1
|
Han TS, Kim DS, Son MY, Cho HS. SMYD family in cancer: epigenetic regulation and molecular mechanisms of cancer proliferation, metastasis, and drug resistance. Exp Mol Med 2024:10.1038/s12276-024-01326-8. [PMID: 39482529 DOI: 10.1038/s12276-024-01326-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/29/2024] [Accepted: 07/21/2024] [Indexed: 11/03/2024] Open
Abstract
Epigenetic modifiers (miRNAs, histone methyltransferases (HMTs)/demethylases, and DNA methyltransferases/demethylases) are associated with cancer proliferation, metastasis, angiogenesis, and drug resistance. Among these modifiers, HMTs are frequently overexpressed in various cancers, and recent studies have increasingly identified these proteins as potential therapeutic targets. In this review, we discuss members of the SET and MYND domain-containing protein (SMYD) family that are topics of extensive research on the histone methylation and nonhistone methylation of cancer-related genes. Various members of the SMYD family play significant roles in cancer proliferation, metastasis, and drug resistance by regulating cancer-specific histone methylation and nonhistone methylation. Thus, the development of specific inhibitors that target SMYD family members may lead to the development of cancer treatments, and combination therapy with various anticancer therapeutic agents may increase treatment efficacy.
Collapse
Affiliation(s)
- Tae-Su Han
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
- Korea University of Science and Technology, Daejeon, 34316, Republic of Korea
- Department of Biological Science, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Dae-Soo Kim
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea.
- Korea University of Science and Technology, Daejeon, 34316, Republic of Korea.
| | - Mi-Young Son
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea.
- Korea University of Science and Technology, Daejeon, 34316, Republic of Korea.
- Department of Biological Science, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Hyun-Soo Cho
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea.
- Korea University of Science and Technology, Daejeon, 34316, Republic of Korea.
- Department of Biological Science, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
2
|
Sanese P, Fasano C, Lepore Signorile M, De Marco K, Forte G, Disciglio V, Grossi V, Simone C. Methyltransferases in cancer drug resistance: Unlocking the potential of targeting SMYD3 to sensitize cancer cells. Biochim Biophys Acta Rev Cancer 2024; 1879:189203. [PMID: 39461625 DOI: 10.1016/j.bbcan.2024.189203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/27/2024] [Accepted: 10/21/2024] [Indexed: 10/29/2024]
Abstract
Drug resistance is a significant challenge in oncology and is driven by various mechanisms, among which a crucial role is played by enhanced DNA repair. Thus, targeting DNA damage response (DDR) factors with specific inhibitors is emerging as a promising therapeutic strategy. An important process involved in the modulation of DNA repair pathways, and hence in drug resistance, is post-translational modification (PTM). PTMs such as methylation affect protein function and are critical in cancer biology. Methylation is catalyzed by specific enzymes called protein methyltransferases. In recent years, the SET domain-containing N-lysine methyltransferase SMYD3 has emerged as a significant oncogenic driver. It is overexpressed in several tumor types and plays a signal-dependent role in promoting gastrointestinal cancer formation and development. Recent evidence indicates that SMYD3 is involved in the maintenance of cancer genome integrity and contributes to drug resistance in response to genotoxic stress by regulating DDR mechanisms. Several potential SMYD3 interactors implicated in DNA repair, especially in the homologous recombination and non-homologous end-joining pathways, have been identified by in silico analyses and confirmed by experimental validation, showing that SMYD3 promotes DDR protein interactions and enzymatic activity, thereby sustaining cancer cell survival. Targeting SMYD3, in combination with standard or targeted therapy, shows promise in overcoming drug resistance in colorectal, gastric, pancreatic, breast, endometrial, and lung cancer models, supporting the integration of SMYD3 inhibition into cancer treatment regimens. In this review, we describe the role played by SMYD3 in drug resistance and analyze its potential as a molecular target to sensitize cancer cells to treatment.
