1
|
Alyafeai E, Qaed E, Al-Mashriqi HS, Almaamari A, Almansory AH, Futini FA, Sultan M, Tang Z. Molecular dynamics of DNA repair and carcinogen interaction: Implications for cancer initiation, progression, and therapeutic strategies. Mutat Res 2024; 829:111883. [PMID: 39265237 DOI: 10.1016/j.mrfmmm.2024.111883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/07/2024] [Accepted: 09/05/2024] [Indexed: 09/14/2024]
Abstract
The integrity of the genetic material in human cells is continuously challenged by environmental agents and endogenous stresses. Among these, environmental carcinogens are pivotal in initiating complex DNA lesions that can lead to malignant transformations if not properly repaired. This review synthesizes current knowledge on the molecular dynamics of DNA repair mechanisms and their interplay with various environmental carcinogens, providing a comprehensive overview of how these interactions contribute to cancer initiation and progression. We examine key DNA repair pathways including base excision repair, nucleotide excision repair, and double-strand break repair and their regulatory networks, highlighting how defects in these pathways can exacerbate carcinogen-induced damage. Further, we discuss how understanding these molecular interactions offers novel insights into potential therapeutic strategies. This includes leveraging synthetic lethality concepts and designing targeted therapies that exploit specific DNA repair vulnerabilities in cancer cells. By integrating recent advances in molecular biology, genetics, and oncology, this review aims to illuminate the complex landscape of DNA repair and carcinogen-induced carcinogenesis, setting the stage for future research and therapeutic innovations.
Collapse
Affiliation(s)
- Eman Alyafeai
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Eskandar Qaed
- Collage of Pharmacy, Department of Pharmacology, Dalian Medical University, Dalian 116044, China; State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | | | - Ahmed Almaamari
- The Key Laboratory of Neural and Vascular Biology, The Key Laboratory of New Drug Pharmacology and Toxicology, Department of Pharmacology, Ministry of Education, Hebei Medical University, Shijiazhuang, China
| | - Anisa H Almansory
- Biological department, Faculty of Science, University of Sana'a, Yemen
| | - Fatima Al Futini
- Department of Food Science, Faculty of Food Science & Technology, University Putra Malaysia (UPM), Malaysia
| | - Marwa Sultan
- The Key Laboratory of Neural and Vascular Biology, The Key Laboratory of New Drug Pharmacology and Toxicology, Department of Pharmacology, Ministry of Education, Hebei Medical University, Shijiazhuang, China
| | - Zeyao Tang
- Collage of Pharmacy, Department of Pharmacology, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
2
|
Lee JJ, Kang HJ, Kim D, Lim SO, Kim SS, Kim G, Kim S, Lee JK, Kim J. expHRD: an individualized, transcriptome-based prediction model for homologous recombination deficiency assessment in cancer. BMC Bioinformatics 2024; 25:236. [PMID: 38997639 PMCID: PMC11241885 DOI: 10.1186/s12859-024-05854-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 07/02/2024] [Indexed: 07/14/2024] Open
Abstract
BACKGROUND Homologous recombination deficiency (HRD) stands as a clinical indicator for discerning responsive outcomes to platinum-based chemotherapy and poly ADP-ribose polymerase (PARP) inhibitors. One of the conventional approaches to HRD prognostication has generally centered on identifying deleterious mutations within the BRCA1/2 genes, along with quantifying the genomic scars, such as Genomic Instability Score (GIS) estimation with scarHRD. However, the scarHRD method has limitations in scenarios involving tumors bereft of corresponding germline data. Although several RNA-seq-based HRD prediction algorithms have been developed, they mainly support cohort-wise classification, thereby yielding HRD status without furnishing an analogous quantitative metric akin to scarHRD. This study introduces the expHRD method, which operates as a novel transcriptome-based framework tailored to n-of-1-style HRD scoring. RESULTS The prediction model has been established using the elastic net regression method in the Cancer Genome Atlas (TCGA) pan-cancer training set. The bootstrap technique derived the HRD geneset for applying the expHRD calculation. The expHRD demonstrated a notable correlation with scarHRD and superior performance in predicting HRD-high samples. We also performed intra- and extra-cohort evaluations for clinical feasibility in the TCGA-OV and the Genomic Data Commons (GDC) ovarian cancer cohort, respectively. The innovative web service designed for ease of use is poised to extend the realms of HRD prediction across diverse malignancies, with ovarian cancer standing as an emblematic example. CONCLUSIONS Our novel approach leverages the transcriptome data, enabling the prediction of HRD status with remarkable precision. This innovative method addresses the challenges associated with limited available data, opening new avenues for utilizing transcriptomics to inform clinical decisions.
Collapse
Affiliation(s)
- Jae Jun Lee
- Computational Cancer Genomics Groups, Spanish Cancer Research Center (CNIO), Madrid, Spain
| | - Hyun Ju Kang
- Genomic Medicine Institute, Medical Research Center, Seoul National University College of Medicine (SNUCM), Seoul, 03080, Republic of Korea
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine (SNUCM), Seoul, 03080, Republic of Korea
| | - Donghyo Kim
- Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Si On Lim
- Department of Biomedical Sciences, Seoul National University College of Medicine (SNUCM), Seoul, 03080, Republic of Korea
| | - Stephanie S Kim
- Precision Medicine Center, Future Innovation Research Division, Seoul National University Bundang Hospital (SNUBH), Seongnam, Gyeonggi-do, 13620, Republic of Korea
| | - Gahyun Kim
- Precision Medicine Center, Future Innovation Research Division, Seoul National University Bundang Hospital (SNUBH), Seongnam, Gyeonggi-do, 13620, Republic of Korea
| | - Sanguk Kim
- Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea.
| | - Jin-Ku Lee
- Genomic Medicine Institute, Medical Research Center, Seoul National University College of Medicine (SNUCM), Seoul, 03080, Republic of Korea.
- Department of Biomedical Sciences, Seoul National University College of Medicine (SNUCM), Seoul, 03080, Republic of Korea.
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine (SNUCM), Seoul, 03080, Republic of Korea.
| | - Jinho Kim
- Precision Medicine Center, Future Innovation Research Division, Seoul National University Bundang Hospital (SNUBH), Seongnam, Gyeonggi-do, 13620, Republic of Korea.
- Department of Genomic Medicine, Seoul National University Bundang Hospital, Seongnam, Gyeonggi-do, 13620, Republic of Korea.
- Department of Laboratory Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Gyeonggi-do, 13620, Republic of Korea.
| |
Collapse
|
3
|
Acharya G, Mani C, Sah N, Saamarthy K, Young R, Reedy MB, Sobol RW, Palle K. CHK1 inhibitor induced PARylation by targeting PARG causes excessive replication and metabolic stress and overcomes chemoresistance in ovarian cancer. Cell Death Discov 2024; 10:278. [PMID: 38862485 PMCID: PMC11166985 DOI: 10.1038/s41420-024-02040-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 06/13/2024] Open
Abstract
Chemoresistance contributes to the majority of deaths in women with ovarian cancer (OC). Altered DNA repair and metabolic signaling is implicated in mediating therapeutic resistance. DNA damage checkpoint kinase 1 (CHK1) integrates cell cycle and DNA repair in replicating cells, and its inhibition causes replication stress, repair deficiency and cell cycle dysregulation. We observed elevated Poly-ADP-ribosylation (PAR) of proteins (PARylation) and subsequent decrease in cellular NAD+ levels in OC cells treated with the CHK1 inhibitor prexasertib, indicating activation of NAD+ dependent DNA repair enzymes poly-ADP-ribose polymerases (PARP1/2). While multiple PARP inhibitors are in clinical use in treating OC, tumor resistance to these drugs is highly imminent. We reasoned that inhibition of dePARylation by targeting Poly (ADP-ribose) glycohydrolase (PARG) would disrupt metabolic and DNA repair crosstalk to overcome chemoresistance. Although PARG inhibition (PARGi) trapped PARylation of the proteins and activated CHK1, it did not cause any significant OC cell death. However, OC cells deficient in CHK1 were hypersensitive to PARGi, suggesting a role for metabolic and DNA repair crosstalk in protection of OC cells. Correspondingly, OC cells treated with a combination of CHK1 and PARG inhibitors exhibited excessive replication stress-mediated DNA lesions, cell cycle dysregulation, and mitotic catastrophe compared to individual drugs. Interestingly, increased PARylation observed in combination treatment resulted in depletion of NAD+ levels. These decreased NAD+ levels were also paralleled with reduced aldehyde dehydrogenase (ALDH) activity, which requires NAD+ to maintain cancer stem cells. Furthermore, prexasertib and PARGi combinations exhibited synergistic cell death in OC cells, including an isogenic chemoresistant cell line and 3D organoid models of primary patient-derived OC cell lines. Collectively, our data highlight a novel crosstalk between metabolism and DNA repair involving replication stress and NAD+-dependent PARylation, and suggest a novel combination therapy of CHK1 and PARG inhibitors to overcome chemoresistance in OC.
