1
|
Yan J, Yang A, Tu S. The relationship between keratin 18 and epithelial-derived tumors: as a diagnostic marker, prognostic marker, and its role in tumorigenesis. Front Oncol 2024; 14:1445978. [PMID: 39502314 PMCID: PMC11534658 DOI: 10.3389/fonc.2024.1445978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 09/25/2024] [Indexed: 11/08/2024] Open
Abstract
As a structural protein, keratin is mainly expressed in epithelial cells and skin appendages to provide mechanical support and external resistance. The keratin family has a total of 54 members, which are divided into type I and type II. Two types of keratins connect to each other to form keratin intermediate filaments and participate in the construction of the cytoskeleton. K18 is a non-hair keratin, which is widely expressed in simple epithelial tissues with its partner, K8. Compared with mechanical support, K8/K18 pairs play more important roles in biological regulation, such as mediating anti-apoptosis, regulating cell cycle progression, and transmitting signals. Mutations in K18 can cause a variety of non-neoplastic diseases of the visceral epithelium. In addition, the expression levels of K18 are frequently altered in various epithelial-derived tumors, especially adenocarcinomas, which suggests that K18 may be involved in tumorigenesis. Due to the specific expression pattern of K18 in tumor tissues and its serum level reflecting tumor cell death, apply K18 to diagnose tumors and predict its prognosis have the potential to be simple and effective alternative methods. However, these potential roles of K18 in tumors have not been fully summarized. In this review, we focus on the relationship between K18 and epithelial-derived tumors, discuss the value of K18 as a diagnostic and prognostic marker, and summarize the interactions of K18 with various related proteins in tumorigenesis, with examples of simple epithelial tumors such as lung, breast, liver, and gastrointestinal cancers.
Collapse
Affiliation(s)
- Jiazhi Yan
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Aiwei Yang
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Shuo Tu
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
2
|
Sousa GC, Carvalho MG, Fonseca-Alves CE, Souza FF. Serum Extracellular Vesicles Cargo Approach in Bitches with Mammary Tumors. Curr Issues Mol Biol 2024; 46:7745-7768. [PMID: 39057100 PMCID: PMC11275879 DOI: 10.3390/cimb46070459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
This study investigated serum extracellular vesicles (EVs) in bitches with mammary neoplasms, in order to understand their size, shape, and concentration, as well as their association with tumor malignancy. Thirty bitches were categorized into control (n = 10), mammary tumor grades I and II (GI, n = 13), and grade III (GII, n = 7). Serum was separated from blood collected during mastectomy, and EVs were isolated using size exclusion chromatography. The analysis revealed no significant differences in EV concentrations among groups, with similar concentrations for control, GI, and GII. Ninety-one proteins were identified in EV-enriched samples, with six showing varied abundance across groups. Notably, keratin 18 was highly abundant in GI, while sushi domain-containing protein, EvC ciliary subunit 2, and the joining chain of multimeric IgM and IgA were increased in GII. Additionally, protocadherin 17 and albumin were upregulated in both GI and GII. ROC curves identified potential biomarkers for differentiating tumor grades. Enrichment pathway analysis revealed AFP gene upregulation in the GI. Mass spectrometry proteomics data were deposited in Mendeley Data. The study provides valuable insights into serum EV characterization in bitches, suggesting keratin 18 and protocadherin 17 as potential biomarkers for canine mammary neoplasia, with implications for future diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Gabriela C. Sousa
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University, Unesp, Botucatu 18618-687, São Paulo, Brazil; (G.C.S.); (M.G.C.); (C.E.F.-A.)
- Department of Small Animal Clinical Sciences, Virginia Maryland College of Veterinary Medicine, Blacksburg, VA 24061, USA
| | - Marcos G. Carvalho
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University, Unesp, Botucatu 18618-687, São Paulo, Brazil; (G.C.S.); (M.G.C.); (C.E.F.-A.)
| | - Carlos E. Fonseca-Alves
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University, Unesp, Botucatu 18618-687, São Paulo, Brazil; (G.C.S.); (M.G.C.); (C.E.F.-A.)
| | - Fabiana F. Souza
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University, Unesp, Botucatu 18618-687, São Paulo, Brazil; (G.C.S.); (M.G.C.); (C.E.F.-A.)
| |
Collapse
|
3
|
Thakur C, Qiu Y, Pawar A, Chen F. Epigenetic regulation of breast cancer metastasis. Cancer Metastasis Rev 2024; 43:597-619. [PMID: 37857941 DOI: 10.1007/s10555-023-10146-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 10/02/2023] [Indexed: 10/21/2023]
Abstract
Breast cancer is the most frequently diagnosed malignancy and the second leading cause of cancer-related mortality among women worldwide. Recurrent metastasis is associated with poor patient outcomes and poses a significant challenge in breast cancer therapies. Cancer cells adapting to a new tissue microenvironment is the key event in distant metastasis development, where the disseminating tumor cells are likely to acquire genetic and epigenetic alterations during the process of metastatic colonization. Despite several decades of research in this field, the exact mechanisms governing metastasis are not fully understood. However, emerging body of evidence indicates that in addition to genetic changes, epigenetic reprogramming of cancer cells and the metastatic niche are paramount toward successful metastasis. Here, we review and discuss the latest knowledge about the salient attributes of metastasis and epigenetic regulation in breast cancer and crucial research domains that need further investigation.
