1
|
Mao N, Bao Y, Dong C, Zhou H, Zhang H, Ma H, Wang Q, Xie H, Qu N, Wang P, Lin F, Lu J. Delta Radiomics Based on MRI for Predicting Axillary Lymph Node Pathologic Complete Response After Neoadjuvant Chemotherapy in Breast Cancer Patients. Acad Radiol 2024:S1076-6332(24)00529-4. [PMID: 39271381 DOI: 10.1016/j.acra.2024.07.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 09/15/2024]
Abstract
PURPOSE To develop and test a radiomics nomogram based on magnetic resonance imaging (MRI) and clinicopathological factors for predicting the axillary pathologic complete response (apCR) to neoadjuvant chemotherapy (NAC) in breast cancer patients with axillary lymph node (ALN) metastases. MATERIALS AND METHODS A total of 319 patients who underwent MRI examination and received NAC treatment were enrolled from two centers, and the presence of ALN metastasis was confirmed by biopsy pathology before NAC. The radiomics features were extracted from regions of interest of ALNs before (pre-radiomics) and after (post-radiomics) NAC. The difference of features before and after NAC, named delta radiomics, was calculated. The variance threshold, selectKbest and least absolute shrinkage and selection operator algorithm were used to select radiomics features. Radscore was calculated by a linear combination of selected features, weighted by their respective coefficients. The univariate and multivariate logistic regression was used to select the clinicopathological factors and radscores, and a radiomics nomogram was built by multivariable logistic regression analysis. The performance of the nomogram was evaluated by the area under the receiver operator characteristic curve (AUC), decision curve analysis (DCA) and calibration curves. Furthermore, to explore the biological basis of radiomics nomogram, 16 patients with RNA-sequence data were included for genetic analysis. RESULTS The radiomics nomogram was constructed by two radscores (post- and delta- radscores) and one clinicopathological factor (progesterone hormone, PR), and showed powerful predictive performance in both internal and external test sets, with AUCs of 0.894 (95% confidence interval [CI], 0.877-0.959) and 0.903 (95% CI, 0.801-0.986), respectively. The calibration curves and DCA showed favorable consistency and clinical utility. With the assistance of nomogram, the rate of unnecessary ALND would be reduced from 60.42% to 21.88%, and the rate of final benefit rate would be increased from 39.58% to 70.83%. Moreover, genetic analysis revealed that high apCR prediction scores were associated with the upregulation of immune-mediated genes and pathways. CONCLUSION The radiomics nomogram showed great performance in predicting apCR after NAC for breast cancer patients, which could help clinicians to identify patients with apCR and avoid unnecessary axillary lymph node dissection.
Collapse
Affiliation(s)
- Ning Mao
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital Capital Medical University, Beijing, P R China (N.M., J.L.); Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, P R China (N.M., H.M., H.X., F.L.); Big Data and Artificial Intelligence Laboratory, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, P R China (N.M., H.M., H.X., F.L.); Shandong Provincial Key Medical and Health Laboratory of Intelligent Diagnosis and Treatment for Women's Diseases (Yantai Yuhuangding Hospital), Shandong, P R China (N.M., H.Z., H.M., Q.W., H.X., F.L.)
| | - Yuhan Bao
- Breast center, The Second Hospital of Shandong University, Jinan, Shandong, P R China (Y.B.)
| | - Chuntong Dong
- Department of Radiology, Qingdao Cardiovascular Hospital, Qingdao, Shandong, P R China (C.D.)
| | - Heng Zhou
- School of Information and Electronic Engineering, Shandong Technology and Business University, Yantai, Shandong, P R China (H.Z.)
| | - Haicheng Zhang
- Big Data and Artificial Intelligence Laboratory, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, P R China (N.M., H.M., H.X., F.L.); Shandong Provincial Key Medical and Health Laboratory of Intelligent Diagnosis and Treatment for Women's Diseases (Yantai Yuhuangding Hospital), Shandong, P R China (N.M., H.Z., H.M., Q.W., H.X., F.L.)
| | - Heng Ma
- Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, P R China (N.M., H.M., H.X., F.L.); Shandong Provincial Key Medical and Health Laboratory of Intelligent Diagnosis and Treatment for Women's Diseases (Yantai Yuhuangding Hospital), Shandong, P R China (N.M., H.Z., H.M., Q.W., H.X., F.L.)
| | - Qi Wang
- Big Data and Artificial Intelligence Laboratory, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, P R China (N.M., H.M., H.X., F.L.); Shandong Provincial Key Medical and Health Laboratory of Intelligent Diagnosis and Treatment for Women's Diseases (Yantai Yuhuangding Hospital), Shandong, P R China (N.M., H.Z., H.M., Q.W., H.X., F.L.)
| | - Haizhu Xie
- Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, P R China (N.M., H.M., H.X., F.L.); Shandong Provincial Key Medical and Health Laboratory of Intelligent Diagnosis and Treatment for Women's Diseases (Yantai Yuhuangding Hospital), Shandong, P R China (N.M., H.Z., H.M., Q.W., H.X., F.L.)
| | - Nina Qu
- Department of Ultrasound, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, P R China (N.Q.)
| | - Peiyuan Wang
- Department of Radiology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, P R China (P.W.)
| | - Fan Lin
- Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, P R China (N.M., H.M., H.X., F.L.); Shandong Provincial Key Medical and Health Laboratory of Intelligent Diagnosis and Treatment for Women's Diseases (Yantai Yuhuangding Hospital), Shandong, P R China (N.M., H.Z., H.M., Q.W., H.X., F.L.)
| | - Jie Lu
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital Capital Medical University, Beijing, P R China (N.M., J.L.).
| |
Collapse
|
2
|
Lin Y, Wang J, Li M, Zhou C, Hu Y, Wang M, Zhang X. Prediction of breast cancer and axillary positive-node response to neoadjuvant chemotherapy based on multi-parametric magnetic resonance imaging radiomics models. Breast 2024; 76:103737. [PMID: 38696854 PMCID: PMC11070644 DOI: 10.1016/j.breast.2024.103737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 04/05/2024] [Accepted: 04/22/2024] [Indexed: 05/04/2024] Open
Abstract
PURPOSE Accurate identification of primary breast cancer and axillary positive-node response to neoadjuvant chemotherapy (NAC) is important for determining appropriate surgery strategies. We aimed to develop combining models based on breast multi-parametric magnetic resonance imaging and clinicopathologic characteristics for predicting therapeutic response of primary tumor and axillary positive-node prior to treatment. MATERIALS AND METHODS A total of 268 breast cancer patients who completed NAC and underwent surgery were enrolled. Radiomics features and clinicopathologic characteristics were analyzed through the analysis of variance and the least absolute shrinkage and selection operator algorithm. Finally, 24 and 28 optimal features were selected to construct machine learning models based on 6 algorithms for predicting each clinical outcome, respectively. The diagnostic performances of models were evaluated in the testing set by the area under the curve (AUC), sensitivity, specificity, and accuracy. RESULTS Of the 268 patients, 94 (35.1 %) achieved breast cancer pathological complete response (bpCR) and of the 240 patients with clinical positive-node, 120 (50.0 %) achieved axillary lymph node pathological complete response (apCR). The multi-layer perception (MLP) algorithm yielded the best diagnostic performances in predicting apCR with an AUC of 0.825 (95 % CI, 0.764-0.886) and an accuracy of 77.1 %. And MLP also outperformed other models in predicting bpCR with an AUC of 0.852 (95 % CI, 0.798-0.906) and an accuracy of 81.3 %. CONCLUSIONS Our study established non-invasive combining models to predict the therapeutic response of primary breast cancer and axillary positive-node prior to NAC, which may help to modify preoperative treatment and determine post-NAC surgery strategy.
Collapse
Affiliation(s)
- Yingyu Lin
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University. 58th, The Second Zhongshan Road, Guangzhou, Guangdong, 510080, China
| | - Jifei Wang
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University. 58th, The Second Zhongshan Road, Guangzhou, Guangdong, 510080, China
| | - Meizhi Li
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University. 58th, The Second Zhongshan Road, Guangzhou, Guangdong, 510080, China
| | - Chunxiang Zhou
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University. 58th, The Second Zhongshan Road, Guangzhou, Guangdong, 510080, China
| | - Yangling Hu
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University. 58th, The Second Zhongshan Road, Guangzhou, Guangdong, 510080, China
| | - Mengyi Wang
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University. 58th, The Second Zhongshan Road, Guangzhou, Guangdong, 510080, China
| | - Xiaoling Zhang
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University. 58th, The Second Zhongshan Road, Guangzhou, Guangdong, 510080, China.