Collapse
Affiliation(s)
- Ganesh Acharya
- Department of Cell Biology and Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Chinnadurai Mani
- Department of Cell Biology and Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Naresh Sah
- Department of Cell Biology and Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Karunakar Saamarthy
- Department of Cell Biology and Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Robert Young
- Department of Cell Biology and Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Mark B Reedy
- Department of Obstetrics & Gynecology, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Robert W Sobol
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, & Legorreta Cancer Center, Brown University, Providence, RI, USA
| | - Komaraiah Palle
- Department of Cell Biology and Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
- Department of Obstetrics & Gynecology, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| |
Collapse
|
4
|
Vogel A, Haupts A, Kloth M, Roth W, Hartmann N. A novel targeted NGS panel identifies numerous homologous recombination deficiency (HRD)-associated gene mutations in addition to known BRCA mutations. Diagn Pathol 2024; 19:9. [PMID: 38184614 PMCID: PMC10770950 DOI: 10.1186/s13000-023-01431-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 12/15/2023] [Indexed: 01/08/2024] Open
Abstract
Deleterious mutations in the BRCA1 and BRCA2 genes have significant therapeutic relevance in clinical settings regarding personalized therapy approaches. BRCA1 and BRCA2 play a pivotal role in homologous recombination (HR) and thus are sensitive for PARP inhibitors (PARPi). Beyond the narrow scope of evaluating only the BRCA mutation status, PARPi can be beneficial for HR deficient (HRD) patients, who harbor mutations in other HR-associated genes. In the present retrospective study, a novel targeted HRD gene panel was validated and implemented for use with FFPE tissue. Samples of patients with ovarian, breast, pancreatic and prostate cancer were included. Variants were robustly detected with various DNA input amounts and the use of test samples showed complete concordance between previously known mutations and HRD panel results. From all the 90 samples included in this cohort, TP53 was the most frequently altered gene (73%). Deleterious BRCA1/2 mutations were found in 20 (22%) of all samples. New pathogenic or likely pathogenic mutations in additional HR-associated genes were identified in 22 (24%) patients. Taken together, the present study proves the feasibility of a new HRD gene panel with reliable panel performance and offers the possibility to easily screen for resistance mutations acquired over treatment time.Mutations in HR-associated genes, besides BRCA1/2, might represent promising potential targets for synthetic lethality approaches. Thus, a substantial number of patients may benefit from expanding the scope of therapeutic agents like PARPi.
Collapse
Affiliation(s)
- Anne Vogel
- Institute of Pathology, University Medical Center Mainz, Langenbeckstraße 1, Mainz, 55131, Germany
| | - Anna Haupts
- Institute of Pathology, University Medical Center Mainz, Langenbeckstraße 1, Mainz, 55131, Germany
| | - Michael Kloth
- Institute of Pathology, University Medical Center Mainz, Langenbeckstraße 1, Mainz, 55131, Germany
| | - Wilfried Roth
- Institute of Pathology, University Medical Center Mainz, Langenbeckstraße 1, Mainz, 55131, Germany
| | - Nils Hartmann
- Institute of Pathology, University Medical Center Mainz, Langenbeckstraße 1, Mainz, 55131, Germany.
| |
Collapse
|
5
|
Wang Y, Li K, Xu W, Gou S. Design, synthesis, and biological evaluation of a series of benzofuran[3,2-d]pyrimidine-4(3H)-one derivatives containing thiosemicarbazone analogs as novel PARP-1 inhibitors. Bioorg Chem 2023; 139:106759. [PMID: 37544273 DOI: 10.1016/j.bioorg.2023.106759] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/20/2023] [Accepted: 07/29/2023] [Indexed: 08/08/2023]
Abstract
Poly ADP ribose polymerase-1 (PARP-1), one of the most important members of the PARP protein family, plays a crucial role in DNA damage repair, gene transcription, and apoptosis of cancer cells. In this work, benzofuran[3,2-d]pyrimidine-4(3H)-one was used as a framework to design and synthesize a series of novel PARP-1 inhibitors by introducing thiosemicarbazone or its derivatives into the scafford. Among all the target compounds, 19b and 19c were found to exhibit more potent inhibitory activity and higher selectivity against PARP-1 than Olaparib, especially the latter had an IC50 value of 0.026 μM against PARP-1 enzyme and a PARP-2/PARP-1 selectivity of 85.19-fold over Olapanib. Apart from strong cytotoxicity against the tested cancer cell lines, 19c was most sensitive to SK-OV-3 cells, with an IC50 value of 4.98 μM superior to Olaparib. Anti-cancer mechanism studies revealed that 19c could inhibit DNA single-strand breakage repair and aggravate DNA double-strand breakage by inhibiting PARP-1 activity, and promote the apoptosis of cancer cells through the mitochondrial apoptosis pathway.
Collapse
Affiliation(s)
- Yuanjiang Wang
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China; Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, PR China
| | - Kun Li
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Wenqing Xu
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Shaohua Gou
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China; Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, PR China.
| |
Collapse
|
6
|
Beneyton A, Nonfoux L, Gagné JP, Rodrigue A, Kothari C, Atalay N, Hendzel M, Poirier G, Masson JY. The dynamic process of covalent and non-covalent PARylation in the maintenance of genome integrity: a focus on PARP inhibitors. NAR Cancer 2023; 5:zcad043. [PMID: 37609662 PMCID: PMC10440794 DOI: 10.1093/narcan/zcad043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/25/2023] [Accepted: 07/31/2023] [Indexed: 08/24/2023] Open
Abstract
Poly(ADP-ribosylation) (PARylation) by poly(ADP-ribose) polymerases (PARPs) is a highly regulated process that consists of the covalent addition of polymers of ADP-ribose (PAR) through post-translational modifications of substrate proteins or non-covalent interactions with PAR via PAR binding domains and motifs, thereby reprogramming their functions. This modification is particularly known for its central role in the maintenance of genomic stability. However, how genomic integrity is controlled by an intricate interplay of covalent PARylation and non-covalent PAR binding remains largely unknown. Of importance, PARylation has caught recent attention for providing a mechanistic basis of synthetic lethality involving PARP inhibitors (PARPi), most notably in homologous recombination (HR)-deficient breast and ovarian tumors. The molecular mechanisms responsible for the anti-cancer effect of PARPi are thought to implicate both catalytic inhibition and trapping of PARP enzymes on DNA. However, the relative contribution of each on tumor-specific cytotoxicity is still unclear. It is paramount to understand these PAR-dependent mechanisms, given that resistance to PARPi is a challenge in the clinic. Deciphering the complex interplay between covalent PARylation and non-covalent PAR binding and defining how PARP trapping and non-trapping events contribute to PARPi anti-tumour activity is essential for developing improved therapeutic strategies. With this perspective, we review the current understanding of PARylation biology in the context of the DNA damage response (DDR) and the mechanisms underlying PARPi activity and resistance.