Collapse
Affiliation(s)
- Chitra Thakur
- Stony Brook Cancer Center, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY, 11794, USA.
| | - Yiran Qiu
- Stony Brook Cancer Center, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY, 11794, USA
| | - Aashna Pawar
- Stony Brook Cancer Center, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY, 11794, USA
| | - Fei Chen
- Stony Brook Cancer Center, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY, 11794, USA.
| |
Collapse
|
4
|
Butler C, Dunmire M, Choi J, Szalai G, Johnson A, Lei W, Chen X, Liu L, Li W, Walter MJ, Liu T. HSPA9/mortalin inhibition disrupts erythroid maturation through a TP53-dependent mechanism in human CD34+ hematopoietic progenitor cells. Cell Stress Chaperones 2024; 29:300-311. [PMID: 38508444 PMCID: PMC10998001 DOI: 10.1016/j.cstres.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 03/16/2024] [Accepted: 03/16/2024] [Indexed: 03/22/2024] Open
Abstract
Myelodysplastic syndromes (MDS) are a heterogeneous group of clonal hematopoietic stem cell malignancies characterized by abnormal hematopoietic cell maturation, increased apoptosis of bone marrow cells, and anemia. They are the most common myeloid blood cancers in American adults. The full complement of gene mutations that contribute to the phenotypes or clinical symptoms in MDS is not fully understood. Around 10%-25% of MDS patients harbor an interstitial heterozygous deletion on the long arm of chromosome 5 [del(5q)], creating haploinsufficiency for a large set of genes, including HSPA9. The HSPA9 gene encodes for the protein mortalin, a highly conserved heat shock protein predominantly localized in mitochondria. Our prior study showed that knockdown of HSPA9 induces TP53-dependent apoptosis in human CD34+ hematopoietic progenitor cells. In this study, we explored the role of HSPA9 in regulating erythroid maturation using human CD34+ cells. We inhibited the expression of HSPA9 using gene knockdown and pharmacological inhibition and found that inhibition of HSPA9 disrupted erythroid maturation as well as increased expression of p53 in CD34+ cells. To test whether the molecular mechanism of HSPA9 regulating erythroid maturation is TP53-dependent, we knocked down HSPA9 and TP53 individually or in combination in human CD34+ cells. We found that the knockdown of TP53 partially rescued the erythroid maturation defect induced by HSPA9 knockdown, suggesting that the defect in cells with reduced HSPA9 expression is TP53-dependent. Collectively, these findings indicate that reduced levels of HSPA9 may contribute to the anemia observed in del(5q)-associated MDS patients due to the activation of TP53.
Collapse
Affiliation(s)
- Christopher Butler
- Department of Biomedical Sciences, West Virginia School of Osteopathic Medicine, Lewisburg, WV, USA
| | - Morgan Dunmire
- Department of Biomedical Sciences, West Virginia School of Osteopathic Medicine, Lewisburg, WV, USA
| | - Jaebok Choi
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Gabor Szalai
- Department of Biomedical Sciences, Burrell College of Osteopathic Medicine, Las Cruces, NM, USA
| | - Anissa Johnson
- Department of Biomedical Sciences, Burrell College of Osteopathic Medicine, Las Cruces, NM, USA
| | - Wei Lei
- Department of Pharmaceutical and Graduate Life Sciences, Manchester University College of Pharmacy, Natural and Health Sciences, Fort Wayne, IN, USA
| | - Xin Chen
- Department of Pharmaceutical and Clinical Sciences, College of Pharmacy and Health Sciences, Campbell University, Buies Creek, NC, USA
| | - Liang Liu
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Wei Li
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA
| | - Matthew J Walter
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Tuoen Liu
- Department of Biomedical Sciences, West Virginia School of Osteopathic Medicine, Lewisburg, WV, USA.
| |
Collapse
|
5
|
Mishra DK, Popovski D, Morris SM, Bondoc A, Senthil Kumar S, Girard EJ, Rutka J, Fouladi M, Huang A, Olson JM, Drissi R. Preclinical pediatric brain tumor models for immunotherapy: Hurdles and a way forward. Neuro Oncol 2024; 26:226-235. [PMID: 37713135 PMCID: PMC10836771 DOI: 10.1093/neuonc/noad170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Indexed: 09/16/2023] Open
Abstract
Brain tumors are the most common solid tumor in children and the leading cause of cancer-related deaths. Over the last few years, improvements have been made in the diagnosis and treatment of children with Central Nervous System tumors. Unfortunately, for many patients with high-grade tumors, the overall prognosis remains poor. Lower survival rates are partly attributed to the lack of efficacious therapies. The advent and success of immune checkpoint inhibitors (ICIs) in adults have sparked interest in investigating the utility of these therapies alone or in combination with other drug treatments in pediatric patients. However, to achieve improved clinical outcomes, the establishment and selection of relevant and robust preclinical pediatric high-grade brain tumor models is imperative. Here, we review the information that influenced our model selection as we embarked on an international collaborative study to test ICIs in combination with epigenetic modifying agents to enhance adaptive immunity to treat pediatric brain tumors. We also share challenges that we faced and potential solutions.