Collapse
Affiliation(s)
- Paola Sanese
- Medical Genetics, National Institute of Gastroenterology, IRCCS "Saverio de Bellis" Research Hospital, Castellana Grotte (Ba), 70013, Italy.
| | - Candida Fasano
- Medical Genetics, National Institute of Gastroenterology, IRCCS "Saverio de Bellis" Research Hospital, Castellana Grotte (Ba), 70013, Italy
| | - Martina Lepore Signorile
- Medical Genetics, National Institute of Gastroenterology, IRCCS "Saverio de Bellis" Research Hospital, Castellana Grotte (Ba), 70013, Italy
| | - Katia De Marco
- Medical Genetics, National Institute of Gastroenterology, IRCCS "Saverio de Bellis" Research Hospital, Castellana Grotte (Ba), 70013, Italy
| | - Giovanna Forte
- Medical Genetics, National Institute of Gastroenterology, IRCCS "Saverio de Bellis" Research Hospital, Castellana Grotte (Ba), 70013, Italy
| | - Vittoria Disciglio
- Medical Genetics, National Institute of Gastroenterology, IRCCS "Saverio de Bellis" Research Hospital, Castellana Grotte (Ba), 70013, Italy
| | - Valentina Grossi
- Medical Genetics, National Institute of Gastroenterology, IRCCS "Saverio de Bellis" Research Hospital, Castellana Grotte (Ba), 70013, Italy
| | - Cristiano Simone
- Medical Genetics, National Institute of Gastroenterology, IRCCS "Saverio de Bellis" Research Hospital, Castellana Grotte (Ba), 70013, Italy; Medical Genetics, Department of Precision and Regenerative Medicine and Jonic Area (DiMePRe-J), University of Bari Aldo Moro, Bari 70124, Italy.
| |
Collapse
|
3
|
Mullenger JL, Zeidler MP, Fragiadaki M. Evaluating the Molecular Properties and Function of ANKHD1, and Its Role in Cancer. Int J Mol Sci 2023; 24:12834. [PMID: 37629022 PMCID: PMC10454556 DOI: 10.3390/ijms241612834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/09/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Ankyrin repeat and single KH domain-containing protein 1 (ANKHD1) is a large, scaffolding protein composed of two stretches of ankyrin repeat domains that mediate protein-protein interactions and a KH domain that mediates RNA or single-stranded DNA binding. ANKHD1 interacts with proteins in several crucial signalling pathways, including receptor tyrosine kinase, JAK/STAT, mechanosensitive Hippo (YAP/TAZ), and p21. Studies into the role of ANKHD1 in cancer cell lines demonstrate a crucial role in driving uncontrolled cellular proliferation and growth, enhanced tumorigenicity, cell cycle progression through the S phase, and increased epithelial-to-mesenchymal transition. Furthermore, at a clinical level, the increased expression of ANKHD1 has been associated with greater tumour infiltration, increased metastasis, and larger tumours. Elevated ANKHD1 resulted in poorer prognosis, more aggressive growth, and a decrease in patient survival in numerous cancer types. This review aims to gather the current knowledge about ANKHD1 and explore its molecular properties and functions, focusing on the protein's role in cancer at both a cellular and clinical level.
