1
|
Sherapura A, Kiran BK, Pavan Kumar GS, Siddesh BM, Thirusangu P, Suchetha Kumari N, Prabhakar BT. Withaferin-A induced Vimentin S56 phosphorylation dissociates NEDD9 signaling loop to regress progressive metastatic melanoma into lung adenocarcinoma. Chem Biol Interact 2024; 406:111319. [PMID: 39613173 DOI: 10.1016/j.cbi.2024.111319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 12/01/2024]
Abstract
Metastasis is complex and insidious type of disease involves multiple signaling nexus, which have implications in understanding disease pathogenesis. Treatment failure for metastatic cancer is frequently high due to aggressive adaptation of cancerous cells to invade to neighboring organs. Cytoskeleton intermediate filamentous protein Vimentin and scaffolding protein Neural precursor cell expressed Developmentally Down-regulated protein 9 (NEDD9) play a key role in metastatic events by regulating multiple metastatic events. Interaction between these proteins is necessary to promote metastatic progression. Withaferin A (WFA), a natural pharamacophore, known to target Vimentin to induce antitumor potential. However exact molecular mechanism still yet to be elucidated. We hypothesize, Vimentin-NEDD9 signaling nexus is necessary for metastatic progression and targeting this interwoven signaling loop with effective pharamacophore WFA halts metastatic progression of melanoma into lung. To elucidate the same, we carried out gene expression measurement through quantitative Reverses Transcription Polymerase Chain Reaction (qRT-PCR), Immunoblot and Immunohistochemistry. Assessment of interactive signaling by Co-immunoprecipitation, Immunofluorescence, Co-localization and Proximity ligation assay. Phosphorylation studies through transfection of phospho specific mutant constructs generated through site directed mutagenesis. WFA induced cellular behavioral changes by migration, invasion assays and Immunoblot analysis. The B16F10 induced mouse metastatic melanoma model to asses NEDD9-Vimentin expression and anti-metastasis induced by WFA. The results postulates, elevated levels and interaction between NEDD9-Vimentin proteins, have positive correlation in metastatic progression of melanoma into lung in both in-vitro and in-vivo condition, establishing it as therapeutic target. Pharmacologically, WFA targets this complex by extending its activity by not only inducing specific Serine 56 phosphorylation of Vimentin, also dissociates NEDD9 signaling loop to halt Epithelial- mesenchymal transition (EMT) and subsequent metastatic events. Eventually, modulation of the relevant metastatic genes E-Cadherin, N-Cadherin, SNAIL, MMP-2 & MMP-9 resulted in regression of metastatic melanoma progression to lung. The study validates WFA induced S56 phosphorylation is necessary to abrupt the NEDD9-Vimentin metastatic signaling complex to regress aggressive metastatic melanoma. The investigation emphasized more mechanistic approach of WFA. Understanding and targeting such integrative mechanical input in the tumor microenvironment will be a better therapeutic strategy to combat metastasis.
Collapse
Affiliation(s)
- Ankith Sherapura
- Molecular Biomedicine Laboratory, Postgraduate Department of Studies and Research in Biotechnology, Sahyadri Science College, Kuvempu University, Shivamogga, 577203, Karnataka, India
| | - B K Kiran
- Molecular Biomedicine Laboratory, Postgraduate Department of Studies and Research in Biotechnology, Sahyadri Science College, Kuvempu University, Shivamogga, 577203, Karnataka, India
| | - G S Pavan Kumar
- Molecular Biomedicine Laboratory, Postgraduate Department of Studies and Research in Biotechnology, Sahyadri Science College, Kuvempu University, Shivamogga, 577203, Karnataka, India
| | - B M Siddesh
- Molecular Biomedicine Laboratory, Postgraduate Department of Studies and Research in Biotechnology, Sahyadri Science College, Kuvempu University, Shivamogga, 577203, Karnataka, India
| | - Prabhu Thirusangu
- Department of Experimental Pathology and Laboratory Medicine, Mayo Clinic, Rochester, MN, USA
| | - N Suchetha Kumari
- Department of Biochemistry, K. S. Hegde Medical Academy, NITTE University, Mangalore, Karnataka, India
| | - B T Prabhakar
- Molecular Biomedicine Laboratory, Postgraduate Department of Studies and Research in Biotechnology, Sahyadri Science College, Kuvempu University, Shivamogga, 577203, Karnataka, India.