Collapse
Affiliation(s)
- Deepak Kumar Mishra
- Center for Childhood Cancer Research, Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Dean Popovski
- Arthur and Sonia Labatt Brain Tumor Research Centre, Division of Haematology/Oncology, Hospital for Sick Children, Toronto, Onatario, Canada
| | - Shelli M Morris
- Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Andrew Bondoc
- Arthur and Sonia Labatt Brain Tumor Research Centre, Division of Haematology/Oncology, Hospital for Sick Children, Toronto, Onatario, Canada
| | - Shiva Senthil Kumar
- Center for Childhood Cancer Research, Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Emily J Girard
- Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - James Rutka
- Division of Neurosurgery, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Maryam Fouladi
- Pediatric Neuro-Oncology Program, Nationwide Children’s Hospital, Columbus, Ohio, USA
- The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Annie Huang
- Arthur and Sonia Labatt Brain Tumor Research Centre, Division of Haematology/Oncology, Hospital for Sick Children, Toronto, Onatario, Canada
| | - James M Olson
- Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Rachid Drissi
- Center for Childhood Cancer Research, Nationwide Children’s Hospital, Columbus, Ohio, USA
- The Ohio State University College of Medicine, Columbus, Ohio, USA
| |
Collapse
|
6
|
Heebkaew N, Promjantuek W, Chaicharoenaudomrung N, Phonchai R, Kunhorm P, Soraksa N, Noisa P. Encapsulation of HaCaT Secretome for Enhanced Wound Healing Capacity on Human Dermal Fibroblasts. Mol Biotechnol 2024; 66:44-55. [PMID: 37016178 DOI: 10.1007/s12033-023-00732-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 03/23/2023] [Indexed: 04/06/2023]
Abstract
In the epidermal and dermal layers of the skin, diverse cell types are reconstituted during the wound healing process. Delays or failures in wound healing are a major issue in skin therapy because they prevent the normal structure and function of wounded tissue from being restored, resulting in ulceration or other skin abnormalities. Human immortalized keratinocytes (HaCAT) cells are a spontaneously immortalized human keratinocyte cell line capable of secreting many bioactive chemicals (a secretome) that stimulate skin cell proliferation, rejuvenation, and regeneration. In this study, the HaCaT secretome was encapsulated with polyesters such as poly (lactic-co-glycolic acid) (PLGA) and cassava starch in an effort to maximize its potential. According to the estimated mechanism of the HaCaT secretome, all treatments were conducted on immortalized dermal fibroblast cell lines, a model of wound healing. Encapsulation of HaCaT secretome and cassava starch enhanced the effectiveness of cell proliferation, migration, and anti-aging. On the other hand, the levels of reactive oxygen species (ROS) were lowered, activating antioxidants in immortalized dermal fibroblast cells. The HaCaT secretome induced in a dose-dependent manner the expression of antioxidant-associated genes, including SOD, CAT, and GPX. Six cytokines, including CCL2 and MCP-1, influenced immunoregulatory and inflammatory processes in cultured HaCAT cells. HaCaT secretome encapsulated in cassava starch can reduce ROS buildup by boosting antioxidant to stimulate wound healing. Hence, the HaCaT secretome may have a new chance in the cosmetics business to develop components for wound prevention and healing.
Collapse
Affiliation(s)
- Nudjanad Heebkaew
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Nakhon Ratchasima, 30000, Thailand
| | - Wilasinee Promjantuek
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Nakhon Ratchasima, 30000, Thailand
| | - Nipha Chaicharoenaudomrung
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Nakhon Ratchasima, 30000, Thailand
| | - Ruchee Phonchai
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Nakhon Ratchasima, 30000, Thailand
| | - Phongsakorn Kunhorm
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Nakhon Ratchasima, 30000, Thailand
| | - Natchadaporn Soraksa
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Nakhon Ratchasima, 30000, Thailand
| | - Parinya Noisa
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Nakhon Ratchasima, 30000, Thailand.
| |
Collapse
|
7
|
Guzmán EA, Peterson TA, Wright AE. The Marine Natural Compound Dragmacidin D Selectively Induces Apoptosis in Triple-Negative Breast Cancer Spheroids. Mar Drugs 2023; 21:642. [PMID: 38132962 PMCID: PMC10871089 DOI: 10.3390/md21120642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023] Open
Abstract
Cancer cells grown in 3D spheroid cultures are considered more predictive for clinical efficacy. The marine natural product dragmacidin D induces apoptosis in MDA-MB-231 and MDA-MB-468 triple-negative breast cancer (TNBC) spheroids within 24 h of treatment while showing no cytotoxicity against the same cells grown in monolayers and treated for 72 h. The IC50 for cytotoxicity based on caspase 3/7 cleavage in the spheroid assay was 8 ± 1 µM in MDA-MB-231 cells and 16 ± 0.6 µM in MDA-MB-468 cells at 24 h. No cytotoxicity was seen at all in 2D, even at the highest concentration tested. Thus, the IC50 for cytotoxicity in the MTT assay (2D) in these cells was found to be >75 µM at 72 h. Dragmacidin D exhibited synergy when used in conjunction with paclitaxel, a current treatment for TNBC. Studies into the signaling changes using a reverse-phase protein array showed that treatment with dragmacidin D caused significant decreases in histones. Differential protein expression was used to hypothesize that its potential mechanism of action involves acting as a protein synthesis inhibitor or a ribonucleotide reductase inhibitor. Further testing is necessary to validate this hypothesis. Dragmacidin D also caused a slight decrease in an invasion assay in the MDA-MB-231 cells, although this failed to be statistically significant. Dragmacidin D shows intriguing selectivity for spheroids and has the potential to be a treatment option for triple-negative breast cancer, which merits further research into understanding this activity.
Collapse
Affiliation(s)
- Esther A. Guzmán
- Marine Biomedical and Biotechnology Research, Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 US 1 North, Fort Pierce, FL 34946, USA; (T.A.P.); (A.E.W.)
| | | | | |
Collapse
|
8
|
Farahani MK, Gharibshahian M, Rezvani A, Vaez A. Breast cancer brain metastasis: from etiology to state-of-the-art modeling. J Biol Eng 2023; 17:41. [PMID: 37386445 DOI: 10.1186/s13036-023-00352-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 05/02/2023] [Indexed: 07/01/2023] Open
Abstract
Currently, breast carcinoma is the most common form of malignancy and the main cause of cancer mortality in women worldwide. The metastasis of cancer cells from the primary tumor site to other organs in the body, notably the lungs, bones, brain, and liver, is what causes breast cancer to ultimately be fatal. Brain metastases occur in as many as 30% of patients with advanced breast cancer, and the 1-year survival rate of these patients is around 20%. Many researchers have focused on brain metastasis, but due to its complexities, many aspects of this process are still relatively unclear. To develop and test novel therapies for this fatal condition, pre-clinical models are required that can mimic the biological processes involved in breast cancer brain metastasis (BCBM). The application of many breakthroughs in the area of tissue engineering has resulted in the development of scaffold or matrix-based culture methods that more accurately imitate the original extracellular matrix (ECM) of metastatic tumors. Furthermore, specific cell lines are now being used to create three-dimensional (3D) cultures that can be used to model metastasis. These 3D cultures satisfy the requirement for in vitro methodologies that allow for a more accurate investigation of the molecular pathways as well as a more in-depth examination of the effects of the medication being tested. In this review, we talk about the latest advances in modeling BCBM using cell lines, animals, and tissue engineering methods.