| |
Collapse
|
3
|
Zhou J, Bai Y, Zhang Y, Wang Z, Sun S, Lin L, Gu Y, You C. A preoperative radiogenomic model based on quantitative heterogeneity for predicting outcomes in triple-negative breast cancer patients who underwent neoadjuvant chemotherapy. Cancer Imaging 2024; 24:98. [PMID: 39080809 PMCID: PMC11289960 DOI: 10.1186/s40644-024-00746-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is highly heterogeneous, resulting in different responses to neoadjuvant chemotherapy (NAC) and prognoses among patients. This study sought to characterize the heterogeneity of TNBC on MRI and develop a radiogenomic model for predicting both pathological complete response (pCR) and prognosis. MATERIALS AND METHODS In this retrospective study, TNBC patients who underwent neoadjuvant chemotherapy at Fudan University Shanghai Cancer Center were enrolled as the radiomic development cohort (n = 315); among these patients, those whose genetic data were available were enrolled as the radiogenomic development cohort (n = 98). The study population of the two cohorts was randomly divided into a training set and a validation set at a ratio of 7:3. The external validation cohort (n = 77) included patients from the DUKE and I-SPY 1 databases. Spatial heterogeneity was characterized using features from the intratumoral subregions and peritumoral region. Hemodynamic heterogeneity was characterized by kinetic features from the tumor body. Three radiomics models were developed by logistic regression after selecting features. Model 1 included subregional and peritumoral features, Model 2 included kinetic features, and Model 3 integrated the features of Model 1 and Model 2. Two fusion models were developed by further integrating pathological and genomic features (PRM: pathology-radiomics model; GPRM: genomics-pathology-radiomics model). Model performance was assessed with the AUC and decision curve analysis. Prognostic implications were assessed with Kaplan‒Meier curves and multivariate Cox regression. RESULTS Among the radiomic models, the multiregional model representing multiscale heterogeneity (Model 3) exhibited better pCR prediction, with AUCs of 0.87, 0.79, and 0.78 in the training, internal validation, and external validation sets, respectively. The GPRM showed the best performance for predicting pCR in the training (AUC = 0.97, P = 0.015) and validation sets (AUC = 0.93, P = 0.019). Model 3, PRM and GPRM could stratify patients by disease-free survival, and a predicted nonpCR was associated with poor prognosis (P = 0.034, 0.001 and 0.019, respectively). CONCLUSION Multiscale heterogeneity characterized by DCE-MRI could effectively predict the pCR and prognosis of TNBC patients. The radiogenomic model could serve as a valuable biomarker to improve the prediction performance.
Collapse
Affiliation(s)
- Jiayin Zhou
- Department of Radiology, Fudan University Shanghai Cancer Center, No. 270 Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yansong Bai
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200000, China
| | - Ying Zhang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Zezhou Wang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Department of Cancer Prevention, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Shanghai Municipal Hospital Oncological Specialist Alliance, Shanghai, 200000, China
| | - Shiyun Sun
- Department of Radiology, Fudan University Shanghai Cancer Center, No. 270 Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Luyi Lin
- Department of Radiology, Fudan University Shanghai Cancer Center, No. 270 Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yajia Gu
- Department of Radiology, Fudan University Shanghai Cancer Center, No. 270 Dong'an Road, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Chao You
- Department of Radiology, Fudan University Shanghai Cancer Center, No. 270 Dong'an Road, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
4
|
Fan M, Wang K, Pan D, Cao X, Li Z, He S, Xie S, You C, Gu Y, Li L. Radiomic analysis reveals diverse prognostic and molecular insights into the response of breast cancer to neoadjuvant chemotherapy: a multicohort study. J Transl Med 2024; 22:637. [PMID: 38978099 PMCID: PMC11232151 DOI: 10.1186/s12967-024-05487-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/03/2024] [Indexed: 07/10/2024] Open
Abstract
BACKGROUND Breast cancer patients exhibit various response patterns to neoadjuvant chemotherapy (NAC). However, it is uncertain whether diverse tumor response patterns to NAC in breast cancer patients can predict survival outcomes. We aimed to develop and validate radiomic signatures indicative of tumor shrinkage and therapeutic response for improved survival analysis. METHODS This retrospective, multicohort study included three datasets. The development dataset, consisting of preoperative and early NAC DCE-MRI data from 255 patients, was used to create an imaging signature-based multitask model for predicting tumor shrinkage patterns and pathological complete response (pCR). Patients were categorized as pCR, nonpCR with concentric shrinkage (CS), or nonpCR with non-CS, with prediction performance measured by the area under the curve (AUC). The prognostic validation dataset (n = 174) was used to assess the prognostic value of the imaging signatures for overall survival (OS) and recurrence-free survival (RFS) using a multivariate Cox model. The gene expression data (genomic validation dataset, n = 112) were analyzed to determine the biological basis of the response patterns. RESULTS The multitask learning model, utilizing 17 radiomic signatures, achieved AUCs of 0.886 for predicting tumor shrinkage and 0.760 for predicting pCR. Patients who achieved pCR had the best survival outcomes, while nonpCR patients with a CS pattern had better survival than non-CS patients did, with significant differences in OS and RFS (p = 0.00012 and p = 0.00063, respectively). Gene expression analysis highlighted the involvement of the IL-17 and estrogen signaling pathways in response variability. CONCLUSIONS Radiomic signatures effectively predict NAC response patterns in breast cancer patients and are associated with specific survival outcomes. The CS pattern in nonpCR patients indicates better survival.
Collapse
Affiliation(s)
- Ming Fan
- Institute of Biomedical Engineering and Instrumentation, Hangzhou Dianzi University, Xiasha High Education Zone, Hangzhou, 310018, Zhejiang, China
| | - Kailang Wang
- Institute of Biomedical Engineering and Instrumentation, Hangzhou Dianzi University, Xiasha High Education Zone, Hangzhou, 310018, Zhejiang, China
| | - Da Pan
- Institute of Biomedical Engineering and Instrumentation, Hangzhou Dianzi University, Xiasha High Education Zone, Hangzhou, 310018, Zhejiang, China
| | - Xuan Cao
- Institute of Biomedical Engineering and Instrumentation, Hangzhou Dianzi University, Xiasha High Education Zone, Hangzhou, 310018, Zhejiang, China
| | - Zhihao Li
- Institute of Biomedical Engineering and Instrumentation, Hangzhou Dianzi University, Xiasha High Education Zone, Hangzhou, 310018, Zhejiang, China
| | - Songlin He
- Institute of Biomedical Engineering and Instrumentation, Hangzhou Dianzi University, Xiasha High Education Zone, Hangzhou, 310018, Zhejiang, China
| | - Sangma Xie
- Institute of Biomedical Engineering and Instrumentation, Hangzhou Dianzi University, Xiasha High Education Zone, Hangzhou, 310018, Zhejiang, China.
| | - Chao You
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yajia Gu
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Lihua Li
- Institute of Biomedical Engineering and Instrumentation, Hangzhou Dianzi University, Xiasha High Education Zone, Hangzhou, 310018, Zhejiang, China.
| |
Collapse
|
5
|
Zou J, Zhang L, Chen Y, Lin Y, Cheng M, Zheng X, Zhuang X, Wang K. Neoadjuvant Chemotherapy and Neoadjuvant Chemotherapy With Immunotherapy Result in Different Tumor Shrinkage Patterns in Triple-Negative Breast Cancer. J Breast Cancer 2024; 27:27-36. [PMID: 37985386 PMCID: PMC10912578 DOI: 10.4048/jbc.2023.0136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/21/2023] [Accepted: 11/09/2023] [Indexed: 12/20/2023] Open
Abstract
PURPOSE This study aims to explore whether neoadjuvant chemotherapy with immunotherapy (NACI) leads to different tumor shrinkage patterns, based on magnetic resonance imaging (MRI), compared to neoadjuvant chemotherapy (NAC) alone in patients with triple-negative breast cancer (TNBC). Additionally, the study investigates the relationship between tumor shrinkage patterns and treatment efficacy was investigated. METHODS This retrospective study included patients with TNBC patients receiving NAC or NACI from January 2019 until July 2021 at our center. Pre- and post-treatment MRI results were obtained for each patient, and tumor shrinkage patterns were classified into three categories as follows: 1) concentric shrinkage (CS); 2) diffuse decrease; and 3) no change. Tumor shrinkage patterns were compared between the NAC and NACI groups, and the relevance of the patterns to treatment efficacy was assessed. RESULTS Of the 99 patients, 65 received NAC and 34 received NACI. The CS pattern was observed in 53% and 20% of patients in the NAC and NACI groups, respectively. Diffuse decrease pattern was observed in 36% and 68% of patients in the NAC and NACI groups. The association between the treatment regimens (NAC and NACI) and tumor shrinkage patterns was statistically significant (p = 0.004). The postoperative pathological complete response (pCR) rate was 45% and 82% in the NAC and NACI groups (p < 0.001), respectively. In the NACI group, 17% of patients with the CS pattern and 56% of those with the diffuse decrease pattern achieved pCR (p = 0.903). All tumor shrinkage patterns were associated with achieved a high pCR rate in the NACI group. CONCLUSION Our study demonstrates that the diffuse decrease pattern of tumor shrinkage is more common following NACI than that following NAC. Furthermore, our findings suggest that all tumor shrinkage patterns are associated with a high pCR rate in patients with TNBC treated with NACI. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT04909554.