Collapse
Affiliation(s)
- Adèle Beneyton
- CHU de Québec Research Center, HDQ Pavilion, Oncology Division, Laval University Cancer Research Center, 9 McMahon, Québec City, QC G1R 3S3, Canada
| | - Louis Nonfoux
- CHU de Québec Research Center, HDQ Pavilion, Oncology Division, Laval University Cancer Research Center, 9 McMahon, Québec City, QC G1R 3S3, Canada
- CHU de Québec Research Center, CHUL Pavilion, Oncology Division, Laval University Cancer Research Center, 2705 Boulevard Laurier, Québec City, QC G1V 4G2, Canada
| | - Jean-Philippe Gagné
- CHU de Québec Research Center, CHUL Pavilion, Oncology Division, Laval University Cancer Research Center, 2705 Boulevard Laurier, Québec City, QC G1V 4G2, Canada
| | - Amélie Rodrigue
- CHU de Québec Research Center, HDQ Pavilion, Oncology Division, Laval University Cancer Research Center, 9 McMahon, Québec City, QC G1R 3S3, Canada
| | - Charu Kothari
- CHU de Québec Research Center, CHUL Pavilion, Oncology Division, Laval University Cancer Research Center, 2705 Boulevard Laurier, Québec City, QC G1V 4G2, Canada
| | - Nurgul Atalay
- CHU de Québec Research Center, HDQ Pavilion, Oncology Division, Laval University Cancer Research Center, 9 McMahon, Québec City, QC G1R 3S3, Canada
- CHU de Québec Research Center, CHUL Pavilion, Oncology Division, Laval University Cancer Research Center, 2705 Boulevard Laurier, Québec City, QC G1V 4G2, Canada
| | - Michael J Hendzel
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, 11560 University Avenue, Edmonton, AlbertaT6G 1Z2, Canada
| | - Guy G Poirier
- CHU de Québec Research Center, CHUL Pavilion, Oncology Division, Laval University Cancer Research Center, 2705 Boulevard Laurier, Québec City, QC G1V 4G2, Canada
| | - Jean-Yves Masson
- CHU de Québec Research Center, HDQ Pavilion, Oncology Division, Laval University Cancer Research Center, 9 McMahon, Québec City, QC G1R 3S3, Canada
| |
Collapse
|
7
|
Witte HM, Riedl J, Künstner A, Fähnrich A, Ketzer J, Fliedner SMJ, Reimer N, Bernard V, von Bubnoff N, Merz H, Busch H, Feller A, Gebauer N. Molecularly Stratified Treatment Options in Primary Refractory DLBCL/HGBL with MYC and BCL2 or BCL6 Rearrangements (HGBL, NOS with MYC/BCL6). Target Oncol 2023; 18:749-765. [PMID: 37488307 PMCID: PMC10517902 DOI: 10.1007/s11523-023-00983-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2023] [Indexed: 07/26/2023]
Abstract
BACKGROUND There is growing evidence supporting multidisciplinary molecular tumor boards (MTB) in solid tumors whereas hematologic malignancies remain underrepresented in this regard. OBJECTIVE The present study aimed to assess the clinical relevance of MTBs in primary refractory diffuse large B-cell lymphomas/high-grade B-cell lymphomas with MYC and BCL2 rearrangements (prDLBCL/HGBL-MYC/BCL2) (n = 13) and HGBL, not otherwise specified (NOS), with MYC and BCL6 rearrangements (prHGBL, NOS-MYC/BCL6) (n = 6) based on our previously published whole-exome sequencing (WES) cohort. PATIENTS AND METHODS For genomic analysis, the institutional MTB WES pipeline (University Cancer Center Schleswig-Holstein: UCCSH), certified for routine clinical diagnostics, was employed and supplemented by a comprehensive immunohistochemical work-up. Consecutive database research and annotation according to established evidence levels for molecularly stratified therapies was performed (NCT-DKTK/ESCAT). RESULTS Molecularly tailored treatment options with NCT-DKTK evidence level of at least m2A were identified in each case. We classified mutations in accordance with biomarker/treatment baskets and detected a heterogeneous spectrum of targetable alterations affecting immune evasion (IE; n = 30), B-cell targets (BCT; n = 26), DNA damage repair (DDR; n = 20), tyrosine kinases (TK; n = 13), cell cycle (CC; n = 7), PI3K-MTOR-AKT pathway (PAM; n = 2), RAF-MEK-ERK cascade (RME; n = 1), and others (OTH; n = 11). CONCLUSION Our virtual MTB approach identified potential molecularly targeted treatment options alongside targetable genomic signatures for both prDLBCL/HGBL-MYC/BCL2 and prHGBL, NOS-MYC/BCL6. These results underline the potential of MTB consultations in difficult-to-treat lymphomas early in the treatment sequence.
Collapse
Affiliation(s)
- Hanno M Witte
- Department of Hematology and Oncology, University Hospital of Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany.
- Department of Hematology and Oncology, Federal Armed Forces Hospital Ulm, Bundeswehrkrankenhaus Ulm, Oberer Eselsberg 40, 89081, Ulm, Germany.
- University Cancer Center Schleswig-Holstein, University Hospital of Schleswig-Holstein, Campus Lübeck, Ratzeburger Alee 160, 23538, Lübeck, Germany.
| | - Jörg Riedl
- Department of Hematology and Oncology, University Hospital of Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
- University Cancer Center Schleswig-Holstein, University Hospital of Schleswig-Holstein, Campus Lübeck, Ratzeburger Alee 160, 23538, Lübeck, Germany
| | - Axel Künstner
- University Cancer Center Schleswig-Holstein, University Hospital of Schleswig-Holstein, Campus Lübeck, Ratzeburger Alee 160, 23538, Lübeck, Germany
- Medical Systems Biology Group, University of Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
- Institute for Cardiogenetics, University of Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
| | - Anke Fähnrich
- University Cancer Center Schleswig-Holstein, University Hospital of Schleswig-Holstein, Campus Lübeck, Ratzeburger Alee 160, 23538, Lübeck, Germany
- Medical Systems Biology Group, University of Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
- Institute for Cardiogenetics, University of Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
| | - Julius Ketzer
- Department of Hematology and Oncology, University Hospital of Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
- University Cancer Center Schleswig-Holstein, University Hospital of Schleswig-Holstein, Campus Lübeck, Ratzeburger Alee 160, 23538, Lübeck, Germany
- Department of Pediatrics, University Hospital of Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
| | - Stephanie M J Fliedner
- Department of Hematology and Oncology, University Hospital of Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
- University Cancer Center Schleswig-Holstein, University Hospital of Schleswig-Holstein, Campus Lübeck, Ratzeburger Alee 160, 23538, Lübeck, Germany
- Department of Hematology and Oncology, University Hospital of Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3, 24105, Kiel, Germany
| | - Niklas Reimer
- University Cancer Center Schleswig-Holstein, University Hospital of Schleswig-Holstein, Campus Lübeck, Ratzeburger Alee 160, 23538, Lübeck, Germany
- Medical Systems Biology Group, University of Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
- Institute for Cardiogenetics, University of Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
| | - Veronica Bernard
- Hämatopathologie Lübeck, Reference Centre for Lymph Node Pathology and Hematopathology, Maria-Goeppert-Straße 9a, 23562, Lübeck, Germany
| | - Nikolas von Bubnoff
- Department of Hematology and Oncology, University Hospital of Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
- University Cancer Center Schleswig-Holstein, University Hospital of Schleswig-Holstein, Campus Lübeck, Ratzeburger Alee 160, 23538, Lübeck, Germany
| | - Hartmut Merz
- Hämatopathologie Lübeck, Reference Centre for Lymph Node Pathology and Hematopathology, Maria-Goeppert-Straße 9a, 23562, Lübeck, Germany
| | - Hauke Busch
- University Cancer Center Schleswig-Holstein, University Hospital of Schleswig-Holstein, Campus Lübeck, Ratzeburger Alee 160, 23538, Lübeck, Germany
- Medical Systems Biology Group, University of Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
- Institute for Cardiogenetics, University of Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
| | - Alfred Feller
- Hämatopathologie Lübeck, Reference Centre for Lymph Node Pathology and Hematopathology, Maria-Goeppert-Straße 9a, 23562, Lübeck, Germany
| | - Niklas Gebauer
- Department of Hematology and Oncology, University Hospital of Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
- University Cancer Center Schleswig-Holstein, University Hospital of Schleswig-Holstein, Campus Lübeck, Ratzeburger Alee 160, 23538, Lübeck, Germany
| |
Collapse
|
8
|
Lovsund T, Mashayekhi F, Fitieh A, Stafford J, Ismail IH. Unravelling the Role of PARP1 in Homeostasis and Tumorigenesis: Implications for Anti-Cancer Therapies and Overcoming Resistance. Cells 2023; 12:1904. [PMID: 37508568 PMCID: PMC10378431 DOI: 10.3390/cells12141904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Detailing the connection between homeostatic functions of enzymatic families and eventual progression into tumorigenesis is crucial to our understanding of anti-cancer therapies. One key enzyme group involved in this process is the Poly (ADP-ribose) polymerase (PARP) family, responsible for an expansive number of cellular functions, featuring members well established as regulators of DNA repair, genomic stability and beyond. Several PARP inhibitors (PARPi) have been approved for clinical use in a range of cancers, with many more still in trials. Unfortunately, the occurrence of resistance to PARPi therapy is growing in prevalence and requires the introduction of novel counter-resistance mechanisms to maintain efficacy. In this review, we summarize the updated understanding of the vast homeostatic functions the PARP family mediates and pin the importance of PARPi therapies as anti-cancer agents while discussing resistance mechanisms and current up-and-coming counter-strategies for countering such resistance.