Collapse
Affiliation(s)
| | - Maliheh Gharibshahian
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Alireza Rezvani
- Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Ahmad Vaez
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
9
|
Muthumanickam S, Ramachandran B, Boomi P, Jeyakanthan J, Prabu HG, Jegatheswaran S, Premkumar K. Combination of bendamustine-azacitidine against Syk target of breast cancer: an in silico study. J Biomol Struct Dyn 2023; 41:13950-13962. [PMID: 37098715 DOI: 10.1080/07391102.2023.2203259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/28/2023] [Indexed: 04/27/2023]
Abstract
Breast cancer (BC) is the most serious and second leading cause of death in women worldwide. When breast cancer is diagnosed and treated early, the chance of long-term survival is up to 90%. On the other hand, 90% of BC patient deaths are due to metastasis and a lack of effective early diagnosis. The existing conventional chemotherapy provides negative feedback due to transportation barriers towards the action sites, multidrug resistance, poor bio-availability, non-specific delivery and systemic side effects on the healthy tissue. Syk protein Kinase has been reported in BC, as a tumor modulator, providing a pro-survival signal and also by restricting epithelial-mesenchymal transition, enhancing cell-cell interactions and inhibiting migration. In the present study, we explored the possibility of targeting BC by attenuating Syk protein Kinase. Hence, we have conjugated the hydrophobic Bendamustine (BEN) and hydrophilic Azacitidine (AZA) anticancer drugs to evaluate their efficacy against BC. The native drugs (BEN and AZA) and designed drug-drug conjugate (BEN-AZA) were docked with Syk protein. Then, the docked complex was performed for Binding Free Energy and Molecular Dynamics Simulations. Furthermore, DFT and ADME properties were carried out. The results revealed that the designed drug-drug conjugate has a better docking score, ΔGbind and admirable stability throughout the simulation when compared with native drugs. In DFT and ADME analyses, the designed drug-drug conjugate has shown good stereo electronic features and pharmaceutical relevant parameters than that of native drugs. The overall results suggested that the designed drug-drug conjugate may be a suitable candidate for BC treatment.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | | | - Pandi Boomi
- Department of Bioinformatics, Alagappa University, Karaikudi, Tamil Nadu, India
| | | | - Halliah Gurumallesh Prabu
- Department of Industrial Chemistry, School of Chemical Sciences, Alagappa University, Karaikudi, Tamil Nadu, India
| | | | - Kumpati Premkumar
- Department of Biomedical Science, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| |
Collapse
|
10
|
Genetics, Treatment, and New Technologies of Hormone Receptor-Positive Breast Cancer. Cancers (Basel) 2023; 15:cancers15041303. [PMID: 36831644 PMCID: PMC9954687 DOI: 10.3390/cancers15041303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 02/12/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
The current molecular classification divides breast cancer into four major subtypes, including luminal A, luminal B, HER2-positive, and basal-like, based on receptor gene expression profiling. Luminal A and luminal B are hormone receptor (HR, estrogen, and/or progesterone receptor)-positive and are the most common subtypes, accounting for around 50-60% and 15-20% of the total breast cancer cases, respectively. The drug treatment for HR-positive breast cancer includes endocrine therapy, HER2-targeted therapy (depending on the HER2 status), and chemotherapy (depending on the risk of recurrence). In this review, in addition to classification, we focused on discussing the important aspects of HR-positive breast cancer, including HR structure and signaling, genetics, including epigenetics and gene mutations, gene expression-based assays, the traditional and new drugs for treatment, and novel or new uses of technology in diagnosis and treatment. Particularly, we have summarized the commonly mutated genes and abnormally methylated genes in HR-positive breast cancer and compared four common gene expression-based assays that are used in breast cancer as prognostic and/or predictive tools in detail, including their clinical use, the factors being evaluated, patient demographics, and the scoring systems. All these topic discussions have not been fully described and summarized within other research or review articles.
Collapse
|
11
|
Epigenetic Regulation in Breast Cancer: Insights on Epidrugs. EPIGENOMES 2023; 7:epigenomes7010006. [PMID: 36810560 PMCID: PMC9953240 DOI: 10.3390/epigenomes7010006] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Breast cancer remains a common cause of cancer-related death in women. Therefore, further studies are necessary for the comprehension of breast cancer and the revolution of breast cancer treatment. Cancer is a heterogeneous disease that results from epigenetic alterations in normal cells. Aberrant epigenetic regulation is strongly associated with the development of breast cancer. Current therapeutic approaches target epigenetic alterations rather than genetic mutations due to their reversibility. The formation and maintenance of epigenetic changes depend on specific enzymes, including DNA methyltransferases and histone deacetylases, which are promising targets for epigenetic-based therapy. Epidrugs target different epigenetic alterations, including DNA methylation, histone acetylation, and histone methylation, which can restore normal cellular memory in cancerous diseases. Epigenetic-targeted therapy using epidrugs has anti-tumor effects on malignancies, including breast cancer. This review focuses on the importance of epigenetic regulation and the clinical implications of epidrugs in breast cancer.