Collapse
Affiliation(s)
- Jiachen Zou
- Department of The First Clinical Medicine, Guangdong Medical University, Zhanjiang, China
- Department of Breast Cancer, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangdong Medical University, Guangzhou, China
| | - Liulu Zhang
- Department of Breast Cancer, Cancer Centre, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yuanqi Chen
- Department of Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Yingyi Lin
- Department of Clinical Medicine, Shantou University Medical College, Shantou, China
| | - Minyi Cheng
- Department of Breast Cancer, Cancer Centre, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Xingxing Zheng
- Department of Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Xiaosheng Zhuang
- Department of Cell and Molecular Biology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Kun Wang
- Department of Breast Cancer, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangdong Medical University, Guangzhou, China
- Department of Breast Cancer, Cancer Centre, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.
| |
Collapse
|
6
|
Zhang N, Song Q, Liang H, Wang Z, Wu Q, Zhang H, Zhang L, Liu A, Wang H, Wang J, Lin L. Early prediction of pathological response to neoadjuvant chemotherapy of breast tumors: a comparative study using amide proton transfer-weighted, diffusion weighted and dynamic contrast enhanced MRI. Front Med (Lausanne) 2024; 11:1295478. [PMID: 38298813 PMCID: PMC10827983 DOI: 10.3389/fmed.2024.1295478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 01/05/2024] [Indexed: 02/02/2024] Open
Abstract
Objective To examine amide proton transfer-weighted (APTw) combined with diffusion weighed (DWI) and dynamic contrast enhanced (DCE) MRI for early prediction of pathological response to neoadjuvant chemotherapy in invasive breast cancer. Materials In this prospective study, 50 female breast cancer patients (49.58 ± 10.62 years old) administered neoadjuvant chemotherapy (NAC) were enrolled with MRI carried out both before NAC (T0) and at the end of the second cycle of NAC (T1). The patients were divided into 2 groups based on tumor response according to the Miller-Payne Grading (MPG) system. Group 1 included patients with a greater degree of decrease in major histologic responder (MHR, Miller-Payne G4-5), while group 2 included non-MHR cases (Miller-Payne G1-3). Traditional imaging protocols (T1 weighted, T2 weighted, diffusion weighted, and DCE-MRI) and APTw imaging were scanned for each subject before and after treatment. APTw value (APTw0 and APTw1), Dmax (maximum diameter, Dmax0 and Dmax1), V (3D tumor volume, V0 and V1), and ADC (apparent diffusion coefficient, ADC0 and ADC1) before and after treatment, as well as changes between the two times points (ΔAPT, ΔDmax, ΔV, ΔADC) for breast tumors were compared between the two groups. Results APT0 and APT1 values significantly differed between the two groups (p = 0.034 and 0.01). ΔAPTw values were significantly lower in non-MHR tumors compared with MHR tumors (p = 0.015). ΔDmax values were significantly higher in MHR tumors compared with non-MHR tumors (p = 0.005). ADC0 and ADC1 values were significantly higher in MHR tumors than in non-MHR tumors (p = 0.038 and 0.035). AUC (Dmax+DWI + APTw) = AUC (Dmax+APTw) > AUC (APTw) > AUC (Dmax+DWI) > AUC (Dmax). Conclusion APTw imaging along with change of tumor size showed a significant potential in early prediction of MHR for NAC treatment in breast cancer, which might allow timely regimen refinement before definitive surgical treatment.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Radiology, First Affiliated Hospital, Dalian Medical University, Dalian, China
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qingwei Song
- Department of Radiology, First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Hongbing Liang
- Department of Radiology, First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Zhuo Wang
- Department of Radiology, First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Qi Wu
- Department of Radiology, First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Haonan Zhang
- Department of Radiology, First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Lina Zhang
- Department of Radiology, First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Ailian Liu
- Department of Radiology, First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Huali Wang
- Department of Pathology, First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Jiazheng Wang
- MSC Clinical and Technical Solutions, Philips Healthcare, Beijing, China
| | - Liangjie Lin
- MSC Clinical and Technical Solutions, Philips Healthcare, Beijing, China
| |
Collapse
|
7
|
Campana A, Gandomkar Z, Giannotti N, Reed W. The use of radiomics in magnetic resonance imaging for the pre-treatment characterisation of breast cancers: A scoping review. J Med Radiat Sci 2023; 70:462-478. [PMID: 37534540 PMCID: PMC10715343 DOI: 10.1002/jmrs.709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 07/16/2023] [Indexed: 08/04/2023] Open
Abstract
Radiomics is an emerging field that aims to extract and analyse a comprehensive set of quantitative features from medical images. This scoping review is focused on MRI-based radiomic features for the molecular profiling of breast tumours and the implications of this work for predicting patient outcomes. A thorough systematic literature search and outcome extraction were performed to identify relevant studies published in MEDLINE/PubMed (National Centre for Biotechnology Information), EMBASE and Scopus from 2015 onwards. The following information was retrieved from each article: study purpose, study design, extracted radiomic features, machine learning technique(s), sample size/characteristics, statistical result(s) and implications on patient outcomes. Based on the study purpose, four key themes were identified in the included 63 studies: tumour subtype classification (n = 35), pathologically complete response (pCR) prediction (n = 15), lymph node metastasis (LNM) detection (n = 7) and recurrence rate prediction (n = 6). In all four themes, reported accuracies widely varied among the studies, for example, area under receiver characteristics curve (AUC) for detecting LNM ranged from 0.72 to 0.91 and the AUC for predicting pCR ranged from 0.71 to 0.99. In all four themes, combining radiomic features with clinical data improved the predictive models. Preliminary results of this study showed radiomics potential to characterise the whole tumour heterogeneity, with clear implications for individual-targeted treatment. However, radiomics is still in the pre-clinical phase, currently with an insufficient number of large multicentre studies and those existing studies are often limited by insufficient methodological transparency and standardised workflow. Consequently, the clinical translation of existing studies is currently limited.
Collapse
Affiliation(s)
- Annalise Campana
- Discipline of Medical Imaging Science, Faculty of Medicine and HealthUniversity of SydneySydneyNew South WalesAustralia
| | - Ziba Gandomkar
- Discipline of Medical Imaging Science, Faculty of Medicine and HealthUniversity of SydneySydneyNew South WalesAustralia
| | - Nicola Giannotti
- Discipline of Medical Imaging Science, Faculty of Medicine and HealthUniversity of SydneySydneyNew South WalesAustralia
| | - Warren Reed
- Discipline of Medical Imaging Science, Faculty of Medicine and HealthUniversity of SydneySydneyNew South WalesAustralia
| |
Collapse
|
8
|
Liu C, Huang X, Chen X, Shi Z, Liu C, Liang Y, Huang X, Chen M, Chen X, Liang C, Liu Z. Use of Pretreatment Multiparametric MRI to Predict Tumor Regression Pattern to Neoadjuvant Chemotherapy in Breast Cancer. Acad Radiol 2023; 30 Suppl 2:S62-S70. [PMID: 37019697 DOI: 10.1016/j.acra.2023.02.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 04/07/2023]
Abstract
RATIONALE AND OBJECTIVES To develop an easy-to-use model by combining pretreatment MRI and clinicopathologic features for early prediction of tumor regression pattern to neoadjuvant chemotherapy (NAC) in breast cancer. MATERIALS AND METHODS We retrospectively analyzed 420 patients who received NAC and underwent definitive surgery in our hospital from February 2012 to August 2020. Pathologic findings of surgical specimens were used as the gold standard to classify tumor regression patterns into concentric and non-concentric shrinkage. Morphologic and kinetic MRI features were both analyzed. Univariable and multivariable analyses were performed to select the key clinicopathologic and MRI features for pretreatment prediction of regression pattern. Logistic regression and six machine learning methods were used to construct prediction models, and their performance were evaluated with receiver operating characteristic curve. RESULTS Two clinicopathologic variables and three MRI features were selected as independent predictors to construct prediction models. The apparent area under the curve (AUC) of seven prediction models were in the range of 0.669-0.740. The logistic regression model yielded an AUC of 0.708 (95% confidence interval [CI]: 0.658-0.759), and the decision tree model achieved the highest AUC of 0.740 (95% CI: 0.691-0.787). For internal validation, the optimism-corrected AUCs of seven models were in the range of 0.592-0.684. There was no significant difference between the AUCs of the logistic regression model and that of each machine learning model. CONCLUSION Prediction models combining pretreatment MRI and clinicopathologic features are useful for predicting tumor regression pattern in breast cancer, which can assist to select patients who can benefit from NAC for de-escalation of breast surgery and modify treatment strategy.