| |
Collapse
|
2
|
Feroz W, Park BS, Siripurapu M, Ntim N, Kilroy MK, Sheikh AMA, Mishra R, Garrett JT. Non-Muscle Myosin II A: Friend or Foe in Cancer? Int J Mol Sci 2024; 25:9435. [PMID: 39273383 PMCID: PMC11395477 DOI: 10.3390/ijms25179435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Non-muscle myosin IIA (NM IIA) is a motor protein that belongs to the myosin II family. The myosin heavy chain 9 (MYH9) gene encodes the heavy chain of NM IIA. NM IIA is a hexamer and contains three pairs of peptides, which include the dimer of heavy chains, essential light chains, and regulatory light chains. NM IIA is a part of the actomyosin complex that generates mechanical force and tension to carry out essential cellular functions, including adhesion, cytokinesis, migration, and the maintenance of cell shape and polarity. These functions are regulated via light and heavy chain phosphorylation at different amino acid residues. Apart from physiological functions, NM IIA is also linked to the development of cancer and genetic and neurological disorders. MYH9 gene mutations result in the development of several autosomal dominant disorders, such as May-Hegglin anomaly (MHA) and Epstein syndrome (EPS). Multiple studies have reported NM IIA as a tumor suppressor in melanoma and head and neck squamous cell carcinoma; however, studies also indicate that NM IIA is a critical player in promoting tumorigenesis, chemoradiotherapy resistance, and stemness. The ROCK-NM IIA pathway regulates cellular movement and shape via the control of cytoskeletal dynamics. In addition, the ROCK-NM IIA pathway is dysregulated in various solid tumors and leukemia. Currently, there are very few compounds targeting NM IIA, and most of these compounds are still being studied in preclinical models. This review provides comprehensive evidence highlighting the dual role of NM IIA in multiple cancer types and summarizes the signaling networks involved in tumorigenesis. Furthermore, we also discuss the role of NM IIA as a potential therapeutic target with a focus on the ROCK-NM IIA pathway.
Collapse
Affiliation(s)
- Wasim Feroz
- Department of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, Cincinnati, OH 45229, USA; (W.F.); (B.S.P.); (M.S.); (N.N.); (M.K.K.); (R.M.)
| | - Briley SoYoung Park
- Department of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, Cincinnati, OH 45229, USA; (W.F.); (B.S.P.); (M.S.); (N.N.); (M.K.K.); (R.M.)
- Cancer Research Scholars Program, College of Allied Health Sciences, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Meghna Siripurapu
- Department of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, Cincinnati, OH 45229, USA; (W.F.); (B.S.P.); (M.S.); (N.N.); (M.K.K.); (R.M.)
| | - Nicole Ntim
- Department of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, Cincinnati, OH 45229, USA; (W.F.); (B.S.P.); (M.S.); (N.N.); (M.K.K.); (R.M.)
| | - Mary Kate Kilroy
- Department of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, Cincinnati, OH 45229, USA; (W.F.); (B.S.P.); (M.S.); (N.N.); (M.K.K.); (R.M.)
| | | | - Rosalin Mishra
- Department of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, Cincinnati, OH 45229, USA; (W.F.); (B.S.P.); (M.S.); (N.N.); (M.K.K.); (R.M.)
| | - Joan T. Garrett
- Department of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, Cincinnati, OH 45229, USA; (W.F.); (B.S.P.); (M.S.); (N.N.); (M.K.K.); (R.M.)
| |
Collapse
|
3
|
Nicolás-Morala J, Alonso-Juarranz M, Barahona A, Terrén S, Cabezas S, Falahat F, Gilaberte Y, Gonzalez S, Juarranz A, Mascaraque M. Comparative response to PDT with methyl-aminolevulinate and temoporfin in cutaneous and oral squamous cell carcinoma cells. Sci Rep 2024; 14:7025. [PMID: 38528037 DOI: 10.1038/s41598-024-57624-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/20/2024] [Indexed: 03/27/2024] Open
Abstract
Cutaneous and Head and Neck squamous cell carcinoma (CSCC, HNSCC) are among the most prevalent cancers. Both types of cancer can be treated with photodynamic therapy (PDT) by using the photosensitizer Temoporfin in HNSCC and the prodrug methyl-aminolevulinate (MAL) in CSCC. However, PDT is not always effective. Therefore, it is mandatory to correctly approach the therapy according to the characteristics of the tumour cells. For this reason, we have used cell lines of CSCC (A431 and SCC13) and HNSCC (HN5 and SCC9). The results obtained indicated that the better response to MAL-PDT was related to its localization in the plasma membrane (A431 and HN5 cells). However, with Temoporfin all cell lines showed lysosome localization, even the most sensitive ones (HN5). The expression of mesenchymal markers and migratory capacity was greater in HNSCC lines compared to CSCC, but no correlation with PDT response was observed. The translocation to the nucleus of β-catenin and GSK3β and the activation of NF-κβ is related to the poor response to PDT in the HNSCC lines. Therefore, we propose that intracellular localization of GSK3β could be a good marker of response to PDT in HNSCC. Although the molecular mechanism of response to PDT needs further elucidation, this work shows that the most MAL-resistant line of CSCC is more sensitive to Temoporfin.