Collapse
Affiliation(s)
- Taylor Lovsund
- Division of Experimental Oncology, Department of Oncology, Faculty of Medicine & Dentistry, University of Alberta, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada
| | - Fatemeh Mashayekhi
- Division of Experimental Oncology, Department of Oncology, Faculty of Medicine & Dentistry, University of Alberta, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada
| | - Amira Fitieh
- Department of Biophysics, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - James Stafford
- Department of Biological Sciences, Faculty of Science, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Ismail Hassan Ismail
- Division of Experimental Oncology, Department of Oncology, Faculty of Medicine & Dentistry, University of Alberta, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada
- Department of Biophysics, Faculty of Science, Cairo University, Giza 12613, Egypt
| |
Collapse
|
9
|
Guerra E, Di Pietro R, Stati G, Alberti S. A non-mutated TROP2 fingerprint in cancer genetics. Front Oncol 2023; 13:1151090. [PMID: 37456256 PMCID: PMC10338868 DOI: 10.3389/fonc.2023.1151090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023] Open
Abstract
The advent of high throughput DNA sequencing is providing massive amounts of tumor-associated mutation data. Implicit in these analyses is the assumption that, by acquiring a series of hallmark changes, normal cells evolve along a neoplastic path. However, the lack of correlation between cancer risk and global exposure to mutagenic factors provides arguments against this model. This suggested that additional, non-mutagenic factors are at work in cancer development. A candidate determinant is TROP2, that stands out for its expression in the majority of solid tumors in human, for its impact on the prognosis of most solid cancers and for its role as driver of cancer growth and metastatic diffusion, through overexpression as a wild-type form. The Trop-2 signaling network encompasses CREB1, Jun, NF-κB, Rb, STAT1 and STAT3, through induction of cyclin D1 and MAPK/ERK. Notably, Trop-2-driven pathways vastly overlap with those activated by most functionally relevant/most frequently mutated RAS and TP53, and are co-expressed in a large fraction of individual tumor cases, suggesting functional overlap. Mutated Ras was shown to synergize with the TROP2-CYCLIND1 mRNA chimera in transforming primary cells into tumorigenic ones. Genomic loss of TROP2 was found to promote carcinogenesis in squamous cell carcinomas through modulation of Src and mutated Ras pathways. DNA methylation and TP53 status were shown to cause genome instability and TROP gene amplification, together with Trop-2 protein overexpression. These findings suggest that mutagenic and the TROP2 non-mutagenic pathways deeply intertwine in driving transformed cell growth and malignant progression of solid cancers.
Collapse
Affiliation(s)
- Emanuela Guerra
- Laboratory of Cancer Pathology, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Roberta Di Pietro
- Department of Medicine and Aging Sciences, Section of Biomorphology, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, United States
| | - Gianmarco Stati
- Department of Medicine and Aging Sciences, Section of Biomorphology, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Saverio Alberti
- Unit of Medical Genetics, Department of Biomedical Sciences - Biomedical Sciences (BIOMORF), University of Messina, Messina, Italy
| |
Collapse
|
10
|
Rădoi VE, Țurcan M, Maioru OV, Dan A, Bohîlțea LC, Dumitrescu EA, Gheorghe AS, Stănculeanu DL, Thodi G, Loukas YL, Săbău ID. Homologous Recombination Deficiency Score Determined by Genomic Instability in a Romanian Cohort. Diagnostics (Basel) 2023; 13:1896. [PMID: 37296748 PMCID: PMC10252278 DOI: 10.3390/diagnostics13111896] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/02/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
The Homologous Recombination Deficiency (HRD) Score, determined by evaluating genomic instability through the assessment of loss of heterozygosity (LOH), telomeric allelic imbalance (TAI), and large-scale state transitions (LST), serves as a crucial biomarker for identifying patients who might benefit from targeted therapies, such as PARP inhibitors (PARPi). This study aimed to investigate the efficacy of HRD testing in high-grade serous ovarian carcinoma, tubal, and peritoneal cancer patients who are negative for somatic BRCA1 and BRCA2 mutations and to evaluate the impact of HRD status on Bevacizumab and PARPi therapy response. A cohort of 100 Romanian female patients, aged 42-77, was initially selected. Among them, 30 patients had unsuitable samples for HRD testing due to insufficient tumor content or DNA integrity. Using the OncoScan C.N.V. platform, HRD testing was successfully performed on the remaining 70 patients, with 20 testing negative and 50 testing positive for HRD. Among the HRD-positive patients, 35 were eligible for and benefited from PARPi maintenance therapy, resulting in a median progression-free survival (PFS) increase from 4 months to 8.2 months. Our findings support the importance of HRD testing in ovarian cancer patients, demonstrating the potential therapeutic advantage of PARPi therapy in HRD-positive patients without somatic BRCA1/2 mutations.
Collapse
Affiliation(s)
- Viorica-Elena Rădoi
- Department of Medical Genetics, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (V.-E.R.); (O.V.M.); (A.D.); (L.C.B.); (I.-D.S.)
- “Alessandrescu-Rusescu” National Institute for Maternal and Child Health, 20382 Bucharest, Romania
- Independent Researcher, 010987 Bucharest, Romania
- Sanador, 011026 Bucharest, Romania
| | - Mihaela Țurcan
- Department of Medical Genetics, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (V.-E.R.); (O.V.M.); (A.D.); (L.C.B.); (I.-D.S.)
- Independent Researcher, 010987 Bucharest, Romania
| | - Ovidiu Virgil Maioru
- Department of Medical Genetics, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (V.-E.R.); (O.V.M.); (A.D.); (L.C.B.); (I.-D.S.)
| | - Andra Dan
- Department of Medical Genetics, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (V.-E.R.); (O.V.M.); (A.D.); (L.C.B.); (I.-D.S.)
| | - Laurentiu Camil Bohîlțea
- Department of Medical Genetics, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (V.-E.R.); (O.V.M.); (A.D.); (L.C.B.); (I.-D.S.)
- “Alessandrescu-Rusescu” National Institute for Maternal and Child Health, 20382 Bucharest, Romania
| | - Elena Adriana Dumitrescu
- Department of Oncology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (E.A.D.); (D.L.S.)
| | - Adelina Silvana Gheorghe
- Department of Oncology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (E.A.D.); (D.L.S.)
- Department of Medical Oncology I, Institute of Oncology “Prof. Dr. Al. Trestioreanu” Bucharest, 022328 Bucharest, Romania
| | - Dana Lucia Stănculeanu
- Department of Oncology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (E.A.D.); (D.L.S.)
- Department of Medical Oncology I, Institute of Oncology “Prof. Dr. Al. Trestioreanu” Bucharest, 022328 Bucharest, Romania
| | - Georgia Thodi
- Neoscreen Diagnostic Laboratory, Voreiou Ipeirou, 15235 Athens, Greece;
| | - Yannis L. Loukas
- School of Pharmacy, University of Athens, Panepistimiolopis, 15771 Zografou, Greece;
| | - Ileana-Delia Săbău
- Department of Medical Genetics, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (V.-E.R.); (O.V.M.); (A.D.); (L.C.B.); (I.-D.S.)
