1
|
Gong T, Sun W, Li X, Cai J, Zhao N, Lu M, Xu J, Liu Z, Chen H. TMSB4Y restrains sphingomyelin synthesis via de novo purine synthesis to exert a tumor suppressor function in male esophageal squamous cell carcinoma. Oncogene 2024:10.1038/s41388-024-03193-z. [PMID: 39443723 DOI: 10.1038/s41388-024-03193-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024]
Abstract
Y chromosome genes play a vital role in sex difference of cancer. The dysregulation and functional implications of Y chromosome genes in esophageal squamous cell carcinoma (ESCC) remains elusive. Here, we analyze the Y chromosome gene signature and identify TMSB4Y as an emerging prognostic predictor in male ESCC. Functional analyses show that TMSB4Y inhibits the proliferation, invasion and metastasis of male ESCC cells. Mechanistically, we demonstrate that TMSB4Y interacts with PAICS, wherein TMSB4Y disrupts the formation of the PAICS octamer to inhibit purine de novo synthesis, leading to a decrease in the AMP/ATP ratio, subsequently impeding AMPK phosphorylation. Furthermore, we uncover a regulatory cascade orchestrated by the TMSB4Y/PAICS-AMPK axis, which exerts a suppressive effect on sphingomyelin metabolism by inhibiting the expression of sphingomyelin synthases (SMSs). Notably, Malabaricone C, an inhibitor of SMS1 and SMS2, effectively suppresses male ESCC cell proliferation and xenograft tumor growth. Collectively, these findings reveal the regulation of sphingomyelin metabolism by TMSB4Y/PAICS-AMPK axis and underscore the potential of targeting SMSs as a promising therapeutic approach for the treatment of male ESCC.
Collapse
Affiliation(s)
- Tongyang Gong
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Surgery II, Peking University Cancer Hospital & Institute, Beijing, PR China
| | - Wanyuan Sun
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Xukun Li
- Central Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, PR China
| | - Jiahui Cai
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, PR China
| | - Ning Zhao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Minyi Lu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Juan Xu
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing, PR China
| | - Zhihua Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China.
| | - Hongyan Chen
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China.
| |
Collapse
|
2
|
Yokoyama C, Bando K, Yamagata M, Nagasaki T, Tachibana T. Generation of a Rat Monoclonal Antibody for Human PAICS, a de novo Purine Biosynthetic Enzyme. Monoclon Antib Immunodiagn Immunother 2024; 43:108-111. [PMID: 38836825 DOI: 10.1089/mab.2023.0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024] Open
Abstract
Phosphoribosylaminoimidazole carboxylase, phosphoribosylaminoimidazole succinocarboxamide synthetase (PAICS) is a de novo purine biosynthetic enzyme. It has been found to be overexpressed in various types of cancer and is related to cell proliferation, invasion, the epithelial-mesenchymal transition, and efficient tumor growth. In this study, we describe a rat monoclonal antibody (mAb) 6A10, which was generated as an antigen of human PAICS. This mAb was generated to interact with the N-terminal region of human PAICS and was found to recognize endogenous PAICS enzymes in several cancer cells. Our results also indicated that it can recognize monkey and dog PAICS, which possess the same amino acid sequence in the antigenic region as human PAICS, but it does not recognize rat and mouse PAICS. Furthermore, our data indicated that this mAb is suitable for immunoprecipitation and immunoblotting use for several cancer cell lines. We, therefore, anticipate that mAb 6A10 will be useful for functional analyses of human PAICS in several cancers and for diagnosis of malignant transformation.
Collapse
Affiliation(s)
- Chikako Yokoyama
- Department of Chemistry and Bioengineering, Graduate School of Engineering, Osaka Metropolitan University, Osaka, Japan
- Department of Applied Chemistry and Bioengineering, Graduate School of Engineering, Osaka City University, Osaka, Japan
| | - Kaori Bando
- Department of Applied Chemistry and Bioengineering, Graduate School of Engineering, Osaka City University, Osaka, Japan
| | - Momoka Yamagata
- Department of Applied Chemistry and Bioengineering, Graduate School of Engineering, Osaka City University, Osaka, Japan
| | - Takeshi Nagasaki
- Department of Chemistry and Bioengineering, Graduate School of Engineering, Osaka Metropolitan University, Osaka, Japan
- Department of Applied Chemistry and Bioengineering, Graduate School of Engineering, Osaka City University, Osaka, Japan
| | - Taro Tachibana
- Department of Chemistry and Bioengineering, Graduate School of Engineering, Osaka Metropolitan University, Osaka, Japan
- Department of Applied Chemistry and Bioengineering, Graduate School of Engineering, Osaka City University, Osaka, Japan
| |
Collapse
|
3
|
Hussein R, Abou-Shanab AM, Badr E. A multi-omics approach for biomarker discovery in neuroblastoma: a network-based framework. NPJ Syst Biol Appl 2024; 10:52. [PMID: 38760476 PMCID: PMC11101461 DOI: 10.1038/s41540-024-00371-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 04/16/2024] [Indexed: 05/19/2024] Open
Abstract
Neuroblastoma (NB) is one of the leading causes of cancer-associated death in children. MYCN amplification is a prominent genetic marker for NB, and its targeting to halt NB progression is difficult to achieve. Therefore, an in-depth understanding of the molecular interactome of NB is needed to improve treatment outcomes. Analysis of NB multi-omics unravels valuable insight into the interplay between MYCN transcriptional and miRNA post-transcriptional modulation. Moreover, it aids in the identification of various miRNAs that participate in NB development and progression. This study proposes an integrated computational framework with three levels of high-throughput NB data (mRNA-seq, miRNA-seq, and methylation array). Similarity Network Fusion (SNF) and ranked SNF methods were utilized to identify essential genes and miRNAs. The specified genes included both miRNA-target genes and transcription factors (TFs). The interactions between TFs and miRNAs and between miRNAs and their target genes were retrieved where a regulatory network was developed. Finally, an interaction network-based analysis was performed to identify candidate biomarkers. The candidate biomarkers were further analyzed for their potential use in prognosis and diagnosis. The candidate biomarkers included three TFs and seven miRNAs. Four biomarkers have been previously studied and tested in NB, while the remaining identified biomarkers have known roles in other types of cancer. Although the specific molecular role is yet to be addressed, most identified biomarkers possess evidence of involvement in NB tumorigenesis. Analyzing cellular interactome to identify potential biomarkers is a promising approach that can contribute to optimizing efficient therapeutic regimens to target NB vulnerabilities.
Collapse
Affiliation(s)
- Rahma Hussein
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12578, Egypt
| | - Ahmed M Abou-Shanab
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12578, Egypt
| | - Eman Badr
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12578, Egypt.