Collapse
|
12
|
Kondo S, Okabe A, Nakagawa T, Matsusaka K, Fukuyo M, Rahmutulla B, Dochi H, Mizokami H, Kitagawa Y, Kurokawa T, Mima M, Endo K, Sugimoto H, Wakisaka N, Misawa K, Yoshizaki T, Kaneda A. Repression of DERL3 via DNA methylation by Epstein-Barr virus latent membrane protein 1 in nasopharyngeal carcinoma. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166598. [PMID: 36372158 DOI: 10.1016/j.bbadis.2022.166598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 08/05/2022] [Accepted: 10/22/2022] [Indexed: 11/13/2022]
Abstract
Nasopharyngeal carcinoma (NPC) is Epstein-Barr virus (EBV)-associated invasive malignancy. Increasing evidence indicates that epigenetic abnormalities, including DNA methylation, play important roles in the development of NPC. In particular, the EBV principal oncogene, latent membrane protein 1 (LMP1), is considered a key factor in inducing aberrant DNA methylation of several tumour suppressor genes in NPC, although the mechanism remains unclear. Herein, we comprehensively analysed the methylome data of Infinium BeadArray from 51 NPC and 52 normal nasopharyngeal tissues to identify LMP1-inducible methylation genes. Using hierarchical clustering analysis, we classified NPC into the high-methylation, low-methylation, and normal-like subgroups. We defined high-methylation genes as those that were methylated in the high-methylation subgroup only and common methylation genes as those that were methylated in both high- and low-methylation subgroups. Subsequently, we identified 715 LMP1-inducible methylation genes by observing the methylome data of the nasopharyngeal epithelial cell line with or without LMP1 expression. Because high-methylation genes were enriched with LMP1-inducible methylation genes, we extracted 95 high-methylation genes that overlapped with the LMP1-inducible methylation genes. Among them, we identified DERL3 as the most significantly methylated gene affected by LMP1 expression. DERL3 knockdown in cell lines resulted in significantly increased cell proliferation, migration, and invasion. Lower DERL3 expression was more frequently detected in the advanced T-stage NPC than in early T-stage NPC. These results indicate that DERL3 repression by DNA methylation contributes to NPC tumour progression.
Collapse
Affiliation(s)
- Satoru Kondo
- Division of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan; Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Chiba 260-0856, Japan
| | - Atsushi Okabe
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Chiba 260-0856, Japan
| | - Takuya Nakagawa
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Chiba 260-0856, Japan; Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medicine, Chiba University, Chiba, Chiba 260-2856, Japan
| | - Keisuke Matsusaka
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Chiba 260-0856, Japan; Department of Pathology, Chiba University Hospital, Chiba, Chiba 260-2856, Japan
| | - Masaki Fukuyo
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Chiba 260-0856, Japan; Department of Genome Research and Development, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Bahityar Rahmutulla
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Chiba 260-0856, Japan
| | - Hirotomo Dochi
- Division of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan
| | - Harue Mizokami
- Division of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan; Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Chiba 260-0856, Japan
| | - Yuki Kitagawa
- Division of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan
| | - Tomoya Kurokawa
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Chiba 260-0856, Japan; Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medicine, Chiba University, Chiba, Chiba 260-2856, Japan
| | - Masato Mima
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Chiba 260-0856, Japan; Department of Otorhinolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
| | - Kazuhira Endo
- Division of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan
| | - Hisashi Sugimoto
- Division of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan
| | - Naohiro Wakisaka
- Division of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan
| | - Kiyoshi Misawa
- Department of Otorhinolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
| | - Tomokazu Yoshizaki
- Division of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan
| | - Atsushi Kaneda
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Chiba 260-0856, Japan.
| |
Collapse
|
13
|
Skouras P, Markouli M, Strepkos D, Piperi C. Advances on Epigenetic Drugs for Pediatric Brain Tumors. Curr Neuropharmacol 2023; 21:1519-1535. [PMID: 36154607 PMCID: PMC10472812 DOI: 10.2174/1570159x20666220922150456] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/14/2022] [Accepted: 09/08/2022] [Indexed: 11/22/2022] Open
Abstract
Pediatric malignant brain tumors represent the most frequent cause of cancer-related deaths in childhood. The therapeutic scheme of surgery, radiotherapy and chemotherapy has improved patient management, but with minimal progress in patients' prognosis. Emerging molecular targets and mechanisms have revealed novel approaches for pediatric brain tumor therapy, enabling personalized medical treatment. Advances in the field of epigenetic research and their interplay with genetic changes have enriched our knowledge of the molecular heterogeneity of these neoplasms and have revealed important genes that affect crucial signaling pathways involved in tumor progression. The great potential of epigenetic therapy lies mainly in the widespread location and the reversibility of epigenetic alterations, proposing a wide range of targeting options, including the possible combination of chemoand immunotherapy, significantly increasing their efficacy. Epigenetic drugs, including inhibitors of DNA methyltransferases, histone deacetylases and demethylases, are currently being tested in clinical trials on pediatric brain tumors. Additional novel epigenetic drugs include protein and enzyme inhibitors that modulate epigenetic modification pathways, such as Bromodomain and Extraterminal (BET) proteins, Cyclin-Dependent Kinase 9 (CDK9), AXL, Facilitates Chromatin Transcription (FACT), BMI1, and CREB Binding Protein (CBP) inhibitors, which can be used either as standalone or in combination with current treatment approaches. In this review, we discuss recent progress on epigenetic drugs that could possibly be used against the most common malignant tumors of childhood, such as medulloblastomas, high-grade gliomas and ependymomas.