- Independent Researcher, 010987 Bucharest, Romania
| |
Collapse
|
11
|
Purwar R, Ranjan R, Pal M, Upadhyay SK, Kumar T, Pandey M. Role of PARP inhibitors beyond BRCA mutation and platinum sensitivity in epithelial ovarian cancer: a meta-analysis of hazard ratios from randomized clinical trials. World J Surg Oncol 2023; 21:157. [PMID: 37217940 DOI: 10.1186/s12957-023-03027-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 04/29/2023] [Indexed: 05/24/2023] Open
Abstract
BACKGROUND PARP inhibitors (PARPi) have a well-established role in platinum-sensitive ovarian cancer (PSOC), in BRCA mutant (BRCAm), and homologous recombination deficiency (HRD) population. However, their role in wild type and homologous recombination proficient population is still not clear. METHODS A meta-analysis of hazard ratios (HR) of randomized control trials (RCTs) was conducted to study the role of PARPi. The published RCTs comparing the efficacy of PARP inhibitors alone or in combination with chemotherapy and/or target therapies versus placebo/chemotherapy alone/target therapy alone in primary or recurrent ovarian cancer settings were selected. Progression-free survival (PFS) and overall survival (OS) were the primary endpoints. RESULTS A total of 14 primary studies and 5 updated studies are considered, consisting of 5363 patients. Overall, HR for PFS was 0.50 [95% CI 0.40-0.62]. HR of PFS was 0.94 [95% CI 0.76-1.15] in the PROC group, 0.41 [95% CI 0.29-0.60] was in HRD with BRCA unknown (BRCAuk), 0.38 [95% CI 0.26-0.57] in HRD with BRCAm, and 0.52 [95% CI 0.38-0.71] in HRD with BRCAwt. In the HRP group, overall HR for PFS was 0.67 [95% CI 0.56-0.80], 0.61 [95% CI 0.38-0.99] in HRD unknown with BRCA wt, and 0.40 [95% CI 0.29-0.55] in BRCAm HR for PFS. Overall, HR for OS was 0.86 [95% CI 0.73-1.031]. CONCLUSIONS The results suggest that PARPi have a meaningful clinical benefit in PSOC, HRD, BRACm, and also in HRP and PROC; however, the evidence is not sufficient to recommend their routine use and further studies are needed to expand their role in the HRP and PROC groups.
Collapse
Affiliation(s)
- Roli Purwar
- Department of Surgical Oncology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Rakesh Ranjan
- Department of Science and Technology, Centre for Interdisciplinary Mathematical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Manjusha Pal
- Department of Surgical Oncology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | | | - Tarun Kumar
- Department of Surgical Oncology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Manoj Pandey
- Department of Surgical Oncology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
12
|
Kinnel B, Singh SK, Oprea-Ilies G, Singh R. Targeted Therapy and Mechanisms of Drug Resistance in Breast Cancer. Cancers (Basel) 2023; 15:1320. [PMID: 36831661 PMCID: PMC9954028 DOI: 10.3390/cancers15041320] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Breast cancer is the most common cause of cancer-related death in women worldwide. Multidrug resistance (MDR) has been a large hurdle in reducing BC death rates. The drug resistance mechanisms include increased drug efflux, enhanced DNA repair, senescence escape, epigenetic alterations, tumor heterogeneity, tumor microenvironment (TME), and the epithelial-to-mesenchymal transition (EMT), which make it challenging to overcome. This review aims to explain the mechanisms of resistance in BC further, identify viable drug targets, and elucidate how those targets relate to the progression of BC and drug resistance.
Collapse
Affiliation(s)
- Briana Kinnel
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Santosh Kumar Singh
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Gabriela Oprea-Ilies
- Department of Pathology & Laboratory Medicine, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Rajesh Singh
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA
- Cancer Health Equity Institute, Morehouse School of Medicine, Atlanta, GA 30310, USA
| |
Collapse
|
13
|
Abstract
High-fidelity DNA replication is critical for the faithful transmission of genetic information to daughter cells. Following genotoxic stress, specialized DNA damage tolerance pathways are activated to ensure replication fork progression. These pathways include translesion DNA synthesis, template switching and repriming. In this Review, we describe how DNA damage tolerance pathways impact genome stability, their connection with tumorigenesis and their effects on cancer therapy response. We discuss recent findings that single-strand DNA gap accumulation impacts chemoresponse and explore a growing body of evidence that suggests that different DNA damage tolerance factors, including translesion synthesis polymerases, template switching proteins and enzymes affecting single-stranded DNA gaps, represent useful cancer targets. We further outline how the consequences of DNA damage tolerance mechanisms could inform the discovery of new biomarkers to refine cancer therapies.
Collapse
Affiliation(s)
- Emily Cybulla
- Division of Oncology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Alessandro Vindigni
- Division of Oncology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
14
|
Witte HM, Fähnrich A, Künstner A, Riedl J, Fliedner SMJ, Reimer N, Hertel N, von Bubnoff N, Bernard V, Merz H, Busch H, Feller A, Gebauer N. Primary refractory plasmablastic lymphoma: A precision oncology approach. Front Oncol 2023; 13:1129405. [PMID: 36923431 PMCID: PMC10008852 DOI: 10.3389/fonc.2023.1129405] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/13/2023] [Indexed: 03/01/2023] Open
Abstract
Introduction Hematologic malignancies are currently underrepresented in multidisciplinary molecular-tumor-boards (MTB). This study assesses the potential of precision-oncology in primary-refractory plasmablastic-lymphoma (prPBL), a highly lethal blood cancer. Methods We evaluated clinicopathological and molecular-genetic data of 14 clinically annotated prPBL-patients from initial diagnosis. For this proof-of-concept study, we employed our certified institutional MTB-pipeline (University-Cancer-Center-Schleswig-Holstein, UCCSH) to annotate a comprehensive dataset within the scope of a virtual MTB-setting, ultimately recommending molecularly stratified therapies. Evidence-levels for MTB-recommendations were defined in accordance with the NCT/DKTK and ESCAT criteria. Results Median age in the cohort was 76.5 years (range 56-91), 78.6% of patients were male, 50% were HIV-positive and clinical outcome was dismal. Comprehensive genomic/transcriptomic analysis revealed potential recommendations of a molecularly stratified treatment option with evidence-levels according to NCT/DKTK of at least m2B/ESCAT of at least IIIA were detected for all 14 prPBL-cases. In addition, immunohistochemical-assessment (CD19/CD30/CD38/CD79B) revealed targeted treatment-recommendations in all 14 cases. Genetic alterations were classified by treatment-baskets proposed by Horak et al. Hereby, we identified tyrosine-kinases (TK; n=4), PI3K-MTOR-AKT-pathway (PAM; n=3), cell-cycle-alterations (CC; n=2), RAF-MEK-ERK-cascade (RME; n=2), immune-evasion (IE; n=2), B-cell-targets (BCT; n=25) and others (OTH; n=4) for targeted treatment-recommendations. The minimum requirement for consideration of a drug within the scope of the study was FDA-fast-track development. Discussion The presented proof-of-concept study demonstrates the clinical potential of precision-oncology, even in prPBL-patients. Due to the aggressive course of the disease, there is an urgent medical-need for personalized treatment approaches, and this population should be considered for MTB inclusion at the earliest time.
Collapse
Affiliation(s)
- Hanno M Witte
- Department of Hematology and Oncology, University Hospital of Schleswig-Holstein, Lübeck, Germany.,Department of Hematology and Oncology, Federal Armed Forces Hospital, Ulm, Germany
| | - Anke Fähnrich
- Medical Systems Biology Group, Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany.,Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany.,University Cancer Center Schleswig-Holstein, University Hospital of Schleswig- Holstein, Lübeck, Germany
| | - Axel Künstner
- Medical Systems Biology Group, Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany.,Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany.,University Cancer Center Schleswig-Holstein, University Hospital of Schleswig- Holstein, Lübeck, Germany
| | - Jörg Riedl
- Department of Hematology and Oncology, University Hospital of Schleswig-Holstein, Lübeck, Germany.,Hämatopathologie Lübeck, Reference Centre for Lymph Node Pathology and Hematopathology, Lübeck, Germany
| | - Stephanie M J Fliedner
- Department of Hematology and Oncology, University Hospital of Schleswig-Holstein, Lübeck, Germany.,University Cancer Center Schleswig-Holstein, University Hospital of Schleswig- Holstein, Lübeck, Germany
| | - Niklas Reimer
- Medical Systems Biology Group, Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany.,Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany.,University Cancer Center Schleswig-Holstein, University Hospital of Schleswig- Holstein, Lübeck, Germany
| | - Nadine Hertel
- Department of Hematology and Oncology, University Hospital of Schleswig-Holstein, Lübeck, Germany
| | - Nikolas von Bubnoff
- Department of Hematology and Oncology, University Hospital of Schleswig-Holstein, Lübeck, Germany.,University Cancer Center Schleswig-Holstein, University Hospital of Schleswig- Holstein, Lübeck, Germany
| | - Veronica Bernard
- Hämatopathologie Lübeck, Reference Centre for Lymph Node Pathology and Hematopathology, Lübeck, Germany
| | - Hartmut Merz
- University Cancer Center Schleswig-Holstein, University Hospital of Schleswig- Holstein, Lübeck, Germany
| | - Hauke Busch
- Medical Systems Biology Group, Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany.,Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany.,University Cancer Center Schleswig-Holstein, University Hospital of Schleswig- Holstein, Lübeck, Germany
| | - Alfred Feller
- Hämatopathologie Lübeck, Reference Centre for Lymph Node Pathology and Hematopathology, Lübeck, Germany
| | - Niklas Gebauer
- Department of Hematology and Oncology, University Hospital of Schleswig-Holstein, Lübeck, Germany.,University Cancer Center Schleswig-Holstein, University Hospital of Schleswig- Holstein, Lübeck, Germany
| |
Collapse
|
15
|
Corrected Allele Frequency of BRCA1/2 Mutations Is an Independent Prognostic Factor for Treatment Response to PARP-Inhibitors in Ovarian Cancer Patients. J Pers Med 2022; 12:jpm12091467. [PMID: 36143252 PMCID: PMC9504000 DOI: 10.3390/jpm12091467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
PARP inhibitors (PARPi) have increased treatment options in ovarian cancer, particularly in patients with BRCA1/2 mutations, although there are still marked differences in the duration of patients’ response to this targeted therapy. BRCA testing is routinely performed in tumor tissue of ovarian cancer patients. The resulting molecular pathological findings include the genetic nomenclature of the mutation, the frequency of the mutated allele (variant allele frequency, VAF), and the tumor cell content. VAF measures the percentage of mutated alleles from the total alleles in the cells of the examined tissue. The aim of this study was to investigate the significance of VAF on the therapeutic response to PARPis in ovarian cancer patients. Epithelial ovarian cancer patients harboring BRCA1/2 tumor mutations, who underwent germline testing and received PARPi therapy at the Medical University of Vienna (n = 41) were included in the study. Corrected VAF (cVAF) was calculated based on VAF, tumor cell content, and germline mutation. Patients were divided into two groups based on their cVAF. Median PFS under PARPi in patients with low cVAF was 13.0 months (IQR [10.3-not reached]) and was not reached in the high cVAF group. High cVAF was significantly associated with longer PFS in the multivariate analysis (HR = 0.07; 95% CI [0.01–0.63]; p = 0.017). In conclusion, high cVAF was associated with a significantly better response to PARPi in this study population.