Collapse
Affiliation(s)
- Chen Liu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China; Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, No.106 Zhongshan Er Road, Guangzhou, 510080, China; Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangzhou, China
| | - Xiaomei Huang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China; Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, No.106 Zhongshan Er Road, Guangzhou, 510080, China; Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangzhou, China
| | - Xiaobo Chen
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China; Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, No.106 Zhongshan Er Road, Guangzhou, 510080, China; Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangzhou, China
| | - Zhenwei Shi
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, No.106 Zhongshan Er Road, Guangzhou, 510080, China; Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangzhou, China; Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Chunling Liu
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, No.106 Zhongshan Er Road, Guangzhou, 510080, China; Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangzhou, China
| | - Yanting Liang
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, No.106 Zhongshan Er Road, Guangzhou, 510080, China; Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangzhou, China; Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xin Huang
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, No.106 Zhongshan Er Road, Guangzhou, 510080, China; Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangzhou, China; Shantou University Medical College, Shantou, China
| | - Minglei Chen
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, No.106 Zhongshan Er Road, Guangzhou, 510080, China; Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangzhou, China
| | - Xin Chen
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Changhong Liang
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, No.106 Zhongshan Er Road, Guangzhou, 510080, China; Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangzhou, China
| | - Zaiyi Liu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China; Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, No.106 Zhongshan Er Road, Guangzhou, 510080, China; Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangzhou, China.
| |
Collapse
|
9
|
Chen Z, Huang M, Lyu J, Qi X, He F, Li X. Machine learning for predicting breast-conserving surgery candidates after neoadjuvant chemotherapy based on DCE-MRI. Front Oncol 2023; 13:1174843. [PMID: 37621690 PMCID: PMC10446166 DOI: 10.3389/fonc.2023.1174843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 07/20/2023] [Indexed: 08/26/2023] Open
Abstract
Purpose This study aimed to investigate a machine learning method for predicting breast-conserving surgery (BCS) candidates, from patients who received neoadjuvant chemotherapy (NAC) by using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) obtained before and after NAC. Materials and methods This retrospective study included 75 patients who underwent NAC and breast surgery. First, 3,390 features were comprehensively extracted from pre- and post-NAC DCE-MRIs. Then patients were then divided into two groups: type 1, patients with pathologic complete response (pCR) and single lesion shrinkage; type 2, major residual lesion with satellite foci, multifocal residual, stable disease (SD), and progressive disease (PD). The logistic regression (LR) was used to build prediction models to identify the two groups. Prediction performance was assessed using the area under the curve (AUC), accuracy, sensitivity, and specificity. Results Radiomics features were significantly related to breast cancer shrinkage after NAC. The combination model achieved an AUC of 0.82, and the pre-NAC model was 0.64, the post-NAC model was 0.70, and the pre-post-NAC model was 0.80. In the combination model, 15 features, including nine wavelet-based features, four Laplacian-of-Gauss (LoG) features, and two original features, were filtered. Among these selected were four features from pre-NAC DCE-MRI, six were from post-NAC DCE-MRI, and five were from pre-post-NAC features. Conclusion The model combined with pre- and post-NAC DCE-MRI can effectively predict candidates to undergo BCS and provide AI-based decision support for clinicians with ensured safety. High-order (LoG- and wavelet-based) features play an important role in our machine learning model. The features from pre-post-NAC DCE-MRI had better predictive performance.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiang Li
- Department of Radiology, the Second Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
10
|
Huang Y, Zhu T, Zhang X, Li W, Zheng X, Cheng M, Ji F, Zhang L, Yang C, Wu Z, Ye G, Lin Y, Wang K. Longitudinal MRI-based fusion novel model predicts pathological complete response in breast cancer treated with neoadjuvant chemotherapy: a multicenter, retrospective study. EClinicalMedicine 2023; 58:101899. [PMID: 37007742 PMCID: PMC10050775 DOI: 10.1016/j.eclinm.2023.101899] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 04/04/2023] Open
Abstract
Background Accurate identification of pCR to neoadjuvant chemotherapy (NAC) is essential for determining appropriate surgery strategy and guiding resection extent in breast cancer. However, a non-invasive tool to predict pCR accurately is lacking. Our study aims to develop ensemble learning models using longitudinal multiparametric MRI to predict pCR in breast cancer. Methods From July 2015 to December 2021, we collected pre-NAC and post-NAC multiparametric MRI sequences per patient. We then extracted 14,676 radiomics and 4096 deep learning features and calculated additional delta-value features. In the primary cohort (n = 409), the inter-class correlation coefficient test, U-test, Boruta and the least absolute shrinkage and selection operator regression were used to select the most significant features for each subtype of breast cancer. Five machine learning classifiers were then developed to predict pCR accurately for each subtype. The ensemble learning strategy was used to integrate the single-modality models. The diagnostic performances of models were evaluated in the three external cohorts (n = 343, 170 and 340, respectively). Findings A total of 1262 patients with breast cancer from four centers were enrolled in this study, and pCR rates were 10.6% (52/491), 54.3% (323/595) and 37.5% (66/176) in HR+/HER2-, HER2+ and TNBC subtype, respectively. Finally, 20, 15 and 13 features were selected to construct the machine learning models in HR+/HER2-, HER2+ and TNBC subtypes, respectively. The multi-Layer Perception (MLP) yields the best diagnostic performances in all subtypes. For the three subtypes, the stacking model integrating pre-, post- and delta-models yielded the highest AUCs of 0.959, 0.974 and 0.958 in the primary cohort, and AUCs of 0.882-0.908, 0.896-0.929 and 0.837-0.901 in the external validation cohorts, respectively. The stacking model had accuracies of 85.0%-88.9%, sensitivities of 80.0%-86.3%, and specificities of 87.4%-91.5% in the external validation cohorts. Interpretation Our study established a novel tool to predict the responses of breast cancer to NAC and achieve excellent performance. The models could help to determine post-NAC surgery strategy for breast cancer. Funding This study is supported by grants from the National Natural Science Foundation of China (82171898, 82103093), the Deng Feng project of high-level hospital construction (DFJHBF202109), the Guangdong Basic and Applied Basic Research Foundation (grant number, 2020A1515010346, 2022A1515012277), the Science and Technology Planning Project of Guangzhou City (202002030236), the Beijing Medical Award Foundation (YXJL-2020-0941-0758), and the Beijing Science and Technology Innovation Medical Development Foundation (KC2022-ZZ-0091-5). Funding sources were not involved in the study design, data collection, analysis and interpretation, writing of the report, or decision to submit the article for publication.
Collapse
Affiliation(s)
- YuHong Huang
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080 Guangdong, China
| | - Teng Zhu
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080 Guangdong, China
| | - XiaoLing Zhang
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wei Li
- Department of Breast Cancer, The First People's Hospital of Foshan, Foshan, Guangdong, China
| | - XingXing Zheng
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080 Guangdong, China
| | - MinYi Cheng
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080 Guangdong, China
| | - Fei Ji
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080 Guangdong, China
| | - LiuLu Zhang
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080 Guangdong, China
| | - CiQiu Yang
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080 Guangdong, China
| | - ZhiYong Wu
- Diagnosis and Treatment Center of Breast Diseases, Shantou Central Hospital, Shantou, China
- Corresponding author. Diagnosis and Treatment Center of Breast Diseases, Shantou Central Hospital, Shantou, China
| | - GuoLin Ye
- Department of Breast Cancer, The First People's Hospital of Foshan, Foshan, Guangdong, China
- Corresponding author. Department of Breast Cancer, The First People's Hospital of Foshan, Foshan, 528000, China.
| | - Ying Lin
- Breast Disease Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Corresponding author. Breast Disease Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Kun Wang
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080 Guangdong, China
- Corresponding author. Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, Guangdong, China
| |
Collapse
|
11
|
Surgical Planning after Neoadjuvant Treatment in Breast Cancer: A Multimodality Imaging-Based Approach Focused on MRI. Cancers (Basel) 2023; 15:cancers15051439. [PMID: 36900231 PMCID: PMC10001061 DOI: 10.3390/cancers15051439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/19/2023] [Accepted: 02/21/2023] [Indexed: 03/12/2023] Open
Abstract
Neoadjuvant chemotherapy (NACT) today represents a cornerstone in the treatment of locally advanced breast cancer and highly chemo-sensitive tumors at early stages, increasing the possibilities of performing more conservative treatments and improving long term outcomes. Imaging has a fundamental role in the staging and prediction of the response to NACT, thus aiding surgical planning and avoiding overtreatment. In this review, we first examine and compare the role of conventional and advanced imaging techniques in preoperative T Staging after NACT and in the evaluation of lymph node involvement. In the second part, we analyze the different surgical approaches, discussing the role of axillary surgery, as well as the possibility of non-operative management after-NACT, which has been the subject of recent trials. Finally, we focus on emerging techniques that will change the diagnostic assessment of breast cancer in the near future.
Collapse
|
12
|
Fan M, Wu X, Yu J, Liu Y, Wang K, Xue T, Zeng T, Chen S, Li L. Multiparametric MRI radiomics fusion for predicting the response and shrinkage pattern to neoadjuvant chemotherapy in breast cancer. Front Oncol 2023; 13:1057841. [PMID: 37207135 PMCID: PMC10189126 DOI: 10.3389/fonc.2023.1057841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 04/19/2023] [Indexed: 05/21/2023] Open
Abstract
Purpose During neoadjuvant chemotherapy (NACT), breast tumor morphological and vascular characteristics are usually changed. This study aimed to evaluate the tumor shrinkage pattern and response to NACT by preoperative multiparametric magnetic resonance imaging (MRI), including dynamic contrast-enhanced MRI (DCE-MRI), diffuse weighted imaging (DWI) and T2 weighted imaging (T2WI). Method In this retrospective analysis, female patients with unilateral unifocal primary breast cancer were included for predicting tumor pathologic/clinical response to NACT (n=216, development set, n=151 and validation set, n=65) and for discriminating the tumor concentric shrinkage (CS) pattern from the others (n=193; development set, n=135 and validation set, n=58). Radiomic features (n=102) of first-order statistical, morphological and textural features were calculated on tumors from the multiparametric MRI. Single- and multiparametric image-based features were assessed separately and were further combined to feed into a random forest-based predictive model. The predictive model was trained in the testing set and assessed on the testing dataset with an area under the curve (AUC). Molecular subtype information and radiomic features were fused to enhance the predictive performance. Results The DCE-MRI-based model showed higher performance (AUCs of 0.919, 0.830 and 0.825 for tumor pathologic response, clinical response and tumor shrinkage patterns, respectively) than either the T2WI or the ADC image-based model. An increased prediction performance was achieved by a model with multiparametric MRI radiomic feature fusion. Conclusions All these results demonstrated that multiparametric MRI features and their information fusion could be of important clinical value for the preoperative prediction of treatment response and shrinkage pattern.