Collapse
Affiliation(s)
- Panagiotis Skouras
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Mariam Markouli
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Dimitrios Strepkos
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
14
|
Nirgude S, Desai S, Choudhary B. Genome-wide differential DNA methylation analysis of MDA-MB-231 breast cancer cells treated with curcumin derivatives, ST08 and ST09. BMC Genomics 2022; 23:807. [PMID: 36474139 PMCID: PMC9727864 DOI: 10.1186/s12864-022-09041-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 10/17/2022] [Indexed: 12/12/2022] Open
Abstract
ST08 and ST09 are potent curcumin derivatives with antiproliferative, apoptotic, and migrastatic properties. Both ST08 and ST09 exhibit in vitro and in vivo anticancer properties. As reported earlier, these derivatives were highly cytotoxic towards MDA-MB-231 triple-negative breast cancer cells with IC50 values in the nanomolar (40-80nM) range.In this study,we performed whole-genome bisulfite sequencing(WGBS) of untreated (control), ST08 and ST09 (treated) triple-negative breast cancer cell line MDA-MB-231 to unravel epigenetic changes induced by the drug. We identified differentially methylated sites (DMSs) enriched in promoter regions across the genome. Analysis of the CpG island promoter methylation identified 12 genes common to both drugs, and 50% of them are known to be methylated in patient samples that were hypomethylated by drugs belonging to the homeobox family transcription factors.Methylation analysis of the gene body revealed 910 and 952 genes to be hypermethylatedin ST08 and ST09 treated MDA-MB-231 cells respectively. Correlation of the gene body hypermethylation with expression revealed CACNAH1 to be upregulated in ST08 treatment and CDH23 upregulation in ST09.Further, integrated analysis of the WGBS with RNA-seq identified uniquely altered pathways - ST08 altered ECM pathway, and ST09 cell cycle, indicating drug-specific signatures.
Collapse
Affiliation(s)
- Snehal Nirgude
- grid.418831.70000 0004 0500 991XInstitute of Bioinformatics and Applied Biotechnology, Electronic city phase 1, 560100 Bangalore, India ,grid.239552.a0000 0001 0680 8770Working at Division of Human Genetics, Children’s Hospital of Philadelphia, 19104 Philadelphia, PA USA
| | - Sagar Desai
- grid.418831.70000 0004 0500 991XInstitute of Bioinformatics and Applied Biotechnology, Electronic city phase 1, 560100 Bangalore, India
| | - Bibha Choudhary
- grid.418831.70000 0004 0500 991XInstitute of Bioinformatics and Applied Biotechnology, Electronic city phase 1, 560100 Bangalore, India
| |
Collapse
|
15
|
Zhang J, Chan DW, Lin SY. Exploiting DNA Replication Stress as a Therapeutic Strategy for Breast Cancer. Biomedicines 2022; 10:2775. [PMID: 36359297 PMCID: PMC9687274 DOI: 10.3390/biomedicines10112775] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/19/2022] [Accepted: 10/27/2022] [Indexed: 09/19/2023] Open
Abstract
Proliferating cells rely on DNA replication to ensure accurate genome duplication. Cancer cells, including breast cancer cells, exhibit elevated replication stress (RS) due to the uncontrolled oncogenic activation, loss of key tumor suppressors, and defects in the DNA repair machinery. This intrinsic vulnerability provides a great opportunity for therapeutic exploitation. An increasing number of drug candidates targeting RS in breast cancer are demonstrating promising efficacy in preclinical and early clinical trials. However, unresolved challenges lie in balancing the toxicity of these drugs while maintaining clinical efficacy. Furthermore, biomarkers of RS are urgently required to guide patient selection. In this review, we introduce the concept of targeting RS, detail the current therapies that target RS, and highlight the integration of RS with immunotherapies for breast cancer treatment. Additionally, we discuss the potential biomarkers to optimizing the efficacy of these therapies. Together, the continuous advances in our knowledge of targeting RS would benefit more patients with breast cancer.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | - Shiaw-Yih Lin
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
16
|
Zhou J, Liu T, Xu H, Wang Y, Liu L. LncRNA FIRRE promotes the proliferation and metastasis of hepatocellular carcinoma by regulating the expression of PXN through interacting with MBNL3. Biochem Biophys Res Commun 2022; 625:188-195. [DOI: 10.1016/j.bbrc.2022.07.099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/06/2022] [Accepted: 07/25/2022] [Indexed: 11/24/2022]
|
17
|
Knier NN, Pellizzari S, Zhou J, Foster PJ, Parsyan A. Preclinical Models of Brain Metastases in Breast Cancer. Biomedicines 2022; 10:biomedicines10030667. [PMID: 35327469 PMCID: PMC8945440 DOI: 10.3390/biomedicines10030667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/08/2022] [Accepted: 03/08/2022] [Indexed: 02/05/2023] Open
Abstract
Breast cancer remains a leading cause of mortality among women worldwide. Brain metastases confer extremely poor prognosis due to a lack of understanding of their specific biology, unique physiologic and anatomic features of the brain, and limited treatment strategies. A major roadblock in advancing the treatment of breast cancer brain metastases (BCBM) is the scarcity of representative experimental preclinical models. Current models are predominantly based on the use of animal xenograft models with immortalized breast cancer cell lines that poorly capture the disease’s heterogeneity. Recent years have witnessed the development of patient-derived in vitro and in vivo breast cancer culturing systems that more closely recapitulate the biology from individual patients. These advances led to the development of modern patient-tissue-based experimental models for BCBM. The success of preclinical models is also based on the imaging technologies used to detect metastases. Advances in animal brain imaging, including cellular MRI and multimodality imaging, allow sensitive and specific detection of brain metastases and monitoring treatment responses. These imaging technologies, together with novel translational breast cancer models based on patient-derived cancer tissues, represent a unique opportunity to advance our understanding of brain metastases biology and develop novel treatment approaches. This review discusses the state-of-the-art knowledge in preclinical models of this disease.