Collapse
|
16
|
Lee JD, Ryu WJ, Han HJ, Kim TY, Kim MH, Sohn J. Molecular Characterization of BRCA1 c.5339T>C Missense Mutation in DNA Damage Response of Triple-Negative Breast Cancer. Cancers (Basel) 2022; 14:cancers14102405. [PMID: 35626017 PMCID: PMC9139203 DOI: 10.3390/cancers14102405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/03/2022] [Accepted: 05/11/2022] [Indexed: 02/01/2023] Open
Abstract
BRCA1 L1780P BRCT domain mutation has been recognized as a pathogenic mutation in patients with breast cancer. However, the molecular significance of this mutation has not yet been studied in triple-negative breast cancer (TNBC) cells in vitro. We established MDA-MB 231, HCC1937, and HCC1395 TNBC cell lines expressing BRCA1 L1780P mutant. BRCA1 L1780P mutant TNBC cells showed increased migration and invasion capacity, as well as increased sensitivity to olaparib and carboplatin compared to BRCA1 wild-type cells. BRCA1 L1780P mutant TNBC cells showed decreased RAD51 expression and reduced nuclear RAD51 foci formation following carboplatin and olaparib treatment. The molecular interaction between p-ATM and BRCA1 was abrogated following introduction of BRCA1 L1780P mutant plasmid in TNBC cells, suggesting that the BRCA1 L1780P mutation disrupts the p-ATM-BRCA1 protein-protein interaction. We established an olaparib-resistant BRCA1 L1780P mutant TNBC cell line by chronic drug treatment. Olaparib-resistant cell lines showed upregulation of RAD51 expression upon olaparib treatment, and reduction in RAD51 expression in olaparib-resistant cells restored olaparib sensitivity. Collectively, these results suggest that the BRCA1 L1780P mutation impairs RAD51 recruitment by disrupting p-ATM-BRCA1 interaction, which is a crucial molecular factor in homologous recombination and olaparib sensitivity. Further therapeutic targeting of RAD51 in BRCA1 L1780P mutant breast cancer is warranted.
Collapse
Affiliation(s)
- Jeong Dong Lee
- Department of Human Biology and Genomics, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea;
| | - Won-Ji Ryu
- Avison Biomedical Research Center, Yonsei University College of Medicine, Seoul 03722, Korea; (W.-J.R.); (H.J.H.); (T.Y.K.)
| | - Hyun Ju Han
- Avison Biomedical Research Center, Yonsei University College of Medicine, Seoul 03722, Korea; (W.-J.R.); (H.J.H.); (T.Y.K.)
| | - Tae Yeong Kim
- Avison Biomedical Research Center, Yonsei University College of Medicine, Seoul 03722, Korea; (W.-J.R.); (H.J.H.); (T.Y.K.)
| | - Min Hwan Kim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Korea
- Correspondence: (M.H.K.); (J.S.); Tel.: +82-2-2228-8135 (M.H.K. & J.S.)
| | - Joohyuk Sohn
- Division of Medical Oncology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Korea
- Correspondence: (M.H.K.); (J.S.); Tel.: +82-2-2228-8135 (M.H.K. & J.S.)
| |
Collapse
|
17
|
Guo S, Wang X, Cao M, Wu X, Xiong L, Bao P, Chu M, Liang C, Yan P, Pei J, Guo X. The transcriptome-wide N6-methyladenosine (m 6A) map profiling reveals the regulatory role of m 6A in the yak ovary. BMC Genomics 2022; 23:358. [PMID: 35538402 PMCID: PMC9092806 DOI: 10.1186/s12864-022-08585-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 04/25/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND AND AIM Yak estrus is a seasonal phenomenon, probably involving epigenetic regulation of synthesis and secretion of sex hormones as well as growth and development of follicles. N6-methyladenosine (m6A) is the most common internal modification of the eukaryotic mRNA. However, there are no detailed reports on the m6A transcriptome map of yak ovary. Therefore, this study aimed to collected the yak ovarian tissues at three different states of anestrus (YO-A), estrus (YO-F), and pregnancy (YO-P), and obtained the full transcriptome m6A map in yak by MeRIP-seq. RESULTS The HE staining revealed that the number of growing follicles and mature follicles in the ovary during the estrus period was relatively higher than those in the anestrus period and the pregnancy period. The RT-qPCR showed that the expression of METTL3, METTL14, FTO, YTHDC1 were significantly different across different periods in the ovaries, which suggests that m6A may play a regulatory role in ovarian activity. Next, we identified 20,174, 19,747 and 13,523 m6A peaks in the three ovarian samples of YO-A, YO-F and YO-P using the methylated RNA immunoprecipitation sequencing (MeRIP-seq). The m6A peaks are highly enriched in the coding sequence (CDS) region and 3'untranslated region (3'UTR) as well as the conserved sequence of "RRACH." The GO, KEGG and GSEA analysis revealed the involvement of m6A in many physiological activities of the yak's ovary during reproductive cycle. The association analysis found that some genes such as BNC1, HOMER1, BMP15, BMP6, GPX3, and WNT11 were related to ovarian functions. CONCLUSIONS The comparison of the distribution patterns of methylation peaks in the ovarian tissues across different periods further explored the m6A markers related to the regulation of ovarian ovulation and follicular development in the yak ovary. This comprehensive map provides a solid foundation for revealing the potential function of the mRNA m6A modification in the yak ovary.