Collapse
Affiliation(s)
- Jordan L. Mullenger
- Department of Infection, Immunity, and Cardiovascular Disease, The University of Sheffield, Sheffield S10 2RX, UK;
- Department of Translational Medicine and Therapeutics, Queen Mary University London, London E1 4NS, UK
| | - Martin P. Zeidler
- School of Biosciences, The University of Sheffield, Sheffield S10 2TN, UK;
| | - Maria Fragiadaki
- Department of Translational Medicine and Therapeutics, Queen Mary University London, London E1 4NS, UK
| |
Collapse
|
4
|
Yang Y, Qiu R, Zhao S, Shen L, Tang B, Weng Q, Xu Z, Zheng L, Chen W, Shu G, Wang Y, Zhao Z, Chen M, Ji J. SMYD3 associates with the NuRD (MTA1/2) complex to regulate transcription and promote proliferation and invasiveness in hepatocellular carcinoma cells. BMC Biol 2022; 20:294. [PMID: 36575438 PMCID: PMC9795622 DOI: 10.1186/s12915-022-01499-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 12/07/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND SMYD3, a member of the SET and MYND domain-containing (SMYD) family, is a histone methyltransferase (HMT) and transcription factor that plays an important role in transcriptional regulation in human carcinogenesis. RESULTS Using affinity purification and mass spectrometry assays to identify SMYD3-associated proteins in hepatocellular carcinoma (HCC) cells, we found several previously undiscovered SMYD3-interacting proteins, including the NuRD (MTA1/2) complex, the METTL family, and the CRL4B complex. Transcriptomic analysis of the consequences of knocking down SMYD3, MTA1, or MTA2 in HCC cells showed that SMYD3/NuRD complex targets a cohort of genes, some of which are critically involved in cell growth and migration. qChIP analyses showed that SMYD3 knockdown led to a significant reduction in the binding of MTA1 or MTA2 to the promoters of IGFBP4 and led to a significant decrease in H4K20me3 and a marked increase in H4Ac at the IGFBP4 promoter. In addition, we demonstrated that SMYD3 promotes cell proliferation, invasion, and tumorigenesis in vivo and in vitro and found that its expression is markedly upregulated in human liver cancer. Knockdown of MTA1 or MTA2 had the same effect as knockdown of SMYD3 on proliferation and invasion of hepatocellular carcinoma cells. Catalytic mutant SMYD3 could not rescue the phenotypic effects caused by knockdown of SMYD3. Inhibitors of SMYD3 effectively inhibited the proliferation and invasiveness of HCC cells. CONCLUSIONS These findings revealed that SMYD3 could transcriptionally repress a cohort of target genes expression by associating with the NuRD (MTA1/2) complex, thereby promoting the proliferation and invasiveness of HCC cells. Our results support the case for pursuing SMYD3 as a practical prognostic marker or therapeutic target against HCC.
Collapse
Affiliation(s)
- Yang Yang
- grid.268099.c0000 0001 0348 3990Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Imaging Diagnosis and Interventional Minimally Invasive Institute, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000 China ,grid.440824.e0000 0004 1757 6428Department of Interventional Radiology, Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, 323000 China
| | - Rongfang Qiu
- grid.268099.c0000 0001 0348 3990Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Imaging Diagnosis and Interventional Minimally Invasive Institute, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000 China ,grid.440824.e0000 0004 1757 6428Department of Interventional Radiology, Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, 323000 China
| | - Siyu Zhao
- grid.268099.c0000 0001 0348 3990Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Imaging Diagnosis and Interventional Minimally Invasive Institute, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000 China ,grid.440824.e0000 0004 1757 6428Department of Interventional Radiology, Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, 323000 China
| | - Lin Shen
- grid.268099.c0000 0001 0348 3990Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Imaging Diagnosis and Interventional Minimally Invasive Institute, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000 China ,grid.440824.e0000 0004 1757 6428Department of Interventional Radiology, Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, 323000 China
| | - Bufu Tang
- grid.268099.c0000 0001 0348 3990Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Imaging Diagnosis and Interventional Minimally Invasive Institute, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000 China ,grid.440824.e0000 0004 1757 6428Department of Interventional Radiology, Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, 323000 China