- Faculty of Computers and Artificial Intelligence, Cairo University, Giza, 12613, Egypt.
| |
Collapse
|
4
|
Lin Y, Huang Z, Zhang B, Yang H, Yang S. Construction and Analysis of a Mitochondrial Metabolism-Related Prognostic Model for Breast Cancer to Evaluate Survival and Immunotherapy. J Membr Biol 2024; 257:63-78. [PMID: 38441572 DOI: 10.1007/s00232-024-00308-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/24/2024] [Indexed: 04/11/2024]
Abstract
As one of the most prevalent malignancies among women, breast cancer (BC) is tightly linked to metabolic dysfunction. However, the correlation between mitochondrial metabolism-related genes (MMRGs) and BC remains unclear. The training and validation datasets for BC were obtained from The Cancer Genome Atlas and Gene Expression Omnibus databases, respectively. MMRG-related data were obtained from the Molecular Signatures Database. A risk score prognostic model incorporating MMRGs was established based on univariate, LASSO, and multivariate Cox regression analyses. Independent factors affecting BC prognosis were identified through regression analysis and presented in a nomogram. Single-sample gene set enrichment analysis was employed to assess the immune levels of high-risk (HR) and low-risk (LR) groups. The sensitivity of BC patients in the two groups to common anti-tumor drugs was evaluated by utilizing the Genomics of Drug Sensitivity in Cancer database. 12 MMRGs significantly associated with survival were selected from 1234 MMRGs. A 12-gene risk score prognostic model was built. In the multivariate regression analysis incorporating classical clinical factors, the MMRG-related risk score remained an independent prognostic factor. As revealed by tumor immune microenvironment analysis, the LR group with higher survival rates had elevated immune levels. The drug sensitivity results unmasked that the LR group demonstrated higher sensitivity to Irinotecan, Nilotinib, and Oxaliplatin, while the HR group demonstrated higher sensitivity to Lapatinib. The development of MMRG characteristics provides a comprehensive understanding of mitochondrial metabolism in BC, aiding in the prediction of prognosis and tumor microenvironment, and offering promising therapeutic choices for BC patients with different MMRG risk scores.
Collapse
Affiliation(s)
- Yuting Lin
- Traditional Chinese Medicine Department, The Second Affiliated Hospital of Fujian Medical University, No. 34, North Zhongshan Road, Quanzhou, 362000, China
| | - Zhongxin Huang
- Pathology Department, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China
| | - Baogen Zhang
- Traditional Chinese Medicine Department, The Second Affiliated Hospital of Fujian Medical University, No. 34, North Zhongshan Road, Quanzhou, 362000, China
| | - Hanhui Yang
- Traditional Chinese Medicine Department, The Second Affiliated Hospital of Fujian Medical University, No. 34, North Zhongshan Road, Quanzhou, 362000, China
| | - Shu Yang
- Traditional Chinese Medicine Department, The Second Affiliated Hospital of Fujian Medical University, No. 34, North Zhongshan Road, Quanzhou, 362000, China.
| |
Collapse
|
5
|
Li Y, Zhu L, Mao J, Zheng H, Hu Z, Yang S, Mao T, Zhou T, Cao P, Wu H, Wang X, Wang J, Lin F, Shen H. Genome-scale CRISPR-Cas9 screen identifies PAICS as a therapeutic target for EGFR wild-type non-small cell lung cancer. MedComm (Beijing) 2024; 5:e483. [PMID: 38463398 PMCID: PMC10924642 DOI: 10.1002/mco2.483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 01/11/2024] [Accepted: 01/14/2024] [Indexed: 03/12/2024] Open
Abstract
Epidermal growth factor receptor-targeted (EGFR-targeted) therapies show promise for non-small cell lung cancer (NSCLC), but they are ineffective in a third of patients who lack EGFR mutations. This underlines the need for personalized treatments for patients with EGFR wild-type NSCLC. A genome-wide CRISPR/Cas9 screen has identified the enzyme phosphoribosylaminoimidazole carboxylase/phosphoribosylaminoimidazole succinocarboxamide synthetase (PAICS), which is vital in de novo purine biosynthesis and tumor development, as a potential drug target for EGFR wild-type NSCLC. We have further confirmed that PAICS expression is significantly increased in NSCLC tissues and correlates with poor patient prognosis. Knockdown of PAICS resulted in a marked reduction in both in vitro and in vivo proliferation of EGFR wild-type NSCLC cells. Additionally, PAICS silencing led to cell-cycle arrest in these cells, with genes involved in the cell cycle pathway being differentially expressed. Consistently, an increase in cell proliferation ability and colony number was observed in cells with upregulated PAICS in EGFR wild-type NSCLC. PAICS silencing also caused DNA damage and cell-cycle arrest by interacting with DNA repair genes. Moreover, decreased IMPDH2 activity and activated PI3K-AKT signaling were observed in NSCLC cells with EGFR mutations, which may compromise the effectiveness of PAICS knockdown. Therefore, PAICS plays an oncogenic role in EGFR wild-type NSCLC and represents a potential therapeutic target for this disease.
Collapse
Affiliation(s)
- Yufeng Li
- Department of Medical OncologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsuChina
- Department of Medical OncologyThe Affiliated Sir Run Run Hospital of Nanjing Medical UniversityNanjingJiangsuChina
| | - Lingyun Zhu
- Department of Cell BiologySchool of Basic Medical Sciences, Nanjing Medical UniversityNanjingJiangsuChina
| | - Jiaqi Mao
- Department of Cell BiologySchool of Basic Medical Sciences, Nanjing Medical UniversityNanjingJiangsuChina
| | - Hongrui Zheng
- Department of OrthopedicsTaizhou Hospital of Zhejiang ProvinceAffiliated to Wenzhou Medical UniversityZhejiangChina
| | - Ziyi Hu
- Department of Cell BiologySchool of Basic Medical Sciences, Nanjing Medical UniversityNanjingJiangsuChina
| | - Suisui Yang
- Department of Cell BiologySchool of Basic Medical Sciences, Nanjing Medical UniversityNanjingJiangsuChina
| | - Tianyu Mao
- Department of Medical OncologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsuChina
| | - Tingting Zhou
- Department of Cell BiologySchool of Basic Medical Sciences, Nanjing Medical UniversityNanjingJiangsuChina
| | - Pingping Cao
- Department of Cell BiologySchool of Basic Medical Sciences, Nanjing Medical UniversityNanjingJiangsuChina
| | - Hongshuai Wu
- Department of Cell BiologySchool of Basic Medical Sciences, Nanjing Medical UniversityNanjingJiangsuChina
- Department of PharmacologyNanjing Medical UniversityNanjingJiangsuChina
| | - Xuerong Wang
- Department of PharmacologyNanjing Medical UniversityNanjingJiangsuChina
| | - Jing Wang
- Department of Cell BiologySchool of Basic Medical Sciences, Nanjing Medical UniversityNanjingJiangsuChina
| | - Fan Lin
- Department of Cell BiologySchool of Basic Medical Sciences, Nanjing Medical UniversityNanjingJiangsuChina
- Institute for Brain Tumors & Key Laboratory of Rare Metabolic Diseases, Nanjing Medical UniversityNanjingJiangsuChina
- Department of GastroenterologyThe First Affiliated Hospitaland College of Clinical Medicine of Henan University of Science and TechnologyLuoyangHenanChina
| | - Hua Shen
- Department of Medical OncologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsuChina
- Department of Medical OncologyThe Affiliated Sir Run Run Hospital of Nanjing Medical UniversityNanjingJiangsuChina
| |
Collapse
|
6
|
Ayoub N, Gedeon A, Munier-Lehmann H. A journey into the regulatory secrets of the de novo purine nucleotide biosynthesis. Front Pharmacol 2024; 15:1329011. [PMID: 38444943 PMCID: PMC10912719 DOI: 10.3389/fphar.2024.1329011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/01/2024] [Indexed: 03/07/2024] Open
Abstract
De novo purine nucleotide biosynthesis (DNPNB) consists of sequential reactions that are majorly conserved in living organisms. Several regulation events take place to maintain physiological concentrations of adenylate and guanylate nucleotides in cells and to fine-tune the production of purine nucleotides in response to changing cellular demands. Recent years have seen a renewed interest in the DNPNB enzymes, with some being highlighted as promising targets for therapeutic molecules. Herein, a review of two newly revealed modes of regulation of the DNPNB pathway has been carried out: i) the unprecedent allosteric regulation of one of the limiting enzymes of the pathway named inosine 5'-monophosphate dehydrogenase (IMPDH), and ii) the supramolecular assembly of DNPNB enzymes. Moreover, recent advances that revealed the therapeutic potential of DNPNB enzymes in bacteria could open the road for the pharmacological development of novel antibiotics.