Collapse
Affiliation(s)
- Natasha N. Knier
- Department of Medical Biophysics, Western University, London, ON N6A 5C1, Canada; (N.N.K.); (P.J.F.)
- Imaging Laboratories, Robarts Research Institute, London, ON N6A 5B7, Canada
| | - Sierra Pellizzari
- Department of Anatomy and Cell Biology, Western University, London, ON N6A 3K7, Canada;
| | - Jiangbing Zhou
- Department of Neurosurgery, Yale University, New Haven, CT 06510, USA;
| | - Paula J. Foster
- Department of Medical Biophysics, Western University, London, ON N6A 5C1, Canada; (N.N.K.); (P.J.F.)
- Imaging Laboratories, Robarts Research Institute, London, ON N6A 5B7, Canada
| | - Armen Parsyan
- Department of Anatomy and Cell Biology, Western University, London, ON N6A 3K7, Canada;
- London Regional Cancer Program, London Health Science Centre, London, ON N6A 5W9, Canada
- Department of Oncology, Western University, London, ON N6A 4L6, Canada
- Department of Surgery, Western University, London, ON N6A 3K7, Canada
- Correspondence: ; Tel.: +1-519-646-4831; Fax: +1-519-646-6327
| |
Collapse
|
18
|
Brown LJ, Achinger-Kawecka J, Portman N, Clark S, Stirzaker C, Lim E. Epigenetic Therapies and Biomarkers in Breast Cancer. Cancers (Basel) 2022; 14:474. [PMID: 35158742 PMCID: PMC8833457 DOI: 10.3390/cancers14030474] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/07/2022] [Accepted: 01/14/2022] [Indexed: 02/04/2023] Open
Abstract
Epigenetic therapies remain a promising, but still not widely used, approach in the management of patients with cancer. To date, the efficacy and use of epigenetic therapies has been demonstrated primarily in the management of haematological malignancies, with limited supportive data in solid malignancies. The most studied epigenetic therapies in breast cancer are those that target DNA methylation and histone modification; however, none have been approved for routine clinical use. The majority of pre-clinical and clinical studies have focused on triple negative breast cancer (TNBC) and hormone-receptor positive breast cancer. Even though the use of epigenetic therapies alone in the treatment of breast cancer has not shown significant clinical benefit, these therapies show most promise in use in combinations with other treatments. With improving technologies available to study the epigenetic landscape in cancer, novel epigenetic alterations are increasingly being identified as potential biomarkers of response to conventional and epigenetic therapies. In this review, we describe epigenetic targets and potential epigenetic biomarkers in breast cancer, with a focus on clinical trials of epigenetic therapies. We describe alterations to the epigenetic landscape in breast cancer and in treatment resistance, highlighting mechanisms and potential targets for epigenetic therapies. We provide an updated review on epigenetic therapies in the pre-clinical and clinical setting in breast cancer, with a focus on potential real-world applications. Finally, we report on the potential value of epigenetic biomarkers in diagnosis, prognosis and prediction of response to therapy, to guide and inform the clinical management of breast cancer patients.
Collapse
Affiliation(s)
- Lauren Julia Brown
- School of Clinical Medicine, St. Vincent’s Campus, University of New South Wales (UNSW), Sydney, NSW 2010, Australia; (L.J.B.); (J.A.-K.); (N.P.); (S.C.); (C.S.)
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Joanna Achinger-Kawecka
- School of Clinical Medicine, St. Vincent’s Campus, University of New South Wales (UNSW), Sydney, NSW 2010, Australia; (L.J.B.); (J.A.-K.); (N.P.); (S.C.); (C.S.)
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Neil Portman
- School of Clinical Medicine, St. Vincent’s Campus, University of New South Wales (UNSW), Sydney, NSW 2010, Australia; (L.J.B.); (J.A.-K.); (N.P.); (S.C.); (C.S.)
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Susan Clark
- School of Clinical Medicine, St. Vincent’s Campus, University of New South Wales (UNSW), Sydney, NSW 2010, Australia; (L.J.B.); (J.A.-K.); (N.P.); (S.C.); (C.S.)
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Clare Stirzaker
- School of Clinical Medicine, St. Vincent’s Campus, University of New South Wales (UNSW), Sydney, NSW 2010, Australia; (L.J.B.); (J.A.-K.); (N.P.); (S.C.); (C.S.)
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Elgene Lim
- School of Clinical Medicine, St. Vincent’s Campus, University of New South Wales (UNSW), Sydney, NSW 2010, Australia; (L.J.B.); (J.A.-K.); (N.P.); (S.C.); (C.S.)
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| |
Collapse
|
19
|
Nowak E, Bednarek I. Aspects of the Epigenetic Regulation of EMT Related to Cancer Metastasis. Cells 2021; 10:3435. [PMID: 34943943 PMCID: PMC8700111 DOI: 10.3390/cells10123435] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/28/2021] [Accepted: 12/03/2021] [Indexed: 12/11/2022] Open
Abstract
Epithelial to mesenchymal transition (EMT) occurs during the pathological process associated with tumor progression and is considered to influence and promote the metastatic cascade. Characterized by loss of cell adhesion and apex base polarity, EMT enhances cell motility and metastasis. The key markers of the epithelial to mesenchymal transition are proteins characteristic of the epithelial phenotype, e.g., E-cadherin, cytokeratins, occludin, or desmoplakin, the concentration and activity of which are reduced during this process. On the other hand, as a result of acquiring the characteristics of mesenchymal cells, an increased amount of N-cadherin, vimentin, fibronectin, or vitronectin is observed. Importantly, epithelial cells undergo partial EMT where some of the cells show both epithelial and mesenchymal characteristics. The significant influence of epigenetic regulatory mechanisms is observed in the gene expression involved in EMT. Among the epigenetic modifications accompanying incorrect genetic reprogramming in cancer are changes in the level of DNA methylation within the CpG islands and posttranslational covalent changes of histone proteins. All observed modifications, which are stable but reversible changes, affect the level of gene expression leading to the development and progression of the disease, and consequently affect the uncontrolled growth of the population of cancer cells.