Collapse
Affiliation(s)
- J Nicolás-Morala
- Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain
- Department of Experimental Dermatology and Skin Biology, Instituto Ramón y Cajal de Investigación Sanitaria, IRYCIS, 28034, Madrid, Spain
| | - M Alonso-Juarranz
- Oral and Maxillofacial Surgery Service, Hospital Clínico San Carlos, 28040, Madrid, Spain
- Surgery Department, Faculty of Medicine, Universidad Complutense, 28040, Madrid, Spain
| | - A Barahona
- Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain
| | - S Terrén
- Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain
| | - S Cabezas
- Oncology Service, Hospital Clínico San Carlos, 28040, Madrid, Spain
| | - F Falahat
- Oral and Maxillofacial Surgery Service, Hospital Clínico San Carlos, 28040, Madrid, Spain
- Surgery Department, Faculty of Medicine, Universidad Complutense, 28040, Madrid, Spain
| | - Y Gilaberte
- Department of Dermatology, Miguel Servet University Hospital, Instituto Investigación Sanitaria (IIS), Zaragoza, Aragón, Spain
| | - S Gonzalez
- Department of Experimental Dermatology and Skin Biology, Instituto Ramón y Cajal de Investigación Sanitaria, IRYCIS, 28034, Madrid, Spain
- Department of Medicine and Medical Specialties, Universidad de Alcalá, Madrid, Spain
| | - A Juarranz
- Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain.
- Department of Experimental Dermatology and Skin Biology, Instituto Ramón y Cajal de Investigación Sanitaria, IRYCIS, 28034, Madrid, Spain.
| | - M Mascaraque
- Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain.
- Department of Experimental Dermatology and Skin Biology, Instituto Ramón y Cajal de Investigación Sanitaria, IRYCIS, 28034, Madrid, Spain.
| |
Collapse
|
4
|
Rajan S, Terman JR, Reisler E. MICAL-mediated oxidation of actin and its effects on cytoskeletal and cellular dynamics. Front Cell Dev Biol 2023; 11:1124202. [PMID: 36875759 PMCID: PMC9982024 DOI: 10.3389/fcell.2023.1124202] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/02/2023] [Indexed: 02/19/2023] Open
Abstract
Actin and its dynamic structural remodelings are involved in multiple cellular functions, including maintaining cell shape and integrity, cytokinesis, motility, navigation, and muscle contraction. Many actin-binding proteins regulate the cytoskeleton to facilitate these functions. Recently, actin's post-translational modifications (PTMs) and their importance to actin functions have gained increasing recognition. The MICAL family of proteins has emerged as important actin regulatory oxidation-reduction (Redox) enzymes, influencing actin's properties both in vitro and in vivo. MICALs specifically bind to actin filaments and selectively oxidize actin's methionine residues 44 and 47, which perturbs filaments' structure and leads to their disassembly. This review provides an overview of the MICALs and the impact of MICAL-mediated oxidation on actin's properties, including its assembly and disassembly, effects on other actin-binding proteins, and on cells and tissue systems.