Collapse
Affiliation(s)
- Nour Ayoub
- Institut Pasteur, Université Paris Cité, INSERM UMRS-1124, Paris, France
| | - Antoine Gedeon
- Sorbonne Université, École Normale Supérieure, Université PSL, CNRS UMR7203, Laboratoire des Biomolécules, LBM, Paris, France
| | | |
Collapse
|
7
|
Afaq F, Agarwal S, Bajpai P, Diffalha SA, Kim HG, Peter S, Khushman M, Chauhan SC, Mukherjee P, Varambally S, Manne U. Targeting of oncogenic AAA-ATPase TRIP13 reduces progression of pancreatic ductal adenocarcinoma. Neoplasia 2024; 47:100951. [PMID: 38039923 PMCID: PMC10716004 DOI: 10.1016/j.neo.2023.100951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/21/2023] [Accepted: 11/21/2023] [Indexed: 12/03/2023]
Abstract
Thyroid hormone receptor-interacting protein 13 (TRIP13) is involved in cancer progression, but its role in pancreatic ductal adenocarcinoma (PDAC) is unknown. Thus, we assessed the expression, functional role, and mechanism of action of TRIP13 in PDAC. We further examined the efficacy of TRIP13 inhibitor, DCZ0415, alone or in combination with gemcitabine on malignant phenotypes, tumor progression, and immune response. We found that TRIP13 was overexpressed in human PDACs relative to corresponding normal pancreatic tissues. TRIP13 knockdown or treatment of PDAC cells with DCZ0415 reduced proliferation and colony formation, and induced G2/M cell cycle arrest and apoptosis. Additionally, TRIP13 knockdown or targeting with DCZ0415 reduced the migration and invasion of PDAC cells by increasing E-cadherin and decreasing N-cadherin and vimentin. Pharmacologic targeting or silencing of TRIP13 also resulted in reduce expression of FGFR4 and STAT3 phosphorylation, and downregulation of the Wnt/β-catenin pathway. In immunocompromised mouse models of PDAC, knockdown of TRIP13 or treatment with DCZ0415 reduced tumor growth and metastasis. In an immunocompetent syngeneic PDAC model, DCZ0415 treatment enhanced the immune response by lowering expression of PD1/PDL1, increasing granzyme B/perforin expression, and facilitating infiltration of CD3/CD4 T-cells. Further, DCZ0415 potentiated the anti-metastatic and anti-tumorigenic activities of gemcitabine by reducing proliferation and angiogenesis and by inducing apoptosis and the immune response. These preclinical findings show that TRIP13 is involved in PDAC progression and targeting of TRIP13 augments the anticancer effect of gemcitabine.
Collapse
Affiliation(s)
- Farrukh Afaq
- Department of Pathology, University of Alabama at Birmingham, USA
| | - Sumit Agarwal
- Department of Pathology, University of Alabama at Birmingham, USA
| | - Prachi Bajpai
- Department of Pathology, University of Alabama at Birmingham, USA
| | - Sameer Al Diffalha
- Department of Pathology, University of Alabama at Birmingham, USA; O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, USA
| | - Hyung-Gyoon Kim
- Department of Pathology, University of Alabama at Birmingham, USA
| | - Shajan Peter
- Department of Medicine, Division of Gastroenterology, University of Alabama at Birmingham, USA
| | - Moh'd Khushman
- Department of Medicine, Division of Medical Oncology, Washington University in St. Louis, USA
| | - Subhash C Chauhan
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, USA
| | - Priyabrata Mukherjee
- Department of Pathology, the University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Sooryanarayana Varambally
- Department of Pathology, University of Alabama at Birmingham, USA; O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, USA
| | - Upender Manne
- Department of Pathology, University of Alabama at Birmingham, USA; O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, USA.
| |
Collapse
|
8
|
Huo A, Xiong X. PAICS as a potential target for cancer therapy linking purine biosynthesis to cancer progression. Life Sci 2023; 331:122070. [PMID: 37673296 DOI: 10.1016/j.lfs.2023.122070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/02/2023] [Accepted: 09/02/2023] [Indexed: 09/08/2023]
Abstract
Tumor cells are required to undergo metabolic reprogramming for rapid development and progression, and one of the metabolic characteristics of cancer cells is the excessive synthesis and utilization of nucleotides. Abnormally increased nucleotides and their metabolites not only directly accelerate tumor cell progression but also indirectly act on stromal cells in the tumor microenvironment (TME) via a paracrine manner to regulate tumor progression. Purine nucleotides are mainly produced via de novo nucleotide synthesis in tumor cells; therefore, intervening in their synthesis has emerged as a promising strategy in anti-tumor therapy. De novo purine synthesis is a 10-step reaction catalyzed by six enzymes to synthesize inosine 5-monophosphate (IMP) and subsequently synthesize AMP and GMP. Phosphoribosylaminoimidazole carboxylase/phosphori-bosylaminoimidazole succinocarboxamide synthetase (PAICS) is a bifunctional enzyme that catalyzes de novo purine synthesis. Aberrantly elevated PAICS expression in various tumors is associated with poor prognosis. Evidence suggests that PAICS and its catalytic product, N-succinylcarboxamide-5-aminoimidazole ribonucleotide (SAICAR), could inhibit tumor cell apoptosis and promote the growth, epithelial-mesenchymal transition (EMT), invasion, and metastasis by regulating signaling pathways such as pyruvate kinase M2 (PKM2), extracellular signal-related kinases 1 and 2 (ERK1/2), focal adhesion kinase (FAK) and so on. This review summarizes the structure, biological functions and the molecular mechanisms of PAICS in cancer development and discusses its potential to be a target for tumor therapy.