Collapse
Affiliation(s)
- Shaoke Guo
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Xingdong Wang
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Mengli Cao
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Xiaoyun Wu
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Lin Xiong
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Pengjia Bao
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Min Chu
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Chunnian Liang
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Ping Yan
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Jie Pei
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China.
| | - Xian Guo
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China.
| |
Collapse
|
18
|
Adam S, Rossi SE, Moatti N, De Marco Zompit M, Xue Y, Ng TF, Álvarez-Quilón A, Desjardins J, Bhaskaran V, Martino G, Setiaputra D, Noordermeer SM, Ohsumi TK, Hustedt N, Szilard RK, Chaudhary N, Munro M, Veloso A, Melo H, Yin SY, Papp R, Young JTF, Zinda M, Stucki M, Durocher D. The CIP2A-TOPBP1 axis safeguards chromosome stability and is a synthetic lethal target for BRCA-mutated cancer. NATURE CANCER 2021; 2:1357-1371. [PMID: 35121901 DOI: 10.1038/s43018-021-00266-w] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 09/10/2021] [Indexed: 05/26/2023]
Abstract
BRCA1/2-mutated cancer cells adapt to the genome instability caused by their deficiency in homologous recombination (HR). Identification of these adaptive mechanisms may provide therapeutic strategies to target tumors caused by the loss of these genes. In the present study, we report genome-scale CRISPR-Cas9 synthetic lethality screens in isogenic pairs of BRCA1- and BRCA2-deficient cells and identify CIP2A as an essential gene in BRCA1- and BRCA2-mutated cells. CIP2A is cytoplasmic in interphase but, in mitosis, accumulates at DNA lesions as part of a complex with TOPBP1, a multifunctional genome stability factor. Unlike PARP inhibition, CIP2A deficiency does not cause accumulation of replication-associated DNA lesions that require HR for their repair. In BRCA-deficient cells, the CIP2A-TOPBP1 complex prevents lethal mis-segregation of acentric chromosomes that arises from impaired DNA synthesis. Finally, physical disruption of the CIP2A-TOPBP1 complex is highly deleterious in BRCA-deficient tumors, indicating that CIP2A represents an attractive synthetic lethal therapeutic target for BRCA1- and BRCA2-mutated cancers.
Collapse
Affiliation(s)
- Salomé Adam
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Silvia Emma Rossi
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Nathalie Moatti
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Mara De Marco Zompit
- Department of Gynecology, University Hospital and University of Zurich, Schlieren, Switzerland
| | - Yibo Xue
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Timothy F Ng
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Alejandro Álvarez-Quilón
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Repare Therapeutics, St-Laurent, Quebec, Canada
| | | | | | | | - Dheva Setiaputra
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Sylvie M Noordermeer
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Nicole Hustedt
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Lonza AG, Visp, Switzerland
| | - Rachel K Szilard
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Natasha Chaudhary
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Meagan Munro
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | | | - Henrique Melo
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | | | - Robert Papp
- Repare Therapeutics, St-Laurent, Quebec, Canada
| | | | | | - Manuel Stucki
- Department of Gynecology, University Hospital and University of Zurich, Schlieren, Switzerland
| | - Daniel Durocher
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
19
|
Xu Q, Li Z. Update on Poly ADP-Ribose Polymerase Inhibitors in Ovarian Cancer With Non-BRCA Mutations. Front Pharmacol 2021; 12:743073. [PMID: 34912215 PMCID: PMC8667582 DOI: 10.3389/fphar.2021.743073] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 11/15/2021] [Indexed: 01/07/2023] Open
Abstract
Poly ADP-ribose polymerase inhibitor (PARPi) has become an important maintenance therapy for ovarian cancer after surgery and cytotoxic chemotherapy, which has changed the disease management model of ovarian cancer, greatly decreased the risk of recurrence, and made the prognosis of ovarian cancer better to certain extent. The three PARPis currently approved by the United States Food and Drug Administration (FDA) and the European Medicines Agency (EMA) for the treatment of ovarian cancer are Olaparib, Niraparib and Rucaparib. With the incremental results from new clinical trials, the applicable population of PARPi for ovarian cancer have expanded to population with non-BRCA mutations. Although BRCA mutated population are still the main beneficiaries of PARPi, recent clinical trials indicated PARPis' therapeutic potential in non-BRCA mutated population, especially in homologous recombination repair deficiency (HRD) positive population. However, lack of unified HRD status detection method poses a challenge for the accurate selection of PARPi beneficiaries. The reversal of homologous recombination (HR) function during the treatment will not only cause resistance to PARPis, but also reduce the accuracy of the current method to determine HRD status. Therefore, the development of reliable HRD status detection methods to determine the beneficiary population, as well as rational combination treatment are warranted. This review mainly summarizes the latest clinical trial results and combination treatment of PARPis in ovarian cancer with non-BRCA mutations, and discusses the application prospects, including optimizing combination therapy against drug resistance, developing unified and accurate HRD status detection methods for patient selection and stratification. This review further poses an interesting topic: the efficacy and safety in patients retreated with PARPis after previous PARPi treatment---"PARPi after PARPi".
Collapse
Affiliation(s)
| | - Zhengyu Li
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
20
|
Poltronieri P, Miwa M, Masutani M. ADP-Ribosylation as Post-Translational Modification of Proteins: Use of Inhibitors in Cancer Control. Int J Mol Sci 2021; 22:10829. [PMID: 34639169 PMCID: PMC8509805 DOI: 10.3390/ijms221910829] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/02/2021] [Accepted: 10/05/2021] [Indexed: 12/14/2022] Open
Abstract
Among the post-translational modifications of proteins, ADP-ribosylation has been studied for over fifty years, and a large set of functions, including DNA repair, transcription, and cell signaling, have been assigned to this post-translational modification (PTM). This review presents an update on the function of a large set of enzyme writers, the readers that are recruited by the modified targets, and the erasers that reverse the modification to the original amino acid residue, removing the covalent bonds formed. In particular, the review provides details on the involvement of the enzymes performing monoADP-ribosylation/polyADP-ribosylation (MAR/PAR) cycling in cancers. Of note, there is potential for the application of the inhibitors developed for cancer also in the therapy of non-oncological diseases such as the protection against oxidative stress, the suppression of inflammatory responses, and the treatment of neurodegenerative diseases. This field of studies is not concluded, since novel enzymes are being discovered at a rapid pace.
Collapse
Affiliation(s)
- Palmiro Poltronieri
- Institute of Sciences of Food Productions, National Research Council of Italy, CNR-ISPA, Via Monteroni, 73100 Lecce, Italy
| | - Masanao Miwa
- Nagahama Institute of Bio-Science and Technology, Nagahama 526-0829, Japan;
| | - Mitsuko Masutani
- Department of Molecular and Genomic Biomedicine, CBMM, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523, Japan
| |
Collapse
|
21
|
Russi M, Marson D, Fermeglia A, Aulic S, Fermeglia M, Laurini E, Pricl S. The fellowship of the RING: BRCA1, its partner BARD1 and their liaison in DNA repair and cancer. Pharmacol Ther 2021; 232:108009. [PMID: 34619284 DOI: 10.1016/j.pharmthera.2021.108009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 08/22/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022]
Abstract
The breast cancer type 1 susceptibility protein (BRCA1) and its partner - the BRCA1-associated RING domain protein 1 (BARD1) - are key players in a plethora of fundamental biological functions including, among others, DNA repair, replication fork protection, cell cycle progression, telomere maintenance, chromatin remodeling, apoptosis and tumor suppression. However, mutations in their encoding genes transform them into dangerous threats, and substantially increase the risk of developing cancer and other malignancies during the lifetime of the affected individuals. Understanding how BRCA1 and BARD1 perform their biological activities therefore not only provides a powerful mean to prevent such fatal occurrences but can also pave the way to the development of new targeted therapeutics. Thus, through this review work we aim at presenting the major efforts focused on the functional characterization and structural insights of BRCA1 and BARD1, per se and in combination with all their principal mediators and regulators, and on the multifaceted roles these proteins play in the maintenance of human genome integrity.
Collapse
Affiliation(s)
- Maria Russi
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Domenico Marson
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Alice Fermeglia
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Suzana Aulic
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Maurizio Fermeglia
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Erik Laurini
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Sabrina Pricl
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy; Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland.
| |
Collapse
|
22
|
Chan WY, Brown LJ, Reid L, Joshua AM. PARP Inhibitors in Melanoma-An Expanding Therapeutic Option? Cancers (Basel) 2021; 13:cancers13184520. [PMID: 34572747 PMCID: PMC8464708 DOI: 10.3390/cancers13184520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/27/2021] [Accepted: 09/02/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Melanomas with homologous recombination DNA damage repair pathways represent a subset of melanoma that may benefit from PARP inhibitors and immunotherapy. PARP inhibitors have an established role in treating cancers with underlying BRCA mutation through synthetic lethality; however, there is increasing evidence that it can be applied to a larger population including other types of homologous recombination defects. These gene mutations can be found in 20–40% of cutaneous melanoma. To date, PARP inhibitors and immunotherapy have been overlooked in the management of melanoma. This review explores the reasons for combining PARP inhibitors and immunotherapy. There is evidence to suggest that PARP inhibitors can improve the therapeutic effect of immune checkpoint inhibitors. Therefore, this combination approach has the potential to impact future treatment of patients with melanoma, particularly those with homologous recombination DNA damage repair defects. Abstract Immunotherapy has transformed the treatment landscape of melanoma; however, despite improvements in patient outcomes, monotherapy can often lead to resistance and tumour escape. Therefore, there is a need for new therapies, combination strategies and biomarker-guided decision making to increase the subset of patients most likely to benefit from treatment. Poly (ADP-ribose) polymerase (PARP) inhibitors act by synthetic lethality to target tumour cells with homologous recombination deficiencies such as BRCA mutations. However, the application of PARP inhibitors could be extended to a broad range of BRCA-negative cancers with high rates of DNA damage repair pathway mutations, such as melanoma. Additionally, PARP inhibition has the potential to augment the therapeutic effect of immunotherapy through multi-faceted immune-priming capabilities. In this review, we detail the immunological role of PARP and rationale for combining PARP and immune checkpoint inhibitors, with a particular focus on a subset of melanoma with homologous recombination defects that may benefit most from this targeted approach. We summarise the biology supporting this combined regimen and discuss preclinical results as well as ongoing clinical trials in melanoma which may impact future treatment.
