1
|
Zhan Y, Huang C, Wang R, Xiao X, Xu X, Gao C. N-acetylglucosaminyltransferase V drives colorectal cancer metastasis by facilitating ZO-1 ubiquitination and degradation. Cancer Cell Int 2024; 24:366. [PMID: 39511539 PMCID: PMC11545198 DOI: 10.1186/s12935-024-03551-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 10/30/2024] [Indexed: 11/15/2024] Open
Abstract
Increasing evidence supports the crucial role of Epithelial-Mesenchymal Transition (EMT) in cancer invasion and metastasis. N-acetylglucosaminyltransferase V (MGAT5), which is associated with multiantenna glycosylation, can contribute to tumorigenesis, yet its specific role in promoting colorectal cancer (CRC) metastasis remains unclear. Bioinformatics analysis of CRC datasets revealed that elevated MGAT5 expression was associated with EMT and a poor prognosis. In vitro experiments confirmed the pivotal role of MGAT5 as an EMT regulator in CRC cells. MGAT5 overexpression stimulated cell proliferation and migration, while MGAT5 knockdown had the opposite effect. Mechanistically, MGAT5 promoted EMT through multiantenna glycosylation of ZO-1, promoting its ubiquitination and reducing its expression. Clinically, MGAT5 upregulation in the CRC TMA correlated negatively with ZO-1 expression, which is indicative of malignancy and a poor prognosis. This study revealed that MGAT5 promotes EMT in CRC via interactions between multiple antenna glycosylation products and ZO-1 ubiquitination/degradation, indicating that MGAT5 could serve as a promising therapeutic target for CRC.
Collapse
Affiliation(s)
- Yueping Zhan
- Clinical Laboratory Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chenjun Huang
- Clinical Laboratory Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rong Wang
- Clinical Laboratory Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiao Xiao
- Clinical Laboratory Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xuewen Xu
- Clinical Laboratory Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chunfang Gao
- Clinical Laboratory Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
2
|
Wang Y, Zhang P, Luo Z, Huang C. Insights into the role of glycosyltransferase in the targeted treatment of gastric cancer. Biomed Pharmacother 2024; 178:117194. [PMID: 39137647 DOI: 10.1016/j.biopha.2024.117194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/15/2024] [Accepted: 07/22/2024] [Indexed: 08/15/2024] Open
Abstract
Gastric cancer is a remarkably heterogeneous tumor. Despite some advances in the diagnosis and treatment of gastric cancer in recent years, the precise treatment and curative outcomes remain unsatisfactory. Poor prognosis continues to pose a major challenge in gastric cancer. Therefore, it is imperative to identify effective targets to improve the treatment and prognosis of gastric cancer patients. It should be noted that glycosylation, a novel form of posttranslational modification, is a process capable of regulating protein function and influencing cellular activities. Currently, numerous studies have shown that glycosylation plays vital roles in the occurrence and progression of gastric cancer. As crucial enzymes that regulate glycan synthesis in glycosylation processes, glycosyltransferases are potential targets for treating GC. Hence, investigating the regulation of glycosyltransferases and the expression of associated proteins in gastric cancer cells is highly important. In this review, the related glycosyltransferases and their related signaling pathways in gastric cancer, as well as the existing inhibitors of glycosyltransferases, provide more possibilities for targeted therapies for gastric cancer.
Collapse
Affiliation(s)
- Yueling Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi 214028, China; Department of Gastrointestinal Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Pengshan Zhang
- Department of Gastrointestinal Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Zai Luo
- Department of Gastrointestinal Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Chen Huang
- Wuxi School of Medicine, Jiangnan University, Wuxi 214028, China; Department of Gastrointestinal Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
| |
Collapse
|
3
|
Zhang L, Xu Y, Cheng Z, Zhao J, Wang M, Sun Y, Mi Z, Yuan Z, Wu Z. The EGR1/miR-139/NRF2 axis orchestrates radiosensitivity of non-small-cell lung cancer via ferroptosis. Cancer Lett 2024; 595:217000. [PMID: 38821254 DOI: 10.1016/j.canlet.2024.217000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/08/2024] [Accepted: 05/25/2024] [Indexed: 06/02/2024]
Abstract
Radiotherapy is one of the predominant treatment modalities for almost all kinds of malignant cancers, including non-small cell lung cancer (NSCLC). Increasing evidence shows that ionizing radiation (IR) induces reactive oxygen species (ROS) leading to lipid peroxidation and subsequently ferroptosis of cancer cells. However, cancer cells evolve multiple mechanisms against ROS biology resulting in resistance to ferroptosis and radiotherapy, of which NRF2 signaling is one of the most studied. In the current research, we identified that microRNA-139 (miR-139) could be a novel radiosensitizer for NSCLC by inhibiting NRF2 signaling. We found that miR-139 possessed great potential as a diagnostic biomarker for NSCLC and multiple other types of cancer. Overexpression of miR-139 increased radiosensitivity of NSCLC cells in vitro and in vivo. MiR-139 directly targeted cJUN and KPNA2 to impair NRF2 signaling resulting in enhanced IR-induced lipid peroxidation and cellular ferroptosis. We proved KPNA2 to be a binding partner of NRF2 that involved in nuclear translocation of NRF2. Moreover, we found that IR induced miR-139 expression through transcriptional factor EGR1. EGR1 bound to the promoter region and transactivated miR-139. Overall, our findings elucidated the effect of EGR1/miR-139/NRF2 in IR-induced ferroptosis of NSCLC cells and provided theoretical support for the potential diagnostic biomarkers and therapeutic targets for the disease.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, 300060, Tianjin, China