Collapse
Affiliation(s)
- Anqi Huo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi 330006, China; The First Clinical Medical College, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Xiangyang Xiong
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi 330006, China; Province Key Laboratory of Tumor Pathogens and Molecular Pathology, Nanchang University, Nanchang, Jiangxi 330006, China.
| |
Collapse
|
9
|
Agarwal S, Afaq F, Bajpai P, Behring M, Kim HG, Varambally A, Chandrashekar DS, Peter S, Al Diffalha S, Khushman M, Seeber A, Varambally S, Manne U. BZW2 Inhibition Reduces Colorectal Cancer Growth and Metastasis. Mol Cancer Res 2023; 21:698-712. [PMID: 37067340 PMCID: PMC10329991 DOI: 10.1158/1541-7786.mcr-23-0003] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/06/2023] [Accepted: 03/17/2023] [Indexed: 04/18/2023]
Abstract
Because survival of patients with metastatic colorectal cancer remain poor, there is an urgent need to identify potential novel druggable targets that are associated with colorectal cancer progression. One such target, basic leucine zipper and W2 domains 2 (BZW2), is involved in regulation of protein translation, and its overexpression is associated with human malignancy. Thus, we investigated the expression and regulation of BZW2, assessed its role in activation of WNT/β-catenin signaling, identified its downstream molecules, and demonstrated its involvement in metastasis of colorectal cancer. In human colorectal cancers, high mRNA and protein expression levels of BZW2 were associated with tumor progression. BZW2-knockdown reduced malignant phenotypes, including cell proliferation, invasion, and spheroid and colony formation. BZW2-knockdown also reduced tumor growth and metastasis; conversely, transfection of BZW2 into BZW2 low-expressing colorectal cancer cells promoted malignant features, including tumor growth and metastasis. BZW2 expression was coordinately regulated by microRNA-98, c-Myc, and histone methyltransferase enhancer of zeste homolog 2 (EZH2). RNA sequencing analyses of colorectal cancer cells modulated for BZW2 identified P4HA1 and the long noncoding RNAs, MALAT1 and NEAT1, as its downstream targets. Further, BZW2 activated the Wnt/β-catenin signaling pathway in colorectal cancers expressing wild-type β-catenin. In sum, our study suggests the possibility of targeting BZW2 expression by inhibiting EZH2 and/or c-Myc. IMPLICATIONS FDA-approved small-molecule inhibitors of EZH2 can indirectly target BZW2 and because BZW2 functions as an oncogene, these inhibitors could serve as therapeutic agents for colorectal cancer.
Collapse
Affiliation(s)
- Sumit Agarwal
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL
| | - Farrukh Afaq
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL
| | - Prachi Bajpai
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL
| | - Michael Behring
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL
| | - Hyung-Gyoon Kim
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL
| | | | | | - Shajan Peter
- Department of Medicine, Division of Gastroenterology, University of Alabama at Birmingham, Birmingham, AL
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL
| | - Sameer Al Diffalha
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL
| | - Moh’d Khushman
- Department of Medicine, Division of Hematology and Oncology, Washington University, St. Louis, MO
| | - Andreas Seeber
- Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck, Medical University of Innsbruck, Innsbruck, Austria
| | - Sooryanarayana Varambally
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL
| | - Upender Manne
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
10
|
Monsivais D, Parks SE, Chandrashekar DS, Varambally S, Creighton CJ. Using cancer proteomics data to identify gene candidates for therapeutic targeting. Oncotarget 2023; 14:399-412. [PMID: 37141409 PMCID: PMC11623401 DOI: 10.18632/oncotarget.28420] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/24/2023] [Indexed: 05/06/2023] Open
Abstract
Gene-level associations obtained from mass-spectrometry-based cancer proteomics datasets represent a resource for identifying gene candidates for functional studies. When recently surveying proteomic correlates of tumor grade across multiple cancer types, we identified specific protein kinases having a functional impact on uterine endometrial cancer cells. This previously published study provides just one template for utilizing public molecular datasets to discover potential novel therapeutic targets and approaches for cancer patients. Proteomic profiling data combined with corresponding multi-omics data on human tumors and cell lines can be analyzed in various ways to prioritize genes of interest for interrogating biology. Across hundreds of cancer cell lines, CRISPR loss of function and drug sensitivity scoring can be readily integrated with protein data to predict any gene's functional impact before bench experiments are carried out. Public data portals make cancer proteomics data more accessible to the research community. Drug discovery platforms can screen hundreds of millions of small molecule inhibitors for those that target a gene or pathway of interest. Here, we discuss some of the available public genomic and proteomic resources while considering approaches to how these could be leveraged for molecular biology insights or drug discovery. We also demonstrate the inhibitory effect of BAY1217389, a TTK inhibitor recently tested in a Phase I clinical trial for the treatment of solid tumors, on uterine cancer cell line viability.
Collapse
Affiliation(s)
- Diana Monsivais
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center Division of Biostatistics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sydney E. Parks
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Cancer and Cell Biology Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Darshan S. Chandrashekar
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35233, USA
- Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
- Genomic Diagnostics and Bioinformatics, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Sooryanarayana Varambally
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35233, USA
- Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
- The Informatics Institute, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Chad J. Creighton
- Dan L. Duncan Comprehensive Cancer Center Division of Biostatistics, Baylor College of Medicine, Houston, TX 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
11
|
Prejanò M, Škerlová J, Stenmark P, Himo F. Reaction Mechanism of Human PAICS Elucidated by Quantum Chemical Calculations. J Am Chem Soc 2022; 144:14258-14268. [PMID: 35914774 PMCID: PMC9376930 DOI: 10.1021/jacs.2c05072] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Human PAICS is a bifunctional enzyme that is involved
in the de novo purine biosynthesis, catalyzing the
conversion of
aminoimidazole ribonucleotide (AIR) into N-succinylcarboxamide-5-aminoimidazole
ribonucleotide (SAICAR). It comprises two distinct active sites, AIR
carboxylase (AIRc) where the AIR is initially converted to carboxyaminoimidazole
ribonucleotide (CAIR) by reaction with CO2 and SAICAR synthetase
(SAICARs) in which CAIR then reacts with an aspartate to form SAICAR,
in an ATP-dependent reaction. Human PAICS is a promising target for
the treatment of various types of cancer, and it is therefore of high
interest to develop a detailed understanding of its reaction mechanism.