Collapse
Affiliation(s)
- Ming Fan
- Institute of Biomedical Engineering and Instrumentation, Hangzhou Dianzi University, Hangzhou, China
| | - Xilin Wu
- Institute of Biomedical Engineering and Instrumentation, Hangzhou Dianzi University, Hangzhou, China
| | - Jiadong Yu
- Institute of Biomedical Engineering and Instrumentation, Hangzhou Dianzi University, Hangzhou, China
| | - Yueyue Liu
- Institute of Biomedical Engineering and Instrumentation, Hangzhou Dianzi University, Hangzhou, China
| | - Kailang Wang
- Institute of Biomedical Engineering and Instrumentation, Hangzhou Dianzi University, Hangzhou, China
| | - Tailong Xue
- Institute of Biomedical Engineering and Instrumentation, Hangzhou Dianzi University, Hangzhou, China
| | - Tieyong Zeng
- Department of Mathematics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Shujun Chen
- Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
- *Correspondence: Shujun Chen, ; Lihua Li,
| | - Lihua Li
- Institute of Biomedical Engineering and Instrumentation, Hangzhou Dianzi University, Hangzhou, China
- *Correspondence: Shujun Chen, ; Lihua Li,
| |
Collapse
|
13
|
O'Donnell J, Gasior S, Davey M, O'Malley E, Lowery A, McGarry J, O'Connell A, Kerin M, McCarthy P. The accuracy of breast MRI radiomic methodologies in predicting pathological complete response to neoadjuvant chemotherapy: A systematic review and network meta-analysis. Eur J Radiol 2022; 157:110561. [DOI: 10.1016/j.ejrad.2022.110561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/13/2022] [Accepted: 10/11/2022] [Indexed: 11/03/2022]
|
14
|
Radiomic and Volumetric Measurements as Clinical Trial Endpoints—A Comprehensive Review. Cancers (Basel) 2022; 14:cancers14205076. [PMID: 36291865 PMCID: PMC9599928 DOI: 10.3390/cancers14205076] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/23/2022] Open
Abstract
Simple Summary The extraction of quantitative data from standard-of-care imaging modalities offers opportunities to improve the relevance and salience of imaging biomarkers used in drug development. This review aims to identify the challenges and opportunities for discovering new imaging-based biomarkers based on radiomic and volumetric assessment in the single-site solid tumor sites: breast cancer, rectal cancer, lung cancer and glioblastoma. Developing approaches to harmonize three essential areas: segmentation, validation and data sharing may expedite regulatory approval and adoption of novel cancer imaging biomarkers. Abstract Clinical trials for oncology drug development have long relied on surrogate outcome biomarkers that assess changes in tumor burden to accelerate drug registration (i.e., Response Evaluation Criteria in Solid Tumors version 1.1 (RECIST v1.1) criteria). Drug-induced reduction in tumor size represents an imperfect surrogate marker for drug activity and yet a radiologically determined objective response rate is a widely used endpoint for Phase 2 trials. With the addition of therapies targeting complex biological systems such as immune system and DNA damage repair pathways, incorporation of integrative response and outcome biomarkers may add more predictive value. We performed a review of the relevant literature in four representative tumor types (breast cancer, rectal cancer, lung cancer and glioblastoma) to assess the preparedness of volumetric and radiomics metrics as clinical trial endpoints. We identified three key areas—segmentation, validation and data sharing strategies—where concerted efforts are required to enable progress of volumetric- and radiomics-based clinical trial endpoints for wider clinical implementation.
Collapse
|
15
|
Fang C, Zhang J, Li J, Shang H, Li K, Jiao T, Yin D, Li F, Cui Y, Zeng Q. Clinical-radiomics nomogram for identifying HER2 status in patients with breast cancer: A multicenter study. Front Oncol 2022; 12:922185. [PMID: 36158700 PMCID: PMC9490879 DOI: 10.3389/fonc.2022.922185] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose To develop and validate a clinical-radiomics nomogram based on radiomics features and clinical risk factors for identification of human epidermal growth factor receptor 2 (HER2) status in patients with breast cancer (BC). Methods Two hundred and thirty-five female patients with BC were enrolled from July 2018 to February 2022 and divided into a training group (from center I, 115 patients), internal validation group (from center I, 49 patients), and external validation group (from centers II and III, 71 patients). The preoperative MRI of all patients was obtained, and radiomics features were extracted by a free open-source software called 3D Slicer. The Least Absolute Shrinkage and Selection Operator regression model was used to identify the most useful features. The radiomics score (Rad-score) was calculated by using the radiomics signature-based formula. A clinical-radiomics nomogram combining clinical factors and Rad-score was developed through multivariate logistic regression analysis. The performance of the nomogram was evaluated using receiver operating characteristic (ROC) curve and decision curve analysis (DCA). Results A total of 2,553 radiomics features were extracted, and 21 radiomics features were selected as the most useful radiomics features. Multivariate logistic regression analysis indicated that Rad-score, progesterone receptor (PR), and Ki-67 were independent parameters to distinguish HER2 status. The clinical-radiomics nomogram, which comprised Rad-score, PR, and Ki-67, showed a favorable classification capability, with AUC of 0.87 [95% confidence internal (CI), 0.80 to 0.93] in the training group, 0.81 (95% CI, 0.69 to 0.94) in the internal validation group, and 0.84 (95% CI, 0.75 to 0.93) in the external validation group. DCA illustrated that the nomogram was useful in clinical practice. Conclusions The nomogram combined with Rad-score, PR, and Ki-67 can identify the HER2 status of BC.
Collapse
Affiliation(s)
- Caiyun Fang
- Department of Radiology, Shandong Provincial Qianfoshan Hospital, The First Hospital Affiliated Hospital of Shandong First Medical University, Jinan, China
- Postgraduate Department, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Juntao Zhang
- GE Healthcare Precision Health Institution, Shanghai, China
| | - Jizhen Li
- Department of Radiology, Shandong Mental Health Center, Jinan, China
| | - Hui Shang
- Department of Radiology, Shandong Provincial Qianfoshan Hospital, The First Hospital Affiliated Hospital of Shandong First Medical University, Jinan, China
- Postgraduate Department, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Kejian Li
- Department of Radiology, Shandong Provincial Qianfoshan Hospital, The First Hospital Affiliated Hospital of Shandong First Medical University, Jinan, China
- Postgraduate Department, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Tianyu Jiao
- Department of Radiology, Shandong Provincial Qianfoshan Hospital, The First Hospital Affiliated Hospital of Shandong First Medical University, Jinan, China
- Postgraduate Department, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Di Yin
- Department of Radiology, Shandong Provincial Qianfoshan Hospital, The First Hospital Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Fuyan Li
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yi Cui
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, China
| | - Qingshi Zeng
- Department of Radiology, Shandong Provincial Qianfoshan Hospital, The First Hospital Affiliated Hospital of Shandong First Medical University, Jinan, China
- *Correspondence: Qingshi Zeng,
| |
Collapse
|
16
|
Li C, Li W, Liu C, Zheng H, Cai J, Wang S. Artificial intelligence in multi-parametric magnetic resonance imaging: A review. Med Phys 2022; 49:e1024-e1054. [PMID: 35980348 DOI: 10.1002/mp.15936] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/01/2022] [Accepted: 08/04/2022] [Indexed: 11/06/2022] Open
Abstract
Multi-parametric magnetic resonance imaging (mpMRI) is an indispensable tool in the clinical workflow for the diagnosis and treatment planning of various diseases. Machine learning-based artificial intelligence (AI) methods, especially those adopting the deep learning technique, have been extensively employed to perform mpMRI image classification, segmentation, registration, detection, reconstruction, and super-resolution. The current availability of increasing computational power and fast-improving AI algorithms have empowered numerous computer-based systems for applying mpMRI to disease diagnosis, imaging-guided radiotherapy, patient risk and overall survival time prediction, and the development of advanced quantitative imaging technology for magnetic resonance fingerprinting. However, the wide application of these developed systems in the clinic is still limited by a number of factors, including robustness, reliability, and interpretability. This survey aims to provide an overview for new researchers in the field as well as radiologists with the hope that they can understand the general concepts, main application scenarios, and remaining challenges of AI in mpMRI. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Cheng Li
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Wen Li
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Chenyang Liu
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Hairong Zheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jing Cai
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Shanshan Wang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.,Peng Cheng Laboratory, Shenzhen, 518066, China.,Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangzhou, 510080, China
| |
Collapse
|
17
|
Pesapane F, Agazzi GM, Rotili A, Ferrari F, Cardillo A, Penco S, Dominelli V, D'Ecclesiis O, Vignati S, Raimondi S, Bozzini A, Pizzamiglio M, Petralia G, Nicosia L, Cassano E. Prediction of the Pathological Response to Neoadjuvant Chemotherapy in Breast Cancer Patients With MRI-Radiomics: A Systematic Review and Meta-analysis. Curr Probl Cancer 2022; 46:100883. [PMID: 35914383 DOI: 10.1016/j.currproblcancer.2022.100883] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 12/30/2022]
Abstract
We performed a systematic review and a meta-analysis of studies using MRI-radiomics for predicting the pathological complete response in breast cancer patients undergoing neoadjuvant therapy , and we evaluated their methodological quality using the radiomics-quality-score (RQS). Random effects meta-analysis was performed pooling area under the receiver operating characteristics curves. Publication-bias was assessed using the Egger's test and visually inspecting the funnel plot. Forty-three studies were included in the qualitative review and 34 in the meta-analysis. Summary area under the receiver operating characteristics curve was 0,78 (95%CI:0,74-0,81). Heterogeneity according to the I2 statistic was substantial (71%) and there was no evidence of publication bias (P-value = 0,2). The average RQS was 12,7 (range:-1-26), with an intra-class correlation coefficient of 0.93 (95%CI:0.61-0.97). Year of publication, field intensity and synthetic RQS score do not appear to be moderators of the effect (P-value = 0.36, P-value = 0.28 and P-value = 0.92, respectively). MRI-radiomics may predict response to neoadjuvant therapy in breast cancer patients but the heterogeneity of the current studies is still substantial.