| | - Qiaoyou Weng
- grid.268099.c0000 0001 0348 3990Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Imaging Diagnosis and Interventional Minimally Invasive Institute, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000 China ,grid.440824.e0000 0004 1757 6428Department of Interventional Radiology, Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, 323000 China
| | - Ziwei Xu
- grid.268099.c0000 0001 0348 3990Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Imaging Diagnosis and Interventional Minimally Invasive Institute, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000 China ,grid.440824.e0000 0004 1757 6428Department of Interventional Radiology, Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, 323000 China
| | - Liyun Zheng
- grid.268099.c0000 0001 0348 3990Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Imaging Diagnosis and Interventional Minimally Invasive Institute, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000 China ,grid.440824.e0000 0004 1757 6428Department of Interventional Radiology, Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, 323000 China
| | - Weiqian Chen
- grid.268099.c0000 0001 0348 3990Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Imaging Diagnosis and Interventional Minimally Invasive Institute, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000 China ,grid.440824.e0000 0004 1757 6428Department of Interventional Radiology, Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, 323000 China
| | - Gaofeng Shu
- grid.268099.c0000 0001 0348 3990Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Imaging Diagnosis and Interventional Minimally Invasive Institute, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000 China ,grid.440824.e0000 0004 1757 6428Department of Interventional Radiology, Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, 323000 China
| | - Yajie Wang
- grid.268099.c0000 0001 0348 3990Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Imaging Diagnosis and Interventional Minimally Invasive Institute, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000 China ,grid.440824.e0000 0004 1757 6428Department of Interventional Radiology, Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, 323000 China
| | - Zhongwei Zhao
- grid.268099.c0000 0001 0348 3990Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Imaging Diagnosis and Interventional Minimally Invasive Institute, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000 China ,grid.440824.e0000 0004 1757 6428Department of Interventional Radiology, Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, 323000 China
| | - Minjiang Chen
- grid.268099.c0000 0001 0348 3990Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Imaging Diagnosis and Interventional Minimally Invasive Institute, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000 China ,grid.440824.e0000 0004 1757 6428Department of Interventional Radiology, Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, 323000 China
| | - Jiansong Ji
- grid.268099.c0000 0001 0348 3990Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Imaging Diagnosis and Interventional Minimally Invasive Institute, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000 China ,grid.440824.e0000 0004 1757 6428Department of Interventional Radiology, Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, 323000 China
| |
Collapse
|
5
|
SMYD3 regulates the abnormal proliferation of non-small-cell lung cancer cells via the H3K4me3/ANO1 axis. J Biosci 2022. [DOI: 10.1007/s12038-022-00299-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
6
|
Wang W, Ma M, Li L, Huang Y, Zhao G, Zhou Y, Yang Y, Yang Y, Wang B, Ye L. MTA1-TJP1 interaction and its involvement in non-small cell lung cancer metastasis. Transl Oncol 2022; 25:101500. [PMID: 35944414 PMCID: PMC9365954 DOI: 10.1016/j.tranon.2022.101500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/18/2022] [Accepted: 07/27/2022] [Indexed: 11/25/2022] Open
Abstract
MTA1 was highly expressed in NSCLC tissues and was associated with tumor progression. MTA1 promoted NSCLC cell invasion and migration in vitro and in vivo. TJP1 was found to be an interacting protein of MTA1 involved in cell adhesion. MTA1 promoted NSCLC invasion and metastasis by inhibiting TJP1 protein expression and attenuating intercellular tight junctions. Targeting the MTA1-TJP1 axis may be a promising strategy for inhibiting NSCLC metastasis.