| | - Yihan Xu
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, 300060, Tianjin, China
| | - Zeyuan Cheng
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, 300060, Tianjin, China
| | - Jinlin Zhao
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, 300060, Tianjin, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, China
| | - Meixi Wang
- Department of Public Laboratory, Tianjin Medical University Cancer Institute & Hospital, 300060, Tianjin, China
| | - Yanchen Sun
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, 300060, Tianjin, China
| | - Zeyun Mi
- Department of Public Laboratory, Tianjin Medical University Cancer Institute & Hospital, 300060, Tianjin, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, China.
| | - Zhiyong Yuan
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, 300060, Tianjin, China.
| | - Zhiqiang Wu
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, 300060, Tianjin, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, China.
| |
Collapse
|
4
|
Liu Y, Wang X, Li Z, Chen L, Cai X, Sun Z, Cheng W, Luo X, Zhu HL, Qian Y. Cascading Detection of Hydrogen Sulfide and N-Acetyltransferase 2 in Hepatocellular Carcinoma Cells Using a Two-Photon Fluorescent Probe. Anal Chem 2024; 96:7005-7013. [PMID: 38657082 DOI: 10.1021/acs.analchem.4c00061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Hydrogen sulfide (H2S), a critical gas signaling molecule, and N-acetyltransferase 2 (NAT2), a key enzyme in drug metabolism, are both known active biomarkers for liver function. However, the interactions and effects of H2S and NAT2 in living cells or lesion sites remain unknown due to the lack of imaging tools to achieve simultaneous detection of these two substances, making it challenging to implement real-time imaging and precise tracking. Herein, we report an activity-based two-photon fluorescent probe, TPSP-1, for the cascade detection of H2S and NAT2 in living liver cells. Continuous conversion from TPSP-1 to TPSP-3 was achieved in liver cells and tissues. Significantly, leveraging the outstanding optical properties of this two-photon fluorescent probe, TPSP-1, has been effectively used to identify pathological tissue samples directly from clinical liver cancer patients. This work provides us with this novel sensing and two-photon imaging probe, which can be used as a powerful tool to study the physiological functions of H2S and NAT2 and will help facilitate rapid and accurate diagnosis and therapeutic evaluation of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Yani Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Xianlin Road 163, Nanjing 210023, China
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210046, China
| | - Xueao Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Xianlin Road 163, Nanjing 210023, China
| | - Zheng Li
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210046, China
| | - Liping Chen
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210046, China
| | - Xinyi Cai
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Xianlin Road 163, Nanjing 210023, China
| | - Zhigang Sun
- Central Laboratory, Linyi Central Hospital, No.17 Jiankang Road, Linyi 276400, China
| | - Wei Cheng
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210046, China
| | - Xiangjie Luo
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210046, China
| | - Hai-Liang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Xianlin Road 163, Nanjing 210023, China
| | - Yong Qian
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Xianlin Road 163, Nanjing 210023, China
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210046, China
- Department of Radiology, Nanjing Drum Tower Hospital, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| |
Collapse
|
5
|
Sun L, Chen X, Zhu S, Wang J, Diao S, Liu J, Xu J, Li X, Sun Y, Huang C, Meng X, Lv X, Li J. Decoding m 6A mRNA methylation by reader proteins in liver diseases. Genes Dis 2024; 11:711-726. [PMID: 37692496 PMCID: PMC10491919 DOI: 10.1016/j.gendis.2023.02.054] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 02/22/2023] [Indexed: 09/12/2023] Open
Abstract
N6-methyladenosine (m6A) is a dynamic and reversible epigenetic regulation. As the most prevalent internal post-transcriptional modification in eukaryotic RNA, it participates in the regulation of gene expression through various mechanisms, such as mRNA splicing, nuclear export, localization, translation efficiency, mRNA stability, and structural transformation. The involvement of m6A in the regulation of gene expression depends on the specific recognition of m6A-modified RNA by reader proteins. In the pathogenesis and treatment of liver disease, studies have found that the expression levels of key genes that promote or inhibit the development of liver disease are regulated by m6A modification, in which abnormal expression of reader proteins determines the fate of these gene transcripts. In this review, we introduce m6A readers, summarize the recognition and regulatory mechanisms of m6A readers on mRNA, and focus on the biological functions and mechanisms of m6A readers in liver cancer, viral hepatitis, non-alcoholic fatty liver disease (NAFLD), hepatic fibrosis (HF), acute liver injury (ALI), and other liver diseases. This information is expected to be of high value to researchers deciphering the links between m6A readers and human liver diseases.