In the present work, density functional theory calculations are employed
to investigate the PAICS reaction mechanism. Starting from the available
crystal structures, two large models of the AIRc and SAICARs active
sites are built and different mechanistic proposals for the carboxylation
and phosphorylation–condensation mechanisms are examined. For
the carboxylation reaction, it is demonstrated that it takes place
in a two-step mechanism, involving a C–C bond formation followed
by a deprotonation of the formed tetrahedral intermediate (known as
isoCAIR) assisted by an active site histidine residue. For the phosphorylation–condensation
reaction, it is shown that the phosphorylation of CAIR takes place
before the condensation reaction with the aspartate. It is further
demonstrated that the three active site magnesium ions are involved
in binding the substrates and stabilizing the transition states and
intermediates of the reaction. The calculated barriers are in good
agreement with available experimental data.
Collapse
Affiliation(s)
- Mario Prejanò
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden
| | - Jana Škerlová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, 160 00 Prague, Czech Republic
| | - Pål Stenmark
- Department of Biochemistry and Biophysics, Stockholm University, SE-10691 Stockholm, Sweden
| | - Fahmi Himo
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden
| |
Collapse
|
12
|
Pion E, Karnosky J, Boscheck S, Wagner BJ, Schmidt KM, Brunner SM, Schlitt HJ, Aung T, Hackl C, Haerteis S. 3D In Vivo Models for Translational Research on Pancreatic Cancer: The Chorioallantoic Membrane (CAM) Model. Cancers (Basel) 2022; 14:cancers14153733. [PMID: 35954398 PMCID: PMC9367548 DOI: 10.3390/cancers14153733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/21/2022] [Accepted: 07/28/2022] [Indexed: 11/25/2022] Open
Abstract
Simple Summary The 5-year overall survival rate for all stages of pancreatic cancer is relatively low at about only 6%. As a result of this exceedingly poor prognosis, new research models are necessary to investigate this highly malignant cancer. One model that has been used extensively for a vast variety of different cancers is the chorioallantoic membrane (CAM) model. It is based on an exceptionally vascularized membrane that develops within fertilized chicken eggs and can be used for the grafting and analysis of tumor tissue. The aim of the study was to summarize already existing works on pancreatic ductal adenocarcinoma (PDAC) and the CAM model. The results were subdivided into different categories that include drug testing, angiogenesis, personalized medicine, modifications of the model, and further developments to help improve the unfavorable prognosis of this disease. Abstract Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive cancer with adverse outcomes that have barely improved over the last decade. About half of all patients present with metastasis at the time of diagnosis, and the 5-year overall survival rate across all stages is only 6%. Innovative in vivo research models are necessary to combat this cancer and to discover novel treatment strategies. The chorioallantoic membrane (CAM) model represents one 3D in vivo methodology that has been used in a large number of studies on different cancer types for over a century. This model is based on a membrane formed within fertilized chicken eggs that contain a dense network of blood vessels. Because of its high cost-efficiency, simplicity, and versatility, the CAM model appears to be a highly valuable research tool in the pursuit of gaining more in-depth insights into PDAC. A summary of the current literature on the usage of the CAM model for the investigation of PDAC was conducted and subdivided into angiogenesis, drug testing, modifications, personalized medicine, and further developments. On this comprehensive basis, further research should be conducted on PDAC in order to improve the abysmal prognosis of this malignant disease.
Collapse
Affiliation(s)
- Eric Pion
- Institute for Molecular and Cellular Anatomy, University of Regensburg, 93053 Regensburg, Germany; (E.P.); (S.B.); (T.A.)
| | - Julia Karnosky
- Department of Surgery, University Hospital Regensburg, 93053 Regensburg, Germany; (J.K.); (B.J.W.); (K.M.S.); (S.M.B.); (H.J.S.); (C.H.)
| | - Sofie Boscheck
- Institute for Molecular and Cellular Anatomy, University of Regensburg, 93053 Regensburg, Germany; (E.P.); (S.B.); (T.A.)
| | - Benedikt J. Wagner
- Department of Surgery, University Hospital Regensburg, 93053 Regensburg, Germany; (J.K.); (B.J.W.); (K.M.S.); (S.M.B.); (H.J.S.); (C.H.)
| | - Katharina M. Schmidt
- Department of Surgery, University Hospital Regensburg, 93053 Regensburg, Germany; (J.K.); (B.J.W.); (K.M.S.); (S.M.B.); (H.J.S.); (C.H.)
| | - Stefan M. Brunner
- Department of Surgery, University Hospital Regensburg, 93053 Regensburg, Germany; (J.K.); (B.J.W.); (K.M.S.); (S.M.B.); (H.J.S.); (C.H.)
| | - Hans J. Schlitt
- Department of Surgery, University Hospital Regensburg, 93053 Regensburg, Germany; (J.K.); (B.J.W.); (K.M.S.); (S.M.B.); (H.J.S.); (C.H.)
| | - Thiha Aung
- Institute for Molecular and Cellular Anatomy, University of Regensburg, 93053 Regensburg, Germany; (E.P.); (S.B.); (T.A.)
- Faculty of Applied Healthcare Science, Deggendorf Institute of Technology, 94469 Deggendorf, Germany
| | - Christina Hackl
- Department of Surgery, University Hospital Regensburg, 93053 Regensburg, Germany; (J.K.); (B.J.W.); (K.M.S.); (S.M.B.); (H.J.S.); (C.H.)
| | - Silke Haerteis
- Institute for Molecular and Cellular Anatomy, University of Regensburg, 93053 Regensburg, Germany; (E.P.); (S.B.); (T.A.)
- Correspondence:
| |
Collapse
|
13
|
Tumor suppressive role of microRNA-4731-5p in breast cancer through reduction of PAICS-induced FAK phosphorylation. Cell Death Dis 2022; 8:154. [PMID: 35379785 PMCID: PMC8980087 DOI: 10.1038/s41420-022-00938-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 02/21/2022] [Accepted: 03/08/2022] [Indexed: 12/25/2022]
Abstract
A wide array of microRNAs (miRNAs) is differentially expressed in breast tumors and also functions as tumor suppressors. Herein, the current study sought to unravel the function of miR-4731-5p in breast cancer progression. First, breast cancer-related miRNA and mRNA microarray data sets were retrieved for differential analyses. Subsequently, the expression patterns of miR-4731-5p, PAICS, and FAK in breast cancer tissues and cells were determined, in addition to analyses of their roles in glycometabolism, migration, invasion, epithelial–mesenchymal transition (EMT) analyzed through functional assays. Next, the targeting relation between miR-4731-5p and PAICS was validated. Xenograft tumors in nude mice were further established to reproduce and verify the in vitro findings. miR-4731-5p was poorly expressed and PAICS was highly expressed in breast cancer tissues and cells. PAICS was confirmed as a target of miR-4731-5p. Moreover, miR-4731-5p exerted an inhibitory effect on glycolysis, EMT, migration, and invasion in breast cancer cells via regulation of PAICS-dependent phosphorylation of FAK. In vivo assay further validated the significance of the miR-4731-5p/PAICS/FAK axis in vivo tumorigenesis and lung metastasis in breast cancer. Collectively, our findings indicated that miR-4731-5p inhibited breast cancer cell glycolysis and EMT through the reduction of PAICS-induced phosphorylation of FAK.