Collapse
Affiliation(s)
- Filippo Pesapane
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, Milan, Italy.
| | | | - Anna Rotili
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Federica Ferrari
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Andrea Cardillo
- Radiology Department, Università degli studi di Torino, Turin, Italy
| | - Silvia Penco
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Valeria Dominelli
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Oriana D'Ecclesiis
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Silvano Vignati
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Sara Raimondi
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Anna Bozzini
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Maria Pizzamiglio
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Giuseppe Petralia
- Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy; Division of Radiology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Luca Nicosia
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Enrico Cassano
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, Milan, Italy
| |
Collapse
|
18
|
Yoshida K, Kawashima H, Kannon T, Tajima A, Ohno N, Terada K, Takamatsu A, Adachi H, Ohno M, Miyati T, Ishikawa S, Ikeda H, Gabata T. Prediction of pathological complete response to neoadjuvant chemotherapy in breast cancer using radiomics of pretreatment dynamic contrast-enhanced MRI. Magn Reson Imaging 2022; 92:19-25. [PMID: 35636571 DOI: 10.1016/j.mri.2022.05.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 05/24/2022] [Accepted: 05/24/2022] [Indexed: 12/29/2022]
Abstract
PURPOSE To investigate if the pretreatment dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI)-based radiomics machine learning predicts the pathological complete response (pCR) to neoadjuvant chemotherapy (NAC) in breast cancer patients. METHODS Seventy-eight breast cancer patients who underwent DCE-MRI before NAC and confirmed as pCR or non-pCR were enrolled. Early enhancement mapping images of pretreatment DCE-MRI were created using subtraction formula as follows: Early enhancement mapping = (Signal 1 min - Signal pre)/Signal pre. Images of the whole tumors were manually segmented and radiomics features extracted. Five prediction models were built using five scenarios that included clinical information, subjective radiological findings, first order texture features, second order texture features, and their combinations. In texture analysis workflow, the corresponding variables were identified by mutual information for feature selection and random forest was used for model prediction. In five models, the area under the receiver operating characteristic curves (AUC) to predict the pCR and several metrics for model evaluation were analyzed. RESULTS The best diagnostic performance based on F-score was achieved when both first and second order texture features with clinical information and subjective radiological findings were used (AUC = 0.77). The second best diagnostic performance was achieved with an AUC of 0.76 for first order texture features followed by an AUC of 0.76 for first and second order texture features. CONCLUSIONS Pretreatment DCE-MRI can improve the prediction of pCR in breast cancer patients when all texture features with clinical information and subjective radiological findings are input to build the prediction model.
Collapse
Affiliation(s)
- Kotaro Yoshida
- Department of Radiology, Kanazawa University Graduate School of Medical Sciences, 13-1, Takaramachi, Kanazawa, Ishikawa 920-8641, Japan.
| | - Hiroko Kawashima
- Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 13-1, Takaramachi, Kanazawa, Ishikawa 920-8641, Japan.
| | - Takayuki Kannon
- Department of Bioinformatics and Genomics, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, 13-1, Takaramachi, Kanazawa, Ishikawa 920-8641, Japan.
| | - Atsushi Tajima
- Department of Bioinformatics and Genomics, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, 13-1, Takaramachi, Kanazawa, Ishikawa 920-8641, Japan.
| | - Naoki Ohno
- Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 13-1, Takaramachi, Kanazawa, Ishikawa 920-8641, Japan.
| | - Kanako Terada
- Department of Radiology, Kanazawa University Graduate School of Medical Sciences, 13-1, Takaramachi, Kanazawa, Ishikawa 920-8641, Japan
| | - Atsushi Takamatsu
- Department of Radiology, Kanazawa University Graduate School of Medical Sciences, 13-1, Takaramachi, Kanazawa, Ishikawa 920-8641, Japan
| | - Hayato Adachi
- Division of Radiology, Kanazawa University Hospital, 13-1, Takaramachi, Kanazawa, Ishikawa 920-8641, Japan
| | - Masako Ohno
- Division of Radiology, Kanazawa University Hospital, 13-1, Takaramachi, Kanazawa, Ishikawa 920-8641, Japan.
| | - Tosiaki Miyati
- Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 13-1, Takaramachi, Kanazawa, Ishikawa 920-8641, Japan.
| | - Satoko Ishikawa
- Department of Breast Surgery, Kanazawa University Hospital, 13-1, Takaramachi, Kanazawa, Ishikawa 920-8641, Japan.
| | - Hiroko Ikeda
- Diagnostic Pathology, Kanazawa University Hospital, 13-1, Takaramachi, Kanazawa, Ishikawa 920-8641, Japan.
| | - Toshifumi Gabata
- Department of Radiology, Kanazawa University Graduate School of Medical Sciences, 13-1, Takaramachi, Kanazawa, Ishikawa 920-8641, Japan.
| |
Collapse
|
19
|
Kong X, Zhang Q, Wu X, Zou T, Duan J, Song S, Nie J, Tao C, Tang M, Wang M, Zou J, Xie Y, Li Z, Li Z. Advances in Imaging in Evaluating the Efficacy of Neoadjuvant Chemotherapy for Breast Cancer. Front Oncol 2022; 12:816297. [PMID: 35669440 PMCID: PMC9163342 DOI: 10.3389/fonc.2022.816297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/29/2022] [Indexed: 11/13/2022] Open
Abstract
Neoadjuvant chemotherapy (NAC) is increasingly widely used in breast cancer treatment, and accurate evaluation of its response provides essential information for treatment and prognosis. Thus, the imaging tools used to quantify the disease response are critical in evaluating and managing patients treated with NAC. We discussed the recent progress, advantages, and disadvantages of common imaging methods in assessing the efficacy of NAC for breast cancer.
Collapse
Affiliation(s)
- Xianshu Kong
- Third Department of the Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming, China
| | - Qian Zhang
- Third Department of the Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming, China
| | - Xuemei Wu
- Third Department of the Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming, China
| | - Tianning Zou
- Third Department of the Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming, China
| | - Jiajun Duan
- Third Department of the Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming, China
| | - Shujie Song
- Department of Pathology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming, China
| | - Jianyun Nie
- Third Department of the Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming, China
| | - Chu Tao
- Third Department of the Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming, China
| | - Mi Tang
- Department of Pathology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming, China
| | - Maohua Wang
- First Department of the Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming, China
| | - Jieya Zou
- Third Department of the Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming, China
| | - Yu Xie
- Department of Radiology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming, China
| | - Zhenhui Li
- Department of Radiology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming, China
| | - Zhen Li
- Third Department of the Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming, China
| |
Collapse
|
20
|
Satake H, Ishigaki S, Ito R, Naganawa S. Radiomics in breast MRI: current progress toward clinical application in the era of artificial intelligence. Radiol Med 2021; 127:39-56. [PMID: 34704213 DOI: 10.1007/s11547-021-01423-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/14/2021] [Indexed: 12/11/2022]
Abstract
Breast magnetic resonance imaging (MRI) is the most sensitive imaging modality for breast cancer diagnosis and is widely used clinically. Dynamic contrast-enhanced MRI is the basis for breast MRI, but ultrafast images, T2-weighted images, and diffusion-weighted images are also taken to improve the characteristics of the lesion. Such multiparametric MRI with numerous morphological and functional data poses new challenges to radiologists, and thus, new tools for reliable, reproducible, and high-volume quantitative assessments are warranted. In this context, radiomics, which is an emerging field of research involving the conversion of digital medical images into mineable data for clinical decision-making and outcome prediction, has been gaining ground in oncology. Recent development in artificial intelligence has promoted radiomics studies in various fields including breast cancer treatment and numerous studies have been conducted. However, radiomics has shown a translational gap in clinical practice, and many issues remain to be solved. In this review, we will outline the steps of radiomics workflow and investigate clinical application of radiomics focusing on breast MRI based on published literature, as well as current discussion about limitations and challenges in radiomics.