Collapse
Affiliation(s)
- Lijiao Sun
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, Anhui 230032, China
- Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei, Anhui 230032, China
| | - Xin Chen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, Anhui 230032, China
- Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei, Anhui 230032, China
| | - Sai Zhu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Jianan Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, Anhui 230032, China
| | - Shaoxi Diao
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, Anhui 230032, China
- Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei, Anhui 230032, China
| | - Jinyu Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, Anhui 230032, China
- Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei, Anhui 230032, China
| | - Jinjin Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, Anhui 230032, China
- Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei, Anhui 230032, China
| | - Xiaofeng Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, Anhui 230032, China
| | - Yingyin Sun
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, China
| | - Cheng Huang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, Anhui 230032, China
- Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei, Anhui 230032, China
| | - Xiaoming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, Anhui 230032, China
| | - Xiongwen Lv
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, Anhui 230032, China
- Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei, Anhui 230032, China
| | - Jun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, Anhui 230032, China
- Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei, Anhui 230032, China
| |
Collapse
|
6
|
Iciek M, Bilska-Wilkosz A, Kozdrowicki M, Górny M. Reactive Sulfur Species in Human Diseases. Antioxid Redox Signal 2023; 39:1000-1023. [PMID: 37440317 DOI: 10.1089/ars.2023.0261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
Significance: Reactive sulfur species (RSS) have been recently recognized as redox molecules no less important than reactive oxygen species or reactive nitrogen species. They possess regulatory and protective properties and are involved in various metabolic processes, thereby contributing to the maintenance of human health. It has been documented that many disorders, including neurological, cardiovascular, and respiratory diseases, diabetes mellitus (DM), and cancer, are related to the disruption of RSS homeostasis. Recent Advances: There is still a growing interest in the role of RSS in human diseases. Since a decrease in hydrogen sulfide or other RSS has been reported in many disorders, safe and efficient RSS donors have been developed and tested under in vitro conditions or on animal models. Critical Issues: Cardiovascular diseases and DM are currently the most common chronic diseases worldwide due to stressful and unhealthy lifestyles. In addition, because of high prevalence and aging of the population, neurological disorders including Parkinson's disease and Alzheimer's disease as well as respiratory diseases are a formidable challenge for health care systems. From this point of view, the knowledge of the role of RSS in these disorders and RSS modulation options are important and could be useful in therapeutic strategies. Future Directions: Improvement and standardization of analytical methods used for RSS estimation are crucial for the use of RSS as diagnostic biomarkers. Finding good, safe RSS donors applicable for therapeutic purposes could be useful as primary or adjunctive therapy in many common diseases. Antioxid. Redox Signal. 39, 1000-1023.
Collapse
Affiliation(s)
- Małgorzata Iciek
- Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Anna Bilska-Wilkosz
- Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Michał Kozdrowicki
- Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Magdalena Górny
- Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| |
Collapse
|
7
|
Li H, Ren X, Pang X, Yang P, Lu Y, Guan F, Wang Y, Li X. LacNAc modification in bone marrow stromal cells enhances resistance of myelodysplastic syndrome cells to chemotherapeutic drugs. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119492. [PMID: 37207914 DOI: 10.1016/j.bbamcr.2023.119492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/03/2023] [Accepted: 05/10/2023] [Indexed: 05/21/2023]
Abstract
Chemotherapeutic drugs are used routinely for treatment for myelodysplastic syndrome (MDS) patients but are ineffective in a substantial proportion of patients. Abnormal hematopoietic microenvironments, in addition to spontaneous characteristics of malignant clones, contribute to ineffective hematopoiesis. In our study, we found expression of enzyme β1,4-galactosyltransferase 1 (β4GalT1), which regulates N-acetyllactosamine (LacNAc) modification of proteins, is elevated in bone marrow stromal cells (BMSCs) of MDS patients, and also contributes to drug ineffectiveness through a protective effect on malignant cells. Our investigation of the underlying molecular mechanism revealed that β4GalT1-overexpressing BMSCs promoted MDS clone cells resistant to chemotherapeutic drugs and also showed enhanced secretion of cytokine CXCL1 through degradation of tumor protein p53. Chemotherapeutic drug tolerance of myeloid cells was inhibited by application of exogenous LacNAc disaccharide and blocking of CXCL1. Our findings clarify the functional role of β4GalT1-catalyzed LacNAc modification in BMSCs of MDS. Clinical alteration of this process is a potential new strategy that may substantially enhance effectiveness of therapies for MDS and other malignancies, by targeting a niche interaction.