Collapse
|
14
|
Du B, Gao W, Qin Y, Zhong J, Zhang Z. Study on the role of transcription factor SPI1 in the development of glioma. Chin Neurosurg J 2022; 8:7. [PMID: 35361282 PMCID: PMC8973577 DOI: 10.1186/s41016-022-00276-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 03/04/2022] [Indexed: 12/19/2022] Open
Abstract
Background Glioma is a common malignant brain tumor. The purpose of this study was to investigate the role of the transcription factor SPI1 in glioma. Methods SPI1 expression in glioma was identified using qRT-PCR and Western blotting. Cell proliferation was assessed using the CCK8 assay. Transwell and wound healing assays were utilized to evaluate cell migration. Additionally, cell cycle and apoptosis were detected using flow cytometry. Results We observed that the expression level of SPI1 was up-regulated in glioma tissues, compared to normal tissues. Furthermore, we found that SPI1 is able to promote proliferation and migration of glioma cells in vitro. Flow cytometry results demonstrate that, compared to si-NC cells, si-SPI1 cells stagnated in the G1 phase, and down-regulation of SPI1 expression is able to increase rates of apoptosis. Double luciferase activity and chromatin immunoprecipitation assay results indicated that SPI1 can bind to the promoter sites and promote the proliferation and migration of glioma cells by regulating the expression of oncogenic PAICS. Conclusions Our results suggest that SPI1 can promote proliferation and migration of glioma. Furthermore, SPI1 can be utilized as a potential diagnostic marker and therapeutic target for glioma. Supplementary Information The online version contains supplementary material available at 10.1186/s41016-022-00276-2.
Collapse
|
15
|
Agarwal S, Afaq F, Bajpai P, Kim H, Elkholy A, Behring M, Chandrashekar DS, Diffalha SA, Khushman M, Sugandha SP, Varambally S, Manne U. DCZ0415, a small-molecule inhibitor targeting TRIP13, inhibits EMT and metastasis via inactivation of the FGFR4/STAT3 axis and the Wnt/β-catenin pathway in colorectal cancer. Mol Oncol 2022; 16:1728-1745. [PMID: 35194944 PMCID: PMC9019876 DOI: 10.1002/1878-0261.13201] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 02/10/2022] [Accepted: 02/21/2022] [Indexed: 11/11/2022] Open
Abstract
Thyroid receptor-interacting protein 13 (TRIP13), a protein of the AAA-ATPase family, is upregulated in various human cancers, including colorectal cancer (CRC). This study focused on the inhibition of TRIP13-induced CRC progression and signalling by DCZ0415, a small molecule targeting TRIP13. It demonstrated potent antitumour activity in TRIP13-deregulated cancer cell lines, regardless of their p53, KRAS, BRAF, epidermal growth factor receptor or microsatellite instability status. The treatment of CRC cells with DCZ0415 resulted in decreased cell proliferation, induced cell cycle arrest in the G2-M phase and increased apoptosis. DCZ0415 diminished xenograft tumour growth and metastasis of CRC in immunocompromised mice. DCZ0415 reduced expression of fibroblast growth factor receptor 4 (FGFR4), signal transducer and activator of transcription 3 (STAT3), and proteins associated with the epithelial-mesenchymal transition and nuclear factor kappa B (NF-κB) pathways in cells and xenografts exhibiting high expression of TRIP13. Additionally, DCZ0415 decreased cyclin D1, β-catenin and T-cell factor 1, leading to the inactivation of the Wnt/β-catenin pathway. In a syngeneic CRC model, DCZ0415 treatment induced an immune response by decreasing PD1 and CTLA4 levels and increasing granzyme B, perforin and interferon gamma. In sum, DCZ04145 inhibits the TRIP13-FGFR4-STAT3 axis, inactivates NF-κB and Wnt/β-catenin signalling, activates antitumour immune response and reduces the progression and metastasis of CRC. This study provides a rationale to evaluate DCZ0415 clinically for the treatment of a subset of CRCs that exhibit dysregulated TRIP13 and FGFR4.
Collapse
Affiliation(s)
- Sumit Agarwal
- Department of PathologyUniversity of Alabama at BirminghamALUSA
| | - Farrukh Afaq
- Department of PathologyUniversity of Alabama at BirminghamALUSA
| | - Prachi Bajpai
- Department of PathologyUniversity of Alabama at BirminghamALUSA
| | - Hyung‐Gyoon Kim
- Department of PathologyUniversity of Alabama at BirminghamALUSA
| | - Amr Elkholy
- Department of PathologyUniversity of Alabama at BirminghamALUSA
| | - Michael Behring
- Department of PathologyUniversity of Alabama at BirminghamALUSA
| | | | - Sameer Al Diffalha
- Department of PathologyUniversity of Alabama at BirminghamALUSA
- O’Neal Comprehensive Cancer CenterUniversity of Alabama at BirminghamALUSA
| | - Moh’d Khushman
- O’Neal Comprehensive Cancer CenterUniversity of Alabama at BirminghamALUSA
- Department of MedicineDivision of Medical OncologyUniversity of Alabama at BirminghamALUSA
| | - Shajan P. Sugandha
- Department of MedicineDivision of GastroenterologyUniversity of Alabama at BirminghamALUSA
| | - Sooryanarayana Varambally
- Department of PathologyUniversity of Alabama at BirminghamALUSA
- O’Neal Comprehensive Cancer CenterUniversity of Alabama at BirminghamALUSA
| | - Upender Manne
- Department of PathologyUniversity of Alabama at BirminghamALUSA
- O’Neal Comprehensive Cancer CenterUniversity of Alabama at BirminghamALUSA
| |
Collapse
|
16
|
Iwano T, Yoshimura K, Watanabe G, Saito R, Kiritani S, Kawaida H, Moriguchi T, Murata T, Ogata K, Ichikawa D, Arita J, Hasegawa K, Takeda S. High-performance Collective Biomarker from Liquid Biopsy for Diagnosis of Pancreatic Cancer Based on Mass Spectrometry and Machine Learning. J Cancer 2022; 12:7477-7487. [PMID: 35003367 PMCID: PMC8734412 DOI: 10.7150/jca.63244] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 10/12/2021] [Indexed: 02/07/2023] Open
Abstract
Background: Most pancreatic cancers are found at progressive stages when they cannot be surgically removed. Therefore, a highly accurate early detection method is urgently needed. Methods: This study analyzed serum from Japanese patients who suffered from pancreatic ductal adenocarcinoma (PDAC) and aimed to establish a PDAC-diagnostic system with metabolites in serum. Two groups of metabolites, primary metabolites (PM) and phospholipids (PL), were analyzed using liquid chromatography/electrospray ionization mass spectrometry. A support vector machine was employed to establish a machine learning-based diagnostic algorithm. Results: Integrating PM and PL databases improved cancer diagnostic accuracy and the area under the receiver operating characteristic curve. It was more effective than the algorithm based on either PM or PL database, or single metabolites as a biomarker. Subsequently, 36 statistically significant metabolites were fed into the algorithm as a collective biomarker, which improved results by accomplishing 97.4% and was further validated by additional serum. Interestingly, specific clusters of metabolites from patients with preoperative neoadjuvant chemotherapy (NAC) showed different patterns from those without NAC and were somewhat comparable to those of the control. Conclusion: We propose an efficient screening system for PDAC with high accuracy by liquid biopsy and potential biomarkers useful for assessing NAC performance.