Collapse
Affiliation(s)
- Hiroko Satake
- Department of Radiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan.
| | - Satoko Ishigaki
- Department of Radiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Rintaro Ito
- Department of Radiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Shinji Naganawa
- Department of Radiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| |
Collapse
|
21
|
Deep learning radiomics of ultrasonography can predict response to neoadjuvant chemotherapy in breast cancer at an early stage of treatment: a prospective study. Eur Radiol 2021; 32:2099-2109. [PMID: 34654965 DOI: 10.1007/s00330-021-08293-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/18/2021] [Accepted: 08/21/2021] [Indexed: 12/24/2022]
Abstract
OBJECTIVES Breast cancer (BC) is the most common cancer in women worldwide, and neoadjuvant chemotherapy (NAC) is considered the standard of treatment for most patients with BC. However, response rates to NAC vary among patients, which leads to delays in appropriate treatment and affects the prognosis for patients who ineffectively respond to NAC. This study aimed to investigate the feasibility of deep learning radiomics (DLR) in the prediction of NAC response at an early stage. METHODS In total, 168 patients with clinicopathologically confirmed BC were enrolled in this prospective study, from March 2016 to December 2020. All patients completed NAC treatment and underwent ultrasonography (US) at three time points (before NAC, after the second course, and after the fourth course). We developed two DLR models, DLR-2 and DLR-4, for predicting responses after the second and fourth courses of NAC. Furthermore, a novel deep learning radiomics pipeline (DLRP) was proposed for stepwise prediction of response at different time points of NAC administration. RESULTS In the validation cohort, DLR-2 achieved an AUC of 0.812 (95% CI: 0.770-0.851) with an NPV of 83.3% (95% CI: 76.5-89.6). DLR-4 achieved an AUC of 0.937 (95% CI: 0.913-0.955) with a specificity of 90.5% (95% CI: 86.3-94.2). Moreover, 19 of 21 non-response patients were successfully identified by DLRP, suggesting that they could benefit from treatment strategy adjustment at an early stage of NAC. CONCLUSIONS The proposed DLRP strategy holds promise for effectively predicting NAC response at its early stage for BC patients. KEY POINTS • We proposed two novel deep learning radiomics (DLR) models to predict response to neoadjuvant chemotherapy (NAC) in breast cancer (BC) patients based on US images at different NAC time points. • Combining two DLR models, a deep learning radiomics pipeline (DLRP) was proposed for stepwise prediction of response to NAC. • The DLRP may provide BC patients and physicians with an effective and feasible tool to predict response to NAC at an early stage and to determine further personalized treatment options.
Collapse
|
22
|
Radiomics of MRI for the Prediction of the Pathological Response to Neoadjuvant Chemotherapy in Breast Cancer Patients: A Single Referral Centre Analysis. Cancers (Basel) 2021; 13:cancers13174271. [PMID: 34503081 PMCID: PMC8428336 DOI: 10.3390/cancers13174271] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 08/19/2021] [Indexed: 12/29/2022] Open
Abstract
Simple Summary Nowadays, the only widely recognized method for evaluating the efficacy of neoadjuvant chemotherapy is the assessment of the pathological response through surgery. However, delivering chemotherapy to not-responders could expose them to unnecessary drug toxicity with delayed access to other potentially effective therapies. Radiomics could be useful in the early detection of resistance to chemotherapy, which is crucial for switching treatment strategy. We determined whether tumor radiomic features extracted from a highly homogeneous database of breast MRI can improve the prediction of response to chemotherapy in patients with breast cancer, in addiction to biological characteristics, potentially avoiding unnecessary treatment. Abstract Objectives: We aimed to determine whether radiomic features extracted from a highly homogeneous database of breast MRI could non-invasively predict pathological complete responses (pCR) to neoadjuvant chemotherapy (NACT) in patients with breast cancer. Methods: One hundred patients with breast cancer receiving NACT in a single center (01/2017–06/2019) and undergoing breast MRI were retrospectively evaluated. For each patient, radiomic features were extracted within the biopsy-proven tumor on T1-weighted (T1-w) contrast-enhanced MRI performed before NACT. The pCR to NACT was determined based on the final surgical specimen. The association of clinical/biological and radiomic features with response to NACT was evaluated by univariate and multivariable analysis by using random forest and logistic regression. The performances of all models were assessed using the areas under the receiver operating characteristic curves (AUC) with 95% confidence intervals (CI). Results: Eighty-three patients (mean (SD) age, 47.26 (8.6) years) were included. Patients with HER2+, basal-like molecular subtypes and Ki67 ≥ 20% presented a pCR to NACT more frequently; the clinical/biological model’s AUC (95% CI) was 0.81 (0.71–0.90). Using 136 representative radiomics features selected through cluster analysis from the 1037 extracted features, a radiomic score was calculated to predict the response to NACT, with AUC (95% CI): 0.64 (0.51–0.75). After combining the clinical/biological and radiomics models, the AUC (95% CI) was 0.83 (0.73–0.92). Conclusions: MRI-based radiomic features slightly improved the pre-treatment prediction of pCR to NACT, in addiction to biological characteristics. If confirmed on larger cohorts, it could be helpful to identify such patients, to avoid unnecessary treatment.
Collapse
|
23
|
Huang Y, Chen W, Zhang X, He S, Shao N, Shi H, Lin Z, Wu X, Li T, Lin H, Lin Y. Prediction of Tumor Shrinkage Pattern to Neoadjuvant Chemotherapy Using a Multiparametric MRI-Based Machine Learning Model in Patients With Breast Cancer. Front Bioeng Biotechnol 2021; 9:662749. [PMID: 34295877 PMCID: PMC8291046 DOI: 10.3389/fbioe.2021.662749] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 06/07/2021] [Indexed: 01/01/2023] Open
Abstract
Aim: After neoadjuvant chemotherapy (NACT), tumor shrinkage pattern is a more reasonable outcome to decide a possible breast-conserving surgery (BCS) than pathological complete response (pCR). The aim of this article was to establish a machine learning model combining radiomics features from multiparametric MRI (mpMRI) and clinicopathologic characteristics, for early prediction of tumor shrinkage pattern prior to NACT in breast cancer. Materials and Methods: This study included 199 patients with breast cancer who successfully completed NACT and underwent following breast surgery. For each patient, 4,198 radiomics features were extracted from the segmented 3D regions of interest (ROI) in mpMRI sequences such as T1-weighted dynamic contrast-enhanced imaging (T1-DCE), fat-suppressed T2-weighted imaging (T2WI), and apparent diffusion coefficient (ADC) map. The feature selection and supervised machine learning algorithms were used to identify the predictors correlated with tumor shrinkage pattern as follows: (1) reducing the feature dimension by using ANOVA and the least absolute shrinkage and selection operator (LASSO) with 10-fold cross-validation, (2) splitting the dataset into a training dataset and testing dataset, and constructing prediction models using 12 classification algorithms, and (3) assessing the model performance through an area under the curve (AUC), accuracy, sensitivity, and specificity. We also compared the most discriminative model in different molecular subtypes of breast cancer. Results: The Multilayer Perception (MLP) neural network achieved higher AUC and accuracy than other classifiers. The radiomics model achieved a mean AUC of 0.975 (accuracy = 0.912) on the training dataset and 0.900 (accuracy = 0.828) on the testing dataset with 30-round 6-fold cross-validation. When incorporating clinicopathologic characteristics, the mean AUC was 0.985 (accuracy = 0.930) on the training dataset and 0.939 (accuracy = 0.870) on the testing dataset. The model further achieved good AUC on the testing dataset with 30-round 5-fold cross-validation in three molecular subtypes of breast cancer as following: (1) HR+/HER2–: 0.901 (accuracy = 0.816), (2) HER2+: 0.940 (accuracy = 0.865), and (3) TN: 0.837 (accuracy = 0.811). Conclusions: It is feasible that our machine learning model combining radiomics features and clinical characteristics could provide a potential tool to predict tumor shrinkage patterns prior to NACT. Our prediction model will be valuable in guiding NACT and surgical treatment in breast cancer.
Collapse
Affiliation(s)
- Yuhong Huang
- Breast Disease Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wenben Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xiaoling Zhang
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shaofu He
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Nan Shao
- Breast Disease Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Huijuan Shi
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhenzhe Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xueting Wu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Tongkeng Li
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Haotian Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China.,Center for Precision Medicine, Sun Yat-sen University, Guangzhou, China
| | - Ying Lin
- Breast Disease Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
24
|
Recent Radiomics Advancements in Breast Cancer: Lessons and Pitfalls for the Next Future. ACTA ACUST UNITED AC 2021; 28:2351-2372. [PMID: 34202321 PMCID: PMC8293249 DOI: 10.3390/curroncol28040217] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/14/2021] [Accepted: 06/21/2021] [Indexed: 12/13/2022]
Abstract
Radiomics is an emerging translational field of medicine based on the extraction of high-dimensional data from radiological images, with the purpose to reach reliable models to be applied into clinical practice for the purposes of diagnosis, prognosis and evaluation of disease response to treatment. We aim to provide the basic information on radiomics to radiologists and clinicians who are focused on breast cancer care, encouraging cooperation with scientists to mine data for a better application in clinical practice. We investigate the workflow and clinical application of radiomics in breast cancer care, as well as the outlook and challenges based on recent studies. Currently, radiomics has the potential ability to distinguish between benign and malignant breast lesions, to predict breast cancer’s molecular subtypes, the response to neoadjuvant chemotherapy and the lymph node metastases. Even though radiomics has been used in tumor diagnosis and prognosis, it is still in the research phase and some challenges need to be faced to obtain a clinical translation. In this review, we discuss the current limitations and promises of radiomics for improvement in further research.