Collapse
Affiliation(s)
- Hongjiao Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Xiaoyue Ren
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Xingchen Pang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Pengyu Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Yurong Lu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Feng Guan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Yi Wang
- Department of Hematology, Provincial People's Hospital, Xi'an, Shaanxi, China.
| | - Xiang Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China; Institute of Hematology, School of Medicine, Northwest University, Xi'an, Shaanxi, China.
| |
Collapse
|
8
|
Wang Y, Tan Z, Li X, Zhang L, Pei X. RUNX2 promotes gastric cancer progression through the transcriptional activation of MGAT5 and MMP13. Front Oncol 2023; 13:1133476. [PMID: 37256183 PMCID: PMC10226684 DOI: 10.3389/fonc.2023.1133476] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 04/20/2023] [Indexed: 06/01/2023] Open
Abstract
Introduction RUNX2 is overexpressed in gastric cancer but the mechanism(s) through which it promotes tumor progression remain undefined. Here, we investigated the role of RUNX2 on gastric cancer pathogenesis at the molecular level. Methods The qRT-PCR and western bolt were utilized to examine the mRNA and protein levels. CCK-8, Transwell and wound healing assays were used to measure cell proliferation, invasion and migration. CHIP-PCR gel electrophoresis was used to verify RUNX2 as a transcription factor for MMP13 and MGAT5. The in vivo assay was utilized to assess tumor growth. In vivo assay was used to evaluate tumor growth, aberrant expression of RUNX2 and lung metastasis of gastric cancer. Results RUNX2 is overexpressed in MKN-45 and AGS cells. Genetic RUNX2 silencing reduced the proliferation, invasion and migration of MKN-45 and AGS cells. Analysis of the gastric cancer samples from the database revealed a significant positive correlation between MGAT5, MMP13, and RUNX2 expression. JASPAR analysis revealed that there was a potential binding site of RUNX2 in the promoter regions of MGAT5 and MMP13, and the experimental results confirmed that RUNX2 could regulate the expression of MGAT5 and MMP13 respectively. In vivo assays confirmed the aberrant expression of RUNX2 in mouse models of gastric cancer and reduced growth and lung metastasis in RUNX2 silenced xenograft tumors assessed. Conclusion Collectively, these data reveal that RUNX2 enhances MGAT5 and MMP13 expression in gastric cancer cells and represents a biomarker and potential therapeutic target for gastric cancer therapy.
Collapse
Affiliation(s)
- Ying Wang
- Department of Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Shenzhen, Guangdong, China
| | - Zhibo Tan
- Department of Radiation Oncology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Xiaoyu Li
- Department of Pathology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Lili Zhang
- Department of Pathology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Xiaojuan Pei
- Department of Pathology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| |
Collapse
|
9
|
Zuo B, Huang Q, Yu W, Xu J. ISLR interacts with MGAT5 to promote the malignant progression of human gastric cancer AGS cells. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2023; 26:960-965. [PMID: 37427332 PMCID: PMC10329249 DOI: 10.22038/ijbms.2023.69372.15120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 04/26/2023] [Indexed: 07/11/2023]
Abstract
Objectives Gastric cancer is a common malignant tumor with high morbidity and mortality. The present study aimed to investigate the role of the immunoglobulin superfamily containing leucine-rich repeat (ISLR) gene in gastric cancer and examine whether ISLR could interact with N-acetylglucosaminyltransferase V (MGAT5) to affect the malignant progression of gastric cancer. Materials and Methods The expression of ISLR and MGAT5 in human normal gastric epithelial cells and human gastric cancer cells, and the transfection efficiency of ISLR interference plasmids and MGAT5 overexpression plasmids were all detected by reverse transcription-quantitative PCR (RT-qPCR) and western blot. The viability, proliferation, migration and invasion, and epithelial-mesenchymal transition (EMT) of gastric cancer cells after indicated transfection were detected by Cell counting kit-8 (CCK-8) assay, 5-ethynyl-2'-deoxyuridine (EdU) staining, wound healing assay, and transwell assay. The interaction between ISLR and MGAT5 was confirmed by co-immunoprecipitation. The expression of proteins related to migration, invasion, and EMT was detected by immunofluorescence and western blot. Results As a result, ISLR was highly expressed in gastric cancer and was associated with poor prognosis. Interference with ISLR inhibited the viability, proliferation, migration, invasion, and EMT of gastric cancer cells. ISLR interacted with MGAT5 in gastric cancer cells. MGAT5 overexpression weakened the effects of ISLR knockdown on suppressing the viability, proliferation, migration, invasion, and EMT of gastric cancer cells. Conclusion ISLR interacted with MGAT5 to promote the malignant progression of gastric cancer.