Collapse
Affiliation(s)
- Tomohiko Iwano
- Department of Anatomy and Cell Biology, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Kentaro Yoshimura
- Department of Anatomy and Cell Biology, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Genki Watanabe
- Hepato-Biliary-Pancreatic Surgery Division, Department of Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ryo Saito
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Sho Kiritani
- Hepato-Biliary-Pancreatic Surgery Division, Department of Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiromichi Kawaida
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Takeshi Moriguchi
- Department of Emergency and Critical Care Medicine, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan
| | | | | | - Daisuke Ichikawa
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Junichi Arita
- Hepato-Biliary-Pancreatic Surgery Division, Department of Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kiyoshi Hasegawa
- Hepato-Biliary-Pancreatic Surgery Division, Department of Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Sen Takeda
- Department of Anatomy and Cell Biology, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan
| |
Collapse
|
17
|
Lu J, Cannizzaro E, Meier-Abt F, Scheinost S, Bruch PM, Giles HAR, Lütge A, Hüllein J, Wagner L, Giacopelli B, Nadeu F, Delgado J, Campo E, Mangolini M, Ringshausen I, Böttcher M, Mougiakakos D, Jacobs A, Bodenmiller B, Dietrich S, Oakes CC, Zenz T, Huber W. Multi-omics reveals clinically relevant proliferative drive associated with mTOR-MYC-OXPHOS activity in chronic lymphocytic leukemia. NATURE CANCER 2021; 2:853-864. [PMID: 34423310 PMCID: PMC7611543 DOI: 10.1038/s43018-021-00216-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/10/2021] [Indexed: 11/10/2022]
Abstract
Chronic Lymphocytic Leukemia (CLL) has a complex pattern of driver mutations and much of its clinical diversity remains unexplained. We devised a method for simultaneous subgroup discovery across multiple data types and applied it to genomic, transcriptomic, DNA methylation and ex-vivo drug response data from 217 Chronic Lymphocytic Leukemia (CLL) cases. We uncovered a biological axis of heterogeneity strongly associated with clinical behavior and orthogonal to the known biomarkers. We validated its presence and clinical relevance in four independent cohorts (n=547 patients). We find that this axis captures the proliferative drive (PD) of CLL cells, as it associates with lymphocyte doubling rate, global hypomethylation, accumulation of driver aberrations and response to pro-proliferative stimuli. CLL-PD was linked to the activation of mTOR-MYC-oxidative phosphorylation (OXPHOS) through transcriptomic, proteomic and single cell resolution analysis. CLL-PD is a key determinant of disease outcome in CLL. Our multi-table integration approach may be applicable to other tumors whose inter-individual differences are currently unexplained.
Collapse
Affiliation(s)
- Junyan Lu
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany
| | - Ester Cannizzaro
- Department of Medical Oncology and Hematology, University Hospital Zürich and University of Zürich, Zürich, Switzerland
| | - Fabienne Meier-Abt
- Department of Medical Oncology and Hematology, University Hospital Zürich and University of Zürich, Zürich, Switzerland
| | - Sebastian Scheinost
- Molecular Therapy in Hematology and Oncology, National Center for Tumor Diseases and German Cancer Research Centre, Heidelberg, Germany
| | - Peter-Martin Bruch
- Molecular Therapy in Hematology and Oncology, National Center for Tumor Diseases and German Cancer Research Centre, Heidelberg, Germany
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
- University of Heidelberg, Heidelberg, Germany
| | - Holly AR Giles
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany
| | - Almut Lütge
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Jennifer Hüllein
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Molecular Therapy in Hematology and Oncology, National Center for Tumor Diseases and German Cancer Research Centre, Heidelberg, Germany
| | - Lena Wagner
- Molecular Therapy in Hematology and Oncology, National Center for Tumor Diseases and German Cancer Research Centre, Heidelberg, Germany
| | - Brian Giacopelli
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
| | - Ferran Nadeu
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Julio Delgado
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Hematopathology Unit, Hospital Clínic de Barcelona, University of Barcelona, Barcelona, Spain
| | - Elías Campo
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Hematopathology Unit, Hospital Clínic de Barcelona, University of Barcelona, Barcelona, Spain
| | - Maurizio Mangolini
- Wellcome Trust/MRC Cambridge Stem Cell Institute & Department of Haematology, University of Cambridge, Cambridge CB2 0AH, UK
| | - Ingo Ringshausen
- Wellcome Trust/MRC Cambridge Stem Cell Institute & Department of Haematology, University of Cambridge, Cambridge CB2 0AH, UK
| | - Martin Böttcher
- Department of Internal Medicine 5, Hematology and Oncology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Dimitrios Mougiakakos
- Department of Internal Medicine 5, Hematology and Oncology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Andrea Jacobs
- Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Bernd Bodenmiller
- Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Sascha Dietrich
- Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
- University of Heidelberg, Heidelberg, Germany
- Translational Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christopher C. Oakes
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH
| | - Thorsten Zenz
- Department of Medical Oncology and Hematology, University Hospital Zürich and University of Zürich, Zürich, Switzerland
- Molecular Therapy in Hematology and Oncology, National Center for Tumor Diseases and German Cancer Research Centre, Heidelberg, Germany
| | - Wolfgang Huber
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany
| |
Collapse
|
18
|
Downregulation of PAICS due to loss of chromosome 4q is associated with poor survival in stage III colorectal cancer. PLoS One 2021; 16:e0247169. [PMID: 33596246 PMCID: PMC7888640 DOI: 10.1371/journal.pone.0247169] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 02/03/2021] [Indexed: 02/06/2023] Open
Abstract
Phosphoribosylaminoimidazole carboxylase, phosphoribosylaminoimidazole succinocarboxamide synthetase (PAICS) encodes an enzyme that catalyzes de novo purine biosynthesis. Although PAICS has been implicated as a potential therapeutic target in several cancers, its clinical and prognostic significance in colorectal cancer (CRC) is not fully understood. To elucidate the roles of PAICS in CRC, we investigated PAICS expression in four cohorts consisting of a total of 1659 samples based on quantitative RT-PCR, microarray and RNA-seq analysis. Despite upregulated PAICS levels in tumor compared to those of normal mucosa, we found a decreasing trend of PAICS expression during tumor progression and metastasis. We conducted immunohistochemistry on 252 specimens, showing that PAICS protein was strongly expressed in the majority of CRCs, but not in adjacent mucosa. Notably, 29.0% of tumors lacked PAICS staining, and PAICS-negative expression in tumor had significant prognostic impact on poor cancer-specific survival in stage III CRC. Correspondingly, decreased levels of PAICS transcript were also correlated with poor relapse-free survival particularly in stage III patients, and this finding was robustly confirmed in three microarray datasets of a total of 802 stage II-III patients. Bioinformatics analysis of CRC tissues and cell lines consistently indicated a correlation between decreased PAICS expression and copy number loss of chromosome arm 4q. In conclusion, our results suggest that PAICS expression is downregulated during tumor progression due to genetic deletion of chromosome 4q in microsatellite stable but chromosomally unstable tumors. Furthermore, decreased expression of PAICS transcript or loss of PAICS protein may provide prognostic stratification for postoperative patients with stage III CRC.