Collapse
Affiliation(s)
- Sudeepa Rajan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, United States
| | - Jonathan R. Terman
- Departments of Neuroscience and Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Emil Reisler
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, United States
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
5
|
Goyal N, Singh M, Sagar N, Khurana N, Singh I. Association of E-cadherin & vimentin expression with clinicopathological parameters in lingual squamous cell carcinomas & their role in incomplete epithelial mesenchymal transition. Indian J Med Res 2021; 153:484-491. [PMID: 34380795 PMCID: PMC8354043 DOI: 10.4103/ijmr.ijmr_1409_18] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
Abstract
Background & objectives: Lingual squamous cell carcinomas (SCC) pose a major public health burden in India. Epithelial-mesenchymal transition (EMT) is the conversion of an epithelial cell to a mesenchymal phenotype at the invasive front (IF) enhancing invasiveness of these cells which may be studied using immunohistochemistry. The objective of this study was to assess the expression of E-cadherin and vimentin at the IF, and their correlation with the histological risk assessment score, clinicopathological parameters and lymph node metastasis. Methods: Thirty consecutive untreated patients diagnosed as lingual SCC who underwent hemiglossectomy over one year formed the study group. The immunohistochemical expression of E-cadherin and vimentin in the periphery as well as the centre of tumour islands was correlated with clinicopathological parameters, Brandwein-Gensler risk assessment score and lymph node metastasis, along with a correlation between the coexpression of two markers at the IF. Results: Loss of E-cadherin expression was seen at IF in 83.3 per cent (25/30) cases. Out of these, 20 per cent (5/25) showed a corresponding gain in vimentin expression (complete epithelial-mesenchymal transition) and 80 per cent (20/25) did not. Overall, 16.6 per cent (5/30) cases showed complete EMT. However, no correlation between E- cadherin and vimentin expression at the IF was found. No statistical significance was found between E-cadherin loss and vimentin gain at the IF, with the various parameters or the risk score. Interpretation & conclusions: The present study suggests that the cells at IF may metastasize even without a gain in vimentin expression (without classical EMT), as cohesive clusters showing incomplete EMT (E-cadh-/Vim-).
Collapse
Affiliation(s)
- Neelakshi Goyal
- Department of Pathology, Maulana Azad Medical College, New Delhi, India
| | - Meeta Singh
- Department of Pathology, Maulana Azad Medical College, New Delhi, India
| | - Nishant Sagar
- Department of Pathology, Maulana Azad Medical College, New Delhi, India
| | - Nita Khurana
- Department of Pathology, Maulana Azad Medical College, New Delhi, India
| | - Ishwar Singh
- Department of Otolaryngology, Maulana Azad Medical College, New Delhi, India
| |
Collapse
|
6
|
Zappaterra M, Zambonelli P, Schivazappa C, Simoncini N, Virgili R, Stefanon B, Davoli R. Investigating the Features of PDO Green Hams during Salting: Insights for New Markers and Genomic Regions in Commercial Hybrid Pigs. Animals (Basel) 2021; 11:E68. [PMID: 33401485 PMCID: PMC7823679 DOI: 10.3390/ani11010068] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 12/27/2020] [Accepted: 12/28/2020] [Indexed: 12/12/2022] Open
Abstract
Protected Designation of Origin (PDO) dry-cured hams production is greatly dependent on raw meat quality. This study was performed to identify genetic markers associated with the quality of dry-cured ham. Carcass traits of 229 heavy pigs belonging to three commercial genetic lines were registered (weight, EUROP classification). Phenotypic traits (Semimembranosus muscle ultimate pH, ham weight and lean meat content, adsorbed salt) of the corresponding thighs, undergone PDO ham process in three different plants, were measured, using a fast and non-invasive technology. Green ham weight and lean meat percentage influenced the estimated salt content and the weight loss during salting, even if the processing plant greatly affected the variability of the measured ham traits. The genomic data were obtained with the GeneSeek Genomic Profiler (GGP) 70k HD Porcine Array, using the slaughter day and the sex of the animals in the statistical analyses. The phenotypic traits were associated with the genotypes through GenAbel software. The results showed that 18 SNPs located on nine porcine chromosomes were found to be associated with nine phenotypic traits, mainly related to ham weight loss during salting. New associations were found between markers in the genes Neural Precursor Cell Expressed Developmentally Down-Regulated 9 (NEDD9, SSC7), T-Cell Lymphoma Invasion and Metastasis 2 (TIAM2, SSC1), and the ham quality traits. After validation, these SNPs may be useful to improve the quality of thighs for the production of PDO dry-cured hams.