Collapse
Affiliation(s)
- Bin Zuo
- Department of Gastroenterology Surgery, Yichang Central People’s Hospital, The First College of Clinical Medical Science, China Three Gorges University, Yichang 443000, Hubei, China
| | - Qiao Huang
- Department of Gastroenterology Surgery, Yichang Central People’s Hospital, The First College of Clinical Medical Science, China Three Gorges University, Yichang 443000, Hubei, China
| | - Wei Yu
- Department of Gastroenterology Surgery, Yichang Central People’s Hospital, The First College of Clinical Medical Science, China Three Gorges University, Yichang 443000, Hubei, China
| | - Jun Xu
- Department of Gastroenterology Surgery, Yichang Central People’s Hospital, The First College of Clinical Medical Science, China Three Gorges University, Yichang 443000, Hubei, China
| |
Collapse
|
10
|
Qin R, Mahal LK, Bojar D. Deep learning explains the biology of branched glycans from single-cell sequencing data. iScience 2022; 25:105163. [PMID: 36217547 PMCID: PMC9547197 DOI: 10.1016/j.isci.2022.105163] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/06/2022] [Accepted: 09/16/2022] [Indexed: 11/03/2022] Open
Abstract
Glycosylation is ubiquitous and often dysregulated in disease. However, the regulation and functional significance of various types of glycosylation at cellular levels is hard to unravel experimentally. Multi-omics, single-cell measurements such as SUGAR-seq, which quantifies transcriptomes and cell surface glycans, facilitate addressing this issue. Using SUGAR-seq data, we pioneered a deep learning model to predict the glycan phenotypes of cells (mouse T lymphocytes) from transcripts, with the example of predicting β1,6GlcNAc-branching across T cell subtypes (test set F1 score: 0.9351). Model interpretation via SHAP (SHapley Additive exPlanations) identified highly predictive genes, in part known to impact (i) branched glycan levels and (ii) the biology of branched glycans. These genes included physiologically relevant low-abundance genes that were not captured by conventional differential expression analysis. Our work shows that interpretable deep learning models are promising for uncovering novel functions and regulatory mechanisms of glycans from integrated transcriptomic and glycomic datasets.
Collapse
Affiliation(s)
- Rui Qin
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Lara K. Mahal
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Daniel Bojar
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 405 30 Gothenburg, Sweden
| |
Collapse
|
11
|
Qin X, Chiang CWK, Gaggiotti OE. Deciphering signatures of natural selection via deep learning. Brief Bioinform 2022; 23:6686736. [PMID: 36056746 PMCID: PMC9487700 DOI: 10.1093/bib/bbac354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/11/2022] [Accepted: 07/28/2022] [Indexed: 11/12/2022] Open
Abstract
Identifying genomic regions influenced by natural selection provides fundamental insights into the genetic basis of local adaptation. However, it remains challenging to detect loci under complex spatially varying selection. We propose a deep learning-based framework, DeepGenomeScan, which can detect signatures of spatially varying selection. We demonstrate that DeepGenomeScan outperformed principal component analysis- and redundancy analysis-based genome scans in identifying loci underlying quantitative traits subject to complex spatial patterns of selection. Noticeably, DeepGenomeScan increases statistical power by up to 47.25% under nonlinear environmental selection patterns. We applied DeepGenomeScan to a European human genetic dataset and identified some well-known genes under selection and a substantial number of clinically important genes that were not identified by SPA, iHS, Fst and Bayenv when applied to the same dataset.