Collapse
Affiliation(s)
- Wei Yen Chan
- The Kinghorn Cancer Centre, St Vincent’s Hospital Sydney, Sydney, NSW 2010, Australia; (W.Y.C.); (L.J.B.); (L.R.)
- Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - Lauren J. Brown
- The Kinghorn Cancer Centre, St Vincent’s Hospital Sydney, Sydney, NSW 2010, Australia; (W.Y.C.); (L.J.B.); (L.R.)
- Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Lee Reid
- The Kinghorn Cancer Centre, St Vincent’s Hospital Sydney, Sydney, NSW 2010, Australia; (W.Y.C.); (L.J.B.); (L.R.)
- Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - Anthony M. Joshua
- The Kinghorn Cancer Centre, St Vincent’s Hospital Sydney, Sydney, NSW 2010, Australia; (W.Y.C.); (L.J.B.); (L.R.)
- Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
- Melanoma Institute of Australia, Sydney, NSW 2016, Australia
- Correspondence:
| |
Collapse
|
23
|
Rein HL, Bernstein KA, Baldock RA. RAD51 paralog function in replicative DNA damage and tolerance. Curr Opin Genet Dev 2021; 71:86-91. [PMID: 34311385 DOI: 10.1016/j.gde.2021.06.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 12/14/2022]
Abstract
RAD51 paralog gene mutations are observed in both hereditary breast and ovarian cancers. Classically, defects in RAD51 paralog function are associated with homologous recombination (HR) deficiency and increased genomic instability. Several recent investigative advances have enabled characterization of non-canonical RAD51 paralog function during DNA replication. Here we discuss the role of the RAD51 paralogs and their associated complexes in integrating a robust response to DNA replication stress. We highlight recent discoveries suggesting that the RAD51 paralogs complexes mediate lesion-specific tolerance of replicative stress following exposure to alkylating agents and the requirement for the Shu complex in fork restart upon fork stalling by dNTP depletion. In addition, we describe the role of the BCDX2 complex in restraining and promoting fork remodeling in response to fluctuating dNTP pools. Finally, we highlight recent work demonstrating a requirement for RAD51C in recognizing and tolerating methyl-adducts. In each scenario, RAD51 paralog complexes play a central role in lesion recognition and bypass in a replicative context. Future studies will determine how these critical functions for RAD51 paralog complexes contribute to tumorigenesis.
Collapse
Affiliation(s)
- Hayley L Rein
- University of Pittsburgh School of Medicine, Department of Pharmacology and Chemical Biology, Pittsburgh, PA, USA
| | - Kara A Bernstein
- University of Pittsburgh School of Medicine, Department of Pharmacology and Chemical Biology, Pittsburgh, PA, USA
| | - Robert A Baldock
- School of Natural and Social Sciences, University of Gloucestershire, Cheltenham, UK.
| |
Collapse
|
24
|
Buck J, Dyer PJC, Hii H, Carline B, Kuchibhotla M, Byrne J, Howlett M, Whitehouse J, Ebert MA, McDonald KL, Gottardo NG, Endersby R. Veliparib Is an Effective Radiosensitizing Agent in a Preclinical Model of Medulloblastoma. Front Mol Biosci 2021; 8:633344. [PMID: 33996894 PMCID: PMC8116896 DOI: 10.3389/fmolb.2021.633344] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/30/2021] [Indexed: 11/29/2022] Open
Abstract
Medulloblastoma is the most common malignant childhood brain tumor, and 5-year overall survival rates are as low as 40% depending on molecular subtype, with new therapies critically important. As radiotherapy and chemotherapy act through the induction of DNA damage, the sensitization of cancer cells through the inhibition of DNA damage repair pathways is a potential therapeutic strategy. The poly-(ADP-ribose) polymerase (PARP) inhibitor veliparib was assessed for its ability to augment the cellular response to radiation-induced DNA damage in human medulloblastoma cells. DNA repair following irradiation was assessed using the alkaline comet assay, with veliparib inhibiting the rate of DNA repair. Veliparib treatment also increased the number of γH2AX foci in cells treated with radiation, and analysis of downstream pathways indicated persistent activation of the DNA damage response pathway. Clonogenicity assays demonstrated that veliparib effectively inhibited the colony-forming capacity of medulloblastoma cells, both as a single agent and in combination with irradiation. These data were then validated in vivo using an orthotopic implant model of medulloblastoma. Mice harboring intracranial D425 medulloblastoma xenografts were treated with vehicle, veliparib, 18 Gy multifractionated craniospinal irradiation (CSI), or veliparib combined with 18 Gy CSI. Animals treated with combination therapy exhibited reduced tumor growth rates concomitant with increased intra-tumoral apoptosis observed by immunohistochemistry. Kaplan–Meier analyses revealed a statistically significant increase in survival with combination therapy compared to CSI alone. In summary, PARP inhibition enhanced radiation-induced cytotoxicity of medulloblastoma cells; thus, veliparib or other brain-penetrant PARP inhibitors are potential radiosensitizing agents for the treatment of medulloblastoma.
Collapse
Affiliation(s)
- Jessica Buck
- Brain Tumour Research Program, Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA, Australia.,Centre for Child Health Research, University of Western Australia, Perth, WA, Australia
| | - Patrick J C Dyer
- Brain Tumour Research Program, Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA, Australia
| | - Hilary Hii
- Brain Tumour Research Program, Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA, Australia
| | - Brooke Carline
- Brain Tumour Research Program, Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA, Australia
| | - Mani Kuchibhotla
- Brain Tumour Research Program, Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA, Australia
| | - Jacob Byrne
- Brain Tumour Research Program, Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA, Australia
| | - Meegan Howlett
- Brain Tumour Research Program, Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA, Australia.,Centre for Child Health Research, University of Western Australia, Perth, WA, Australia
| | - Jacqueline Whitehouse
- Brain Tumour Research Program, Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA, Australia.,Centre for Child Health Research, University of Western Australia, Perth, WA, Australia
| | - Martin A Ebert
- School of Physics, Mathematics and Computing, University of Western Australia, Perth, WA, Australia.,Radiation Oncology, Sir Charles Gairdner Hospital, Perth, WA, Australia
| | | | - Nicholas G Gottardo
- Brain Tumour Research Program, Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA, Australia.,Department of Paediatric Oncology and Haematology, Perth Children's Hospital, Perth, WA, Australia
| | - Raelene Endersby
- Brain Tumour Research Program, Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA, Australia.,Centre for Child Health Research, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
25
|
Sabnis RW. Novel Azaquinolones as PARP1 Inhibitors for Treating Cancer. ACS Med Chem Lett 2021; 12:524-525. [PMID: 33859786 PMCID: PMC8040051 DOI: 10.1021/acsmedchemlett.1c00122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Indexed: 12/17/2022] Open
Affiliation(s)
- Ram W. Sabnis
- Smith, Gambrell & Russell LLP, 1230 Peachtree Street NE, Suite
3100, Atlanta, Georgia 30309, United States
| |
Collapse
|
26
|
Weyemi U, Galluzzi L. Chromatin and genomic instability in cancer. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 364:ix-xvii. [PMID: 34507786 DOI: 10.1016/s1937-6448(21)00116-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Urbain Weyemi
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States; Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, United States.
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, United States; Sandra and Edward Meyer Cancer Center, New York, NY, United States; Caryl and Israel Englander Institute for Precision Medicine, New York, NY, United States; Department of Dermatology, Yale School of Medicine, New Haven, CT, United States; Université de Paris, Paris, France.
| |
Collapse
|