Collapse
Affiliation(s)
- Martina Zappaterra
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Viale Fanin 46, I-40127 Bologna, Italy;
| | - Paolo Zambonelli
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Viale Fanin 46, I-40127 Bologna, Italy;
| | - Cristina Schivazappa
- Stazione Sperimentale per l’Industria delle Conserve Alimentari (SSICA), Viale Faustino Tanara 31/A, I-43121 Parma, Italy; (C.S.); (N.S.); (R.V.)
| | - Nicoletta Simoncini
- Stazione Sperimentale per l’Industria delle Conserve Alimentari (SSICA), Viale Faustino Tanara 31/A, I-43121 Parma, Italy; (C.S.); (N.S.); (R.V.)
| | - Roberta Virgili
- Stazione Sperimentale per l’Industria delle Conserve Alimentari (SSICA), Viale Faustino Tanara 31/A, I-43121 Parma, Italy; (C.S.); (N.S.); (R.V.)
| | - Bruno Stefanon
- Department of Agrifood, Environmental and Animal Science, University of Udine, Via delle Scienze 208, I-33100 Udine, Italy;
| | - Roberta Davoli
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Viale Fanin 46, I-40127 Bologna, Italy;
| |
Collapse
|
7
|
Liu G, Cai G, He X, Huang D, Zhu G, Chen C, Zhang X. KIF18A promotes head and neck squamous cell carcinoma invasion and migration via activation of Akt signaling pathway. Transl Cancer Res 2019; 8:2252-2263. [PMID: 35116978 PMCID: PMC8798418 DOI: 10.21037/tcr.2019.09.38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 09/09/2019] [Indexed: 11/06/2022]
Abstract
BACKGROUND KIF18A has been shown to participate in the development of various human malignancies. However, the role of KIF18A in head and neck squamous cell carcinoma (HNSCC) remains unknown. This study investigated the function of KIF18A in HNSCC as well as its possible mechanisms. METHODS In this study, we conducted in vitro experiments. First, we examined the effect of KIF18A on Tu686 and 6-10B cells via determining cell viability, colony formation ability and cell motility. And then, we examined that whether the carcinogenic effect of KIF18A is associated with Akt activation. RESULTS Our current study demonstrated that KIF18A expression was increased in HNSCC patients and its cell lines. Knockdown and overexpression of KIF18A in HNSCC cells indicated that KIF18A promoted cancer cell proliferation, invasion and migration. Moreover, these bioactivity changes in HNSCC cells were accompanied by enhanced Vimentin expression and suppressed E-cadherin expression induced by KIF18A. Further mechanistic analysis revealed that the carcinogenic effect of KIF18A is associated with Akt activation, and blocking the activity of Akt reversed the malignant progression caused by KIF18A overexpression in HNSCC cells. CONCLUSIONS Together, our study reveals that KIF18A accelerates the progression of HNSCC and that targeting KIF18A may be a potential therapeutic strategy for the HNSCC.
Collapse
Affiliation(s)
- Guancheng Liu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha 410008, China.,Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Guilin Medical University, Guilin 541001, China
| | - Gengming Cai
- Department of Otolaryngology Head and Neck Surgery, First Affiliated Hospital of Quanzhou, Fujian Medical University, Quanzhou 362000, China
| | - Xiaosong He
- Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Guilin Medical University, Guilin 541001, China
| | - Donghai Huang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Gangcai Zhu
- Department of Otolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha 410010, China
| | - Changhan Chen
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xin Zhang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
8
|
Peltanova B, Raudenska M, Masarik M. Effect of tumor microenvironment on pathogenesis of the head and neck squamous cell carcinoma: a systematic review. Mol Cancer 2019; 18:63. [PMID: 30927923 PMCID: PMC6441173 DOI: 10.1186/s12943-019-0983-5] [Citation(s) in RCA: 274] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 02/25/2019] [Indexed: 12/25/2022] Open
Abstract
The tumor microenvironment (TME) is comprised of many different cell populations, such as cancer-associated fibroblasts and various infiltrating immune cells, and non-cell components of extracellular matrix. These crucial parts of the surrounding stroma can function as both positive and negative regulators of all hallmarks of cancer development, including evasion of apoptosis, induction of angiogenesis, deregulation of the energy metabolism, resistance to the immune detection and destruction, and activation of invasion and metastasis. This review represents a summary of recent studies focusing on describing these effects of microenvironment on initiation and progression of the head and neck squamous cell carcinoma, focusing on oral squamous cell carcinoma, since it is becoming clear that an investigation of differences in stromal composition of the head and neck squamous cell carcinoma microenvironment and their impact on cancer development and progression may help better understand the mechanisms behind different responses to therapy and help define possible targets for clinical intervention.
Collapse
Affiliation(s)
- Barbora Peltanova
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00, Brno, Czech Republic
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00, Brno, Czech Republic
| | - Martina Raudenska
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00, Brno, Czech Republic
| | - Michal Masarik
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00, Brno, Czech Republic.
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00, Brno, Czech Republic.
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595,, CZ-252 50, Vestec, Czech Republic.
| |
Collapse
|