Collapse
Affiliation(s)
- Xinghu Qin
- Centre for Biological Diversity, Sir Harold Mitchell Building, University of St Andrews, Fife, KY16 9TF, UK
| | - Charleston W K Chiang
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, Keck School of Medicine & Department of Quantitative and Computational Biology, University of Southern California, USA
| | - Oscar E Gaggiotti
- Centre for Biological Diversity, Sir Harold Mitchell Building, University of St Andrews, Fife, KY16 9TF, UK
| |
Collapse
|
12
|
Yang Y, Wu J, Liu F, He J, Wu F, Chen J, Jiang Z. IGF2BP1 Promotes the Liver Cancer Stem Cell Phenotype by Regulating MGAT5 mRNA Stability by m6A RNA Methylation. Stem Cells Dev 2021; 30:1115-1125. [PMID: 34514861 DOI: 10.1089/scd.2021.0153] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The aim of this study was to elucidate the mechanism of action of the insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) on the phenotype of the liver cancer stem cells (LCSCs). To gain insight into the mechanism of action of the IGF2BP1 on LCSCs, the IGF2BP1 shRNA sequences were transfected into hepatocellular carcinoma (HCC) cells. The LCSC phenotypes were measured by stemness gene expressions, spheroid formations, percentages of the CD133+ cells, colony formations, and tumorigenesis in vivo. Next, we screened for possible molecular mechanisms from the Cancer Genome Atlas (TCGA) database, and a methylated RNA immunoprecipitation-quantitative polymerase chain reaction (MeRIP-qPCR) was used to adjust the binding of IGF2BP1 to the target gene, alpha-1,6-mannosylglycoprotein 6-beta-N-acetylglucosaminyltransferase (MGAT5). The MeRIP-qPCR was used to detect the binding of IGF2BP1 and MGAT5 through N6 methyladenosine (m6A) modification. Furthermore, we adjusted the attenuation of the mRNA of the MGAT5 using quantitative real-time PCR (qRT-PCR). The IGF2BP1 was upregulated in the LCSCs. Furthermore, the IGF2BP1 promoted self-renewal and chemoresistance in human LCSCs and tumorigenesis in mice and it enhanced the expression of stemness genes in the LCSCs compared with the HCC cells. Further exploration indicated that the IGF2BP1 binds directly to the MGAT5 and inhibits its mRNA attenuation, suggesting that the IGF2BP1 impacts MGAT5 mRNA stability through m6A modification. Thus, it can be concluded that the IGF2BP1 facilitated the LCSC phenotypes by promoting the MGAT5 mRNA stability through the upregulation of m6A modification of the MGAT5 mRNA.
Collapse
Affiliation(s)
- Yichun Yang
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Jiao Wu
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Fuqiang Liu
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Jin He
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Fan Wu
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Jun Chen
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Zheng Jiang
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| |
Collapse
|
13
|
Study of Electron and Positron Elastic Scattering from Hydrogen Sulphide Using Analytically Obtained Static Potential. ATOMS 2020. [DOI: 10.3390/atoms8040083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A detailed study of elastic scattering of electrons and positrons from a hydrogen sulphide (H2S) molecule is presented using the method of partial wave phase shift analysis with suitably chosen complex optical potentials. The important aspect of our present work is that we uniquely obtain static potential in an analytical form and use it along with exchange (only for electron), polarization and purely imaginary absorption potentials to define the complex optical potential. The static potential is evaluated by obtaining charge density from the H2S molecule using the molecular wavefunction represented through an accurate analytical form of the Gaussian orbitals. The primary aim of our study is to test our present approach, as applied to the electron and positron scattering from H2S. Therefore, the results for electron and positron impact differential, integral, momentum-transfer, absorption and total cross sections are obtained for the incident energies in the range of 10–500 eV. Comparisons of these different types of cross section results with the available measurements and other calculations show good agreement, which suggests the applicability of our present approach.
Collapse
|
14
|
Taniguchi N, Ohkawa Y, Maeda K, Harada Y, Nagae M, Kizuka Y, Ihara H, Ikeda Y. True significance of N-acetylglucosaminyltransferases GnT-III, V and α1,6 fucosyltransferase in epithelial-mesenchymal transition and cancer. Mol Aspects Med 2020; 79:100905. [PMID: 33010941 DOI: 10.1016/j.mam.2020.100905] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 09/02/2020] [Indexed: 12/13/2022]
Abstract
It is well known that numerous cancer-related changes occur in glycans that are attached to glycoproteins, glycolipids and proteoglycans on the cell surface and these changes in structure and the expression of the glycans are largely regulated by glycosyl-transferases, glycosidases, nucleotide sugars and their related genes. Such structural changes in glycans on cell surface proteins may accelerate the progression, invasion and metastasis of cancer cells. Among the over 200 known glycosyltransferases and related genes, β 1,6 N-acetylglucosaminyltransferase V (GnT-V) (the MGAT5 gene) and α 1,6 fucosyltransferase (FUT8) (the FUT8 gene) are representative enzymes in this respect because changes in glycans caused by these genes appear to be related to cancer metastasis and invasion in vitro as well as in vivo, and a number of reports on these genes in related to epithelial-mesenchymal transition (EMT) have also appeared. Another enzyme, one of the N-glycan branching enzymes, β1,4 N-acetylglucosaminyltransferase III (GnT-III) (the MGAT3 gene) has been reported to suppress EMT. However, there are intermediate states between EMT and mesenchymal-epithelial transition (MET) and some of these genes have been implicated in both EMT and MET and are also probably in an intermediate state. Therefore, it would be difficult to clearly define which specific glycosyltransferase is involved in EMT or MET or an intermediate state. The significance of EMT and N-glycan branching glycosyltransferases needs to be reconsidered and the inhibition of their corresponding genes would also be desirable in therapeutics. This review mainly focuses on GnT-III, GnT-V and FUT8, major players as N-glycan branching enzymes in cancer in relation to EMT programs, and also discusses the catalytic mechanisms of GnT-V and FUT8 whose crystal structures have now been obtained.