Collapse
|
19
|
Agarwal S, Behring M, Kim H, Chandrashekar DS, Chakravarthi BVSK, Gupta N, Bajpai P, Elkholy A, Al Diffalha S, Datta PK, Heslin MJ, Varambally S, Manne U. TRIP13 promotes metastasis of colorectal cancer regardless of p53 and microsatellite instability status. Mol Oncol 2020; 14:3007-3029. [PMID: 33037736 PMCID: PMC7718953 DOI: 10.1002/1878-0261.12821] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/31/2020] [Accepted: 10/07/2020] [Indexed: 12/18/2022] Open
Abstract
Overexpression of TRIP13, a member of the AAA-ATPase family, is linked with various cancers, but its role in metastasis is unknown in colorectal cancer (CRC). In the current study, we investigated the role TRIP13 in experimental metastasis and its involvement in regulation of WNT/β-catenin and EGFR signaling pathways. Evaluation of formalin-fixed paraffin-embedded (FFPE) and frozen tissues of adenomas and CRCs, along with their corresponding normal samples, showed that TRIP13 was gradually increased in its phenotypic expression from adenoma to carcinoma and that its overexpression in CRCs was independent of patient's gender, age, race/ethnicity, pathologic stage, and p53 and microsatellite instability (MSI) status. Moreover, liver metastases of CRCs showed TRIP13 overexpression as compared to matched adjacent liver tissues, indicating the biological relevance of TRIP13 in CRC progression and metastasis. TRIP13 knockdown impeded colony formation, invasion, motility, and spheroid-forming capacity of CRC cells irrespective of their p53 and MSI status. Furthermore, xenograft studies demonstrated high expression of TRIP13 contributed to tumor growth and metastasis. Depletion of TRIP13 in CRC cells decreased metastasis and it was independent of the p53 and MSI status. Furthermore, TRIP13 interacted with a tyrosine kinase, FGFR4; this interaction could be essential for activation of the EGFR-AKT pathway. In addition, we demonstrated the involvement of TRIP13 in the Wnt signaling pathway and in the epithelial-mesenchymal transition. Cell-based assays revealed that miR-192 and PNPT1 regulate TRIP13 expression in CRC. Additionally, RNA sequencing of CRC cells with TRIP13 knockdown identified COL6A3, TREM2, SHC3, and KLK7 as downstream targets that may have functional relevance in TRIP13-mediated tumor growth and metastasis. In summary, our results demonstrated that TRIP13 promotes tumor growth and metastasis regardless of p53 and MSI status, and indicated that it is a target for therapy of CRC.
Collapse
Affiliation(s)
- Sumit Agarwal
- Department of PathologyUniversity of Alabama at BirminghamALUSA
| | - Michael Behring
- Department of PathologyUniversity of Alabama at BirminghamALUSA
| | - Hyung‐Gyoon Kim
- Department of PathologyUniversity of Alabama at BirminghamALUSA
| | | | | | - Nirzari Gupta
- Department of ChemistryUniversity of Alabama at BirminghamALUSA
| | - Prachi Bajpai
- Department of PathologyUniversity of Alabama at BirminghamALUSA
| | - Amr Elkholy
- Department of PathologyUniversity of Alabama at BirminghamALUSA
| | | | - Pran K. Datta
- Division of Hematology and OncologyDepartment of MedicineUniversity of Alabama at BirminghamALUSA
- Department of SurgeryUniversity of Alabama at BirminghamALUSA
- O'Neal Comprehensive Cancer CenterUniversity of Alabama at BirminghamALUSA
| | - Martin J. Heslin
- Department of SurgeryUniversity of Alabama at BirminghamALUSA
- O'Neal Comprehensive Cancer CenterUniversity of Alabama at BirminghamALUSA
| | - Sooryanarayana Varambally
- Department of PathologyUniversity of Alabama at BirminghamALUSA
- O'Neal Comprehensive Cancer CenterUniversity of Alabama at BirminghamALUSA
| | - Upender Manne
- Department of PathologyUniversity of Alabama at BirminghamALUSA
- Department of SurgeryUniversity of Alabama at BirminghamALUSA
- O'Neal Comprehensive Cancer CenterUniversity of Alabama at BirminghamALUSA
| |
Collapse
|
20
|
Škerlová J, Unterlass J, Göttmann M, Marttila P, Homan E, Helleday T, Jemth AS, Stenmark P. Crystal structures of human PAICS reveal substrate and product binding of an emerging cancer target. J Biol Chem 2020; 295:11656-11668. [PMID: 32571877 DOI: 10.1074/jbc.ra120.013695] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/18/2020] [Indexed: 12/16/2022] Open
Abstract
The bifunctional human enzyme phosphoribosylaminoimidazole carboxylase and phosphoribosylaminoimidazolesuccinocarboxamide synthetase (PAICS) catalyzes two essential steps in the de novo purine biosynthesis pathway. PAICS is overexpressed in many cancers and could be a promising target for the development of cancer therapeutics. Here, using gene knockdowns and clonogenic survival and cell viability assays, we demonstrate that PAICS is required for growth and survival of prostate cancer cells. PAICS catalyzes the carboxylation of aminoimidazole ribonucleotide (AIR) and the subsequent conversion of carboxyaminoimidazole ribonucleotide (CAIR) and l-aspartate to N-succinylcarboxamide-5-aminoimidazole ribonucleotide (SAICAR). Of note, we present the first structures of human octameric PAICS in complexes with native ligands. In particular, we report the structure of PAICS with CAIR bound in the active sites of both domains and SAICAR bound in one of the SAICAR synthetase domains. Moreover, we report the PAICS structure with SAICAR and an ATP analog occupying the SAICAR synthetase active site. These structures provide insight into substrate and product binding and the architecture of the active sites, disclosing important structural information for rational design of PAICS inhibitors as potential anticancer drugs.
Collapse
Affiliation(s)
- Jana Škerlová
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Judith Unterlass
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Mona Göttmann
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Petra Marttila
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Evert Homan
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Thomas Helleday
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.,Weston Park Cancer Centre, Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Ann-Sofie Jemth
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Pål Stenmark
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden .,Department of Experimental Medical Science, Lund University, Lund, Sweden
| |
Collapse
|