Collapse
|
25
|
Li X, Yan C, Xiao J, Xu X, Li Y, Wen X, Wei H. Factors Associated With Surgical Modality Following Neoadjuvant Chemotherapy in Patients with Breast Cancer. Clin Breast Cancer 2021; 21:e611-e617. [PMID: 34001440 DOI: 10.1016/j.clbc.2021.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 12/09/2022]
Abstract
BACKGROUND The breast-conserving surgery (BCS) rate for patients with breast cancer in China is much lower than that in Europe and the United States. This study aimed to identify factors affecting the choice of surgical modality following neoadjuvant chemotherapy (NAC) in patients with breast cancer in northwest China. PATIENTS AND METHODS Patients who underwent mastectomy or BCS after NAC for invasive breast cancer from January 2013 to December 2017 were enrolled in the study. Single-factor and multivariate logistic regression analyses were applied to identify the association between the type of surgery and demographic characteristics or clinical pathological factors of patients. RESULTS This study enrolled 916 patients. Among them, 191 patients (20.9%) and 725 patients (79.1%) underwent BCS and mastectomy, respectively. Patients with high education were less likely to undergo mastectomy compared with patients with less education (P < .001; odds ratio [OR] = 0.50; 95% confidence interval [CI], 0.35-0.71). Patients with cT3 tumors were nearly six times more likely to undergo mastectomy compared with patients with cT1 tumors (P = .003; OR = 5.74; 95% CI, 2.07-15.97). Moreover, patients older than 50 years of age (P < .001; OR = 2.84; 95% CI, = 1.93-4.16) were more likely to be offered mastectomy. No association between the type of surgery and pathological complete response (P = .351) was observed. CONCLUSION Pretreatment clinical disease size remains a strong predictor of surgical management, whereas response to NAC appeared to play no role in the surgical decision, suggesting that the potential surgical benefits of NAC may be still under-recogonized in northwest China.
Collapse
Affiliation(s)
- Xin Li
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an Shaanxi, China
| | - Changjiao Yan
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an Shaanxi, China
| | - Jingjing Xiao
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an Shaanxi, China
| | - Xin Xu
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an Shaanxi, China
| | - Yike Li
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an Shaanxi, China
| | - Xinxin Wen
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an Shaanxi, China
| | - Hongliang Wei
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an Shaanxi, China.
| |
Collapse
|
26
|
Kim SY, Cho N, Choi Y, Lee SH, Ha SM, Kim ES, Chang JM, Moon WK. Factors Affecting Pathologic Complete Response Following Neoadjuvant Chemotherapy in Breast Cancer: Development and Validation of a Predictive Nomogram. Radiology 2021; 299:290-300. [PMID: 33754824 DOI: 10.1148/radiol.2021203871] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background There is an increasing need to develop a more accurate prediction model for pathologic complete response (pCR) after neoadjuvant chemotherapy (NAC) in breast cancer. Purpose To develop a nomogram based on MRI and clinical-pathologic variables to predict pCR. Materials and Methods In this single-center retrospective study, consecutive women with stage II-III breast cancer who underwent NAC followed by surgery between January 2011 and December 2017 were considered for inclusion. The women were divided into a development cohort between January 2011 and September 2015 and a validation cohort between October 2015 and December 2017. Clinical-pathologic data were collected, and mammograms and MRI scans obtained before and after NAC were analyzed. Logistic regression analyses were performed to identify independent variables associated with pCR in the development cohort from which the nomogram was created. Nomogram performance was assessed with the area under the receiver operating characteristic curve (AUC) and calibration slope. Results A total of 359 women (mean age, 49 years ± 10 [standard deviation]) were in the development cohort and 351 (49 years ± 10) in the validation cohort. Hormone receptor negativity (odds ratio [OR], 3.1; 95% CI: 1.4, 7.1; P = .006), high Ki-67 index (OR, 1.05; 95% CI: 1.03, 1.07; P < .001), and post-NAC MRI variables, including small tumor size (OR, 0.6; 95% CI: 0.4, 0.9; P = .03), low lesion-to-background parenchymal signal enhancement ratio (OR, 0.2; 95% CI: 0.1, 0.6; P = .004), and absence of enhancement in the tumor bed (OR, 3.8; 95% CI: 1.4, 10.5; P = .009) were independently associated with pCR. The nomogram incorporating these variables showed good discrimination (AUC, 0.90; 95% CI: 0.86, 0.94) and calibration abilities (calibration slope, 0.91; 95% CI: 0.69, 1.13) in the independent validation cohort. Conclusion A nomogram incorporating hormone receptor status, Ki-67 index, and MRI variables showed good discrimination and calibration abilities in predicting pathologic complete response. © RSNA, 2021 Online supplemental material is available for this article. See also the editorial by Imbriaco and Ponsiglione in this issue.
Collapse
Affiliation(s)
- Soo-Yeon Kim
- From the Department of Radiology (S.Y.K., N.C., S.H.L., S.M.H., E.S.K., J.M.C., W.K.M.) and Medical Research Collaborating Center (Y.C.), Seoul National University Hospital, Seoul, Republic of Korea; Department of Radiology, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul 110-744, Republic of Korea (S.Y.K., N.C., S.H.L., S.M.H., E.S.K., J.M.C., W.K.M.); and Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea (S.Y.K., N.C., S.H.L., S.M.H., E.S.K., J.M.C., W.K.M.)
| | - Nariya Cho
- From the Department of Radiology (S.Y.K., N.C., S.H.L., S.M.H., E.S.K., J.M.C., W.K.M.) and Medical Research Collaborating Center (Y.C.), Seoul National University Hospital, Seoul, Republic of Korea; Department of Radiology, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul 110-744, Republic of Korea (S.Y.K., N.C., S.H.L., S.M.H., E.S.K., J.M.C., W.K.M.); and Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea (S.Y.K., N.C., S.H.L., S.M.H., E.S.K., J.M.C., W.K.M.)
| | - Yunhee Choi
- From the Department of Radiology (S.Y.K., N.C., S.H.L., S.M.H., E.S.K., J.M.C., W.K.M.) and Medical Research Collaborating Center (Y.C.), Seoul National University Hospital, Seoul, Republic of Korea; Department of Radiology, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul 110-744, Republic of Korea (S.Y.K., N.C., S.H.L., S.M.H., E.S.K., J.M.C., W.K.M.); and Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea (S.Y.K., N.C., S.H.L., S.M.H., E.S.K., J.M.C., W.K.M.)
| | - Su Hyun Lee
- From the Department of Radiology (S.Y.K., N.C., S.H.L., S.M.H., E.S.K., J.M.C., W.K.M.) and Medical Research Collaborating Center (Y.C.), Seoul National University Hospital, Seoul, Republic of Korea; Department of Radiology, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul 110-744, Republic of Korea (S.Y.K., N.C., S.H.L., S.M.H., E.S.K., J.M.C., W.K.M.); and Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea (S.Y.K., N.C., S.H.L., S.M.H., E.S.K., J.M.C., W.K.M.)
| | - Su Min Ha
- From the Department of Radiology (S.Y.K., N.C., S.H.L., S.M.H., E.S.K., J.M.C., W.K.M.) and Medical Research Collaborating Center (Y.C.), Seoul National University Hospital, Seoul, Republic of Korea; Department of Radiology, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul 110-744, Republic of Korea (S.Y.K., N.C., S.H.L., S.M.H., E.S.K., J.M.C., W.K.M.); and Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea (S.Y.K., N.C., S.H.L., S.M.H., E.S.K., J.M.C., W.K.M.)
| | - Eun Sil Kim
- From the Department of Radiology (S.Y.K., N.C., S.H.L., S.M.H., E.S.K., J.M.C., W.K.M.) and Medical Research Collaborating Center (Y.C.), Seoul National University Hospital, Seoul, Republic of Korea; Department of Radiology, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul 110-744, Republic of Korea (S.Y.K., N.C., S.H.L., S.M.H., E.S.K., J.M.C., W.K.M.); and Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea (S.Y.K., N.C., S.H.L., S.M.H., E.S.K., J.M.C., W.K.M.)
| | - Jung Min Chang
- From the Department of Radiology (S.Y.K., N.C., S.H.L., S.M.H., E.S.K., J.M.C., W.K.M.) and Medical Research Collaborating Center (Y.C.), Seoul National University Hospital, Seoul, Republic of Korea; Department of Radiology, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul 110-744, Republic of Korea (S.Y.K., N.C., S.H.L., S.M.H., E.S.K., J.M.C., W.K.M.); and Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea (S.Y.K., N.C., S.H.L., S.M.H., E.S.K., J.M.C., W.K.M.)
| | - Woo Kyung Moon
- From the Department of Radiology (S.Y.K., N.C., S.H.L., S.M.H., E.S.K., J.M.C., W.K.M.) and Medical Research Collaborating Center (Y.C.), Seoul National University Hospital, Seoul, Republic of Korea; Department of Radiology, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul 110-744, Republic of Korea (S.Y.K., N.C., S.H.L., S.M.H., E.S.K., J.M.C., W.K.M.); and Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea (S.Y.K., N.C., S.H.L., S.M.H., E.S.K., J.M.C., W.K.M.)
| |
Collapse
|