Li S, Sun M, Yao Y, Jin L. LncRNAs related key pathways and genes in ischemic stroke by weighted gene co-expression network analysis (WGCNA). Genomics 2020; 112:2302-2308. [DOI: 10.1016/j.ygeno.2020.01.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/09/2019] [Accepted: 01/06/2020] [Indexed: 12/13/2022]
|
19
|
Viswanathan P, Sharma Y, Maisuradze L, Tchaikovskaya T, Gupta S. Ataxia telangiectasia mutated pathway disruption affects hepatic DNA and tissue damage in nonalcoholic fatty liver disease. Exp Mol Pathol 2020; 113:104369. [PMID: 31917286 DOI: 10.1016/j.yexmp.2020.104369] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 11/27/2019] [Accepted: 01/03/2020] [Indexed: 12/26/2022]
Abstract
To overcome the rising burdens of nonalcoholic fatty liver disease, mechanistic linkages in mitochondrial dysfunction, inflammation and hepatic injury are critical. As ataxia telangiectasia mutated (ATM) gene oversees DNA integrity and mitochondrial homeostasis, we analyzed mRNAs and total proteins or phosphoproteins related to ATM gene by arrays in subjects with healthy liver, fatty liver or nonalcoholic steatohepatitis. Functional genomics approaches were used to query DNA damage or cell growth events. The effects of fatty acid-induced toxicity in mitochondrial health, DNA integrity and cell proliferation were validated in HuH-7 cells, including by inhibiting ATM kinase activity or knckdown of its mRNA. In fatty livers, DNA damage and ATM pathway activation was observed. During induced steatosis in HuH-7 cells, lowering of ATM activity produced mitochondrial dysregulation, DNA damage and cell growth inhibition. In livers undergoing steatohepatitis, ATM was depleted with increased hepatic DNA damage and growth-arrest due to cell cycle checkpoint activations. Moreover, molecular signatures of oncogenesis were associated with upstream mechanistic networks directing cell metabolism, inflammation or growth that were either activated (in fatty liver) or inactivated (in steatohepatitis). To compensate for hepatic growth arrest, preoncogenic oval cell populations expressing connexin-43 and/or albumin emerged. These oval cells avoided DNA damage and proliferated actively. We concluded that ATM is a major contributor to the onset and progression of nonalcoholic fatty liver disease. Therefore, specific markers for ATM pathway dysregulation will allow prospective segregation of cohorts for disease susceptibility and progression from steatosis to steatohepatitis. This will offer superior design and evaluation parameters for clinical trials. Restoration of ATM activity with targeted therapies should be appropriate for nonalcoholic fatty liver disease.
Collapse
Affiliation(s)
- Preeti Viswanathan
- Department of Pediatrics, Albert Einstein College of Medicine and Children's Hospital at Montefiore, Bronx, NY, United States
| | - Yogeshwar Sharma
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Luka Maisuradze
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Tatyana Tchaikovskaya
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States; Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Sanjeev Gupta
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States; Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States; Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY, United States; Diabetes Center, Albert Einstein College of Medicine, Bronx, NY, United States; Irwin S. and Sylvia Chanin Institute for Cancer Research, and Albert Einstein College of Medicine, Bronx, NY, United States; Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY, United States.
| |
Collapse
|