Collapse
Affiliation(s)
- Ewa Nowak
- Department of Biotechnology and Genetic Engineering, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland;
| | | |
Collapse
|
20
|
Leszczynska KB, Jayaprakash C, Kaminska B, Mieczkowski J. Emerging Advances in Combinatorial Treatments of Epigenetically Altered Pediatric High-Grade H3K27M Gliomas. Front Genet 2021; 12:742561. [PMID: 34646308 PMCID: PMC8503186 DOI: 10.3389/fgene.2021.742561] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 08/17/2021] [Indexed: 01/27/2023] Open
Abstract
Somatic mutations in histone encoding genes result in gross alterations in the epigenetic landscape. Diffuse intrinsic pontine glioma (DIPG) is a pediatric high-grade glioma (pHGG) and one of the most challenging cancers to treat, with only 1% surviving for 5 years. Due to the location in the brainstem, DIPGs are difficult to resect and rapidly turn into a fatal disease. Over 80% of DIPGs confer mutations in genes coding for histone 3 variants (H3.3 or H3.1/H3.2), with lysine to methionine substitution at position 27 (H3K27M). This results in a global decrease in H3K27 trimethylation, increased H3K27 acetylation, and widespread oncogenic changes in gene expression. Epigenetic modifying drugs emerge as promising candidates to treat DIPG, with histone deacetylase (HDAC) inhibitors taking the lead in preclinical and clinical studies. However, some data show the evolving resistance of DIPGs to the most studied HDAC inhibitor panobinostat and highlight the need to further investigate its mechanism of action. A new forceful line of research explores the simultaneous use of multiple inhibitors that could target epigenetically induced changes in DIPG chromatin and enhance the anticancer response of single agents. In this review, we summarize the therapeutic approaches against H3K27M-expressing pHGGs focused on targeting epigenetic dysregulation and highlight promising combinatorial drug treatments. We assessed the effectiveness of the epigenetic drugs that are already in clinical trials in pHGGs. The constantly expanding understanding of the epigenetic vulnerabilities of H3K27M-expressing pHGGs provides new tumor-specific targets, opens new possibilities of therapy, and gives hope to find a cure for this deadly disease.
Collapse
Affiliation(s)
- Katarzyna B Leszczynska
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - Chinchu Jayaprakash
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - Bozena Kaminska
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - Jakub Mieczkowski
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland.,3P-Medicine Laboratory, Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
21
|
Lavogina D, Laasfeld T, Vardja M, Lust H, Jaal J. Viability fingerprint of glioblastoma cell lines: roles of mitotic, proliferative, and epigenetic targets. Sci Rep 2021; 11:20338. [PMID: 34645858 PMCID: PMC8514540 DOI: 10.1038/s41598-021-99630-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/24/2021] [Indexed: 01/03/2023] Open
Abstract
Despite the use of multimodal treatment combinations, the prognosis of glioblastoma (GB) is still poor. To prevent rapid tumor recurrence, targeted strategies for the treatment of GB are widely sought. Here, we compared the efficacy of focused modulation of a set of signaling pathways in two GB cell lines, U-251 MG and T98-G, using a panel of thirteen compounds targeting cell cycle progression, proliferation, epigenetic modifications, and DNA repair mechanism. In parallel, we tested combinations of these compounds with temozolomide and lomustine, the standard chemotherapy agents used in GB treatment. Two major trends were found: within individual compounds, the lowest IC50 values were exhibited by the Aurora kinase inhibitors, whereas in the case of mixtures, the addition of DNA methyltransferase 1 inhibitor azacytidine to lomustine proved the most beneficial. The efficacy of cell cycle-targeting compounds was further augmented by combination with radiation therapy using two different treatment regimes. The potency of azacytidine and lomustine mixtures was validated using a unique assay pipeline that utilizes automated imaging and machine learning-based data analysis algorithm for assessment of cell number and DNA damage extent. Based on our results, the combination of azacytidine and lomustine should be tested in GB clinical trials.
Collapse
Affiliation(s)
- Darja Lavogina
- grid.10939.320000 0001 0943 7661Institute of Clinical Medicine, University of Tartu, L. Puusepa 8, 50406 Tartu, Estonia ,grid.10939.320000 0001 0943 7661Institute of Chemistry, University of Tartu, Tartu, Estonia
| | - Tõnis Laasfeld
- grid.10939.320000 0001 0943 7661Institute of Chemistry, University of Tartu, Tartu, Estonia ,grid.10939.320000 0001 0943 7661Department of Computer Science, University of Tartu, Tartu, Estonia
| | - Markus Vardja
- grid.412269.a0000 0001 0585 7044Department of Radiotherapy and Oncological Therapy, Tartu University Hospital, Tartu, Estonia
| | - Helen Lust
- grid.10939.320000 0001 0943 7661Institute of Clinical Medicine, University of Tartu, L. Puusepa 8, 50406 Tartu, Estonia
| | - Jana Jaal
- grid.10939.320000 0001 0943 7661Institute of Clinical Medicine, University of Tartu, L. Puusepa 8, 50406 Tartu, Estonia ,grid.412269.a0000 0001 0585 7044Department of Radiotherapy and Oncological Therapy, Tartu University Hospital, Tartu, Estonia
| |
Collapse
|