Collapse
Affiliation(s)
- Naoyuki Taniguchi
- Department of Glyco-Oncology and Medical Biochemistry, Osaka International Cancer Institute, Osaka, Japan.
| | - Yuki Ohkawa
- Department of Glyco-Oncology and Medical Biochemistry, Osaka International Cancer Institute, Osaka, Japan.
| | - Kento Maeda
- Department of Glyco-Oncology and Medical Biochemistry, Osaka International Cancer Institute, Osaka, Japan.
| | - Yoichiro Harada
- Department of Glyco-Oncology and Medical Biochemistry, Osaka International Cancer Institute, Osaka, Japan.
| | - Masamichi Nagae
- Department of Molecular Immunology, RIMD, Osaka University, Osaka, Japan.
| | - Yasuhiko Kizuka
- Glyco-biochemistry Laboratory, G-Chain, Gifu University, Gifu, Japan.
| | - Hideyuki Ihara
- Division of Molecular Cell Biology, Department of Biomolecular Sciences, Saga University Faculty of Medicine, Saga, Japan.
| | - Yoshitaka Ikeda
- Division of Molecular Cell Biology, Department of Biomolecular Sciences, Saga University Faculty of Medicine, Saga, Japan.
| |
Collapse
|
15
|
van Gastel J, Leysen H, Santos-Otte P, Hendrickx JO, Azmi A, Martin B, Maudsley S. The RXFP3 receptor is functionally associated with cellular responses to oxidative stress and DNA damage. Aging (Albany NY) 2019; 11:11268-11313. [PMID: 31794429 PMCID: PMC6932917 DOI: 10.18632/aging.102528] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 11/18/2019] [Indexed: 12/19/2022]
Abstract
DNA damage response (DDR) processes, often caused by oxidative stress, are important in aging and -related disorders. We recently showed that G protein-coupled receptor (GPCR) kinase interacting protein 2 (GIT2) plays a key role in both DNA damage and oxidative stress. Multiple tissue analyses in GIT2KO mice demonstrated that GIT2 expression affects the GPCR relaxin family peptide 3 receptor (RXFP3), and is thus a therapeutically-targetable system. RXFP3 and GIT2 play similar roles in metabolic aging processes. Gaining a detailed understanding of the RXFP3-GIT2 functional relationship could aid the development of novel anti-aging therapies. We determined the connection between RXFP3 and GIT2 by investigating the role of RXFP3 in oxidative stress and DDR. Analyzing the effects of oxidizing (H2O2) and DNA-damaging (camptothecin) stressors on the interacting partners of RXFP3 using Affinity Purification-Mass Spectrometry, we found multiple proteins linked to DDR and cell cycle control. RXFP3 expression increased in response to DNA damage, overexpression, and Relaxin 3-mediated stimulation of RXFP3 reduced phosphorylation of DNA damage marker H2AX, and repair protein BRCA1, moderating DNA damage. Our data suggests an RXFP3-GIT2 system that could regulate cellular degradation after DNA damage, and could be a novel mechanism for mitigating the rate of age-related damage accumulation.
Collapse
Affiliation(s)
- Jaana van Gastel
- Receptor Biology Lab, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.,Translational Neurobiology Group, Centre for Molecular Neuroscience, VIB, Antwerp, Belgium
| | - Hanne Leysen
- Receptor Biology Lab, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.,Translational Neurobiology Group, Centre for Molecular Neuroscience, VIB, Antwerp, Belgium
| | - Paula Santos-Otte
- Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
| | - Jhana O Hendrickx
- Receptor Biology Lab, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.,Translational Neurobiology Group, Centre for Molecular Neuroscience, VIB, Antwerp, Belgium
| | - Abdelkrim Azmi
- Translational Neurobiology Group, Centre for Molecular Neuroscience, VIB, Antwerp, Belgium
| | - Bronwen Martin
- Faculty of Pharmaceutical, Veterinary and Biomedical Science, University of Antwerp, Antwerp, Belgium
| | - Stuart Maudsley
- Receptor Biology Lab, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.,Translational Neurobiology Group, Centre for Molecular Neuroscience, VIB, Antwerp, Belgium
| |
Collapse
|
16
|
Xie Y, Huang H, Ismail I, Sun H, Yi L, Xi Z. A fluorogenic H2S-triggered prodrug based on thiolysis of the NBD amine. Bioorg Med Chem Lett 2019; 29:126627. [DOI: 10.1016/j.bmcl.2019.126627] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 07/08/2019] [Accepted: 08/16/2019] [Indexed: 01/29/2023]
|
17
|
Wang R, Tao B, Fan Q, Wang S, Chen L, Zhang J, Hao Y, Dong S, Wang Z, Wang W, Cai Y, Li X, Bao T, Wang X, Qiu X, Wang K, Mo X, Kang Y, Wang Z. Fatty-acid receptor CD36 functions as a hydrogen sulfide-targeted receptor with its Cys333-Cys272 disulfide bond serving as a specific molecular switch to accelerate gastric cancer metastasis. EBioMedicine 2019; 45:108-123. [PMID: 31262715 PMCID: PMC6642364 DOI: 10.1016/j.ebiom.2019.06.037] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 06/12/2019] [Accepted: 06/19/2019] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Hydrogen Sulfide (H2S), a third member of gasotransmitter family along with nitric oxide (NO) and carbon monoxide (CO), exerts a wide range of cellular and molecular actions in our body. There is a large body of evidence suggesting that H2S plays an important role in cancer metastasis; however, the molecular mechanisms of H2S-mediated acceleration of cancer metastasis remain unknown. METHODS We examined the promote effects of H2S on phenotype of gastric cancer (GC) cells (including those of express wild type CD36 and mutant CD36) in vitro and in vivo. GC patients' samples were used for clinical translational significance evaluation. FINDINGS H2S triggered lipid metabolism reprogramming by significantly up-regulating the expression of the fatty-acid receptor CD36 (CD36) and directly activating CD36 in GC cells. Mechanistically, a disulfide bond located between cysteine (Cys)333 and Cys272 within the CD36 protein structure that was labile to H2S-mediated modification. The long chain-fatty acid (LC-FA) binding pocket was capped by a turn in the CD36 protein, located between helical and sheet structures that were stabilized by the Cys333-Cys272. This limited the secondary binding between LC-FAs and lysine (Lys)334. Breaking the Cys333-Cys272 disulfide bond restored the second LC-FA binding conformation of CD36. Targeting CD36 in vivo blocked H2S-promoted metastasis and improved animal survival. INTERPRETATION These findings identify that the Cys333-Cys272 disulfide bond disrupted the integrity of the second LC-FA binding conformation of CD36. Therefore, CD36 can directly activate LC-FA access to the cytoplasm by acting as a direct target molecule for H2S.
Collapse
Affiliation(s)
- Rui Wang
- Department of Gastroenterology, Tongji Hospital, Affiliated to Tongji University, Shanghai 200065, China
| | - Beibei Tao
- Department of Physiology and Pathophysiology, School of Basic Medicine, Fudan University, Shanghai 200032, China
| | - Qilin Fan
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shengyue Wang
- Department of Gastroenterology, Tongji Hospital, Affiliated to Tongji University, Shanghai 200065, China
| | - Li Chen
- Department of Gastroenterology, Baoshan Branch, Renji Hospital, Affiliated to Shanghai Jiaotong University, Shanghai 200444, China
| | - Junjie Zhang
- Department of Gastroenterology, Tongji Hospital, Affiliated to Tongji University, Shanghai 200065, China
| | - Yinfang Hao
- Department of Gastroenterology, Tongji Hospital, Affiliated to Tongji University, Shanghai 200065, China
| | - Shuang Dong
- Department of Gastroenterology, Tongji Hospital, Affiliated to Tongji University, Shanghai 200065, China
| | - Zhe Wang
- Department of Gastroenterology, Tongji Hospital, Affiliated to Tongji University, Shanghai 200065, China
| | - Wei Wang
- Department of Gastroenterology, Tongji Hospital, Affiliated to Tongji University, Shanghai 200065, China
| | - Yixi Cai
- Department of Pediatrics, First People's Hospital of Liangjiang New District, Chongqing 401121, China
| | - Xutong Li
- Department of Neurology, Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Tuvshin Bao
- Department of Anesthesia, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaohui Wang
- Department of Pancreatic Surgery, State Key Laboratory of Oncology in South China, Zhongshan University, Guangzhou 510001, China
| | - Xiaoming Qiu
- Department of Orthopedics, Provincial Hospital of Gansu Province, Lanzhou 730001, China
| | - Kekun Wang
- School of Health Science, Wuhan University, Wuhan 430030, China
| | - Xinyu Mo
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300001, China
| | - Yuqi Kang
- Department of Oncology, Oncology Hospital of Guizhou Province, Guiyang 550001, China
| | - Zhirong Wang
- Department of Gastroenterology, Tongji Hospital, Affiliated to Tongji University, Shanghai 200065, China.
| |
Collapse
|