Distant metastasis is the main cause of death in non-small cell lung cancer (NSCLC) patients. The mechanism of metastasis-associated protein 1(MTA1) in NSCLC has not been fully elucidated. This study aimed to reveal the mechanism of MTA1 in the invasion and metastasis of NSCLC. Bioinformatics analysis and our previous results showed that MTA1 was highly expressed in NSCLC tissues and correlated with tumor progression. Knockout of MTA1 by CRISPR/Cas9 significantly inhibited the migration and invasion of H1299 cells, but enhanced cell adhesion. Stable overexpression of MTA1 by lentivirus transfection had opposite effects on migration, invasion and adhesion of A549 cells. The results of in vivo experiments in nude mouse lung metastases model confirmed the promotion of MTA1 on invasion and migration. Tight junction protein 1 (TJP1) was identified by immunoprecipitation and mass spectrometry as an interacting protein of MTA1 involved in cell adhesion. MTA1 inhibited the expression level of TJP1 protein and weakened the tight junctions between cells. More importantly, the rescue assays confirmed that the regulation of MTA1 on cell adhesion, migration and invasion was partially attenuated by TJP1. In Conclusion, MTA1 inhibits the expression level of TJP1 protein co-localized in the cytoplasm and membrane of NSCLC cells, weakens the tight junctions between cells, and changes the adhesion, migration and invasion capabilities of cells, which may be the mechanism of MTA1 promoting the invasion and metastasis of NSCLC. Thus, targeting the MTA1-TJP1 axis may be a promising strategy for inhibiting NSCLC metastasis.
Collapse
Affiliation(s)
- Wei Wang
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, No. 519 Kunzhou Road, Xishan District, Kunming, Yunnan, China; Department of Thoracic Surgery, Taihe Hospital (Hubei University of Medicine), Shiyan, China
| | - Mingsheng Ma
- Department of Thoracic Surgery, The Sixth Affiliated Hospital of Kunming Medical University, Yuxi, China
| | - Li Li
- Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yunchao Huang
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, No. 519 Kunzhou Road, Xishan District, Kunming, Yunnan, China
| | - Guangqiang Zhao
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, No. 519 Kunzhou Road, Xishan District, Kunming, Yunnan, China
| | - Yongchun Zhou
- Molecular Diagnosis Center, Yunnan Cancer Hospital, Kunming, China
| | - Yantao Yang
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, No. 519 Kunzhou Road, Xishan District, Kunming, Yunnan, China
| | - Yichen Yang
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, No. 519 Kunzhou Road, Xishan District, Kunming, Yunnan, China
| | - Biying Wang
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, No. 519 Kunzhou Road, Xishan District, Kunming, Yunnan, China
| | - Lianhua Ye
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, No. 519 Kunzhou Road, Xishan District, Kunming, Yunnan, China.
| |
Collapse
|
7
|
de Almeida BO, de Almeida LC, Costa-Lotufo LV, Machado-Neto JA. ANKHD1 contributes to the malignant phenotype of triple-negative breast cancer cells. Cell Biol Int 2022; 46:1433-1446. [PMID: 35842770 DOI: 10.1002/cbin.11844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/11/2022] [Accepted: 04/15/2022] [Indexed: 11/12/2022]
Abstract
Ankyrin repeat and KH domain-containing protein 1, ANKHD1, has been identified as a regulator of signaling pathways and cellular processes of relevance in carcinogenesis. However, the role of ANKHD1 in breast cancer remains unclear. The aim of the present study was to characterize the expression pattern and involvement of ANKHD1 in the malignant phenotype of breast cancer cell lines and to investigate the clinical relevance of ANKHD1 in a breast cancer context. Gene and protein expressions were assessed in the cell lines by quantitative reverse transcription PCR and Western blot analysis, respectively, and ANKHD1 silencing through siRNA transfection was conducted for further in vitro functional assays. The expression of ANKHD1 was identified in non-tumorigenic breast epithelium and breast cancer cell lines, but differences in cellular localization were found among the neoplasia subtypes. ANKHD1 silencing reduced the viability, clonogenicity, and migration of triple-negative breast cancer (TNBC) cells. Bioinformatics analyses demonstrated that patients with triple-negative basal-like 2 and mesenchymal breast cancer subtypes had high ANKHD1 expression associated with poor recurrence-free survival. Therefore, these data indicate that ANKHD1 relevance in breast cancer varies among its subtypes, indicating the importance of ANKHD1 in TNBC.
Collapse
Affiliation(s)
- Bruna O de Almeida
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Larissa C de Almeida
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Leticia V Costa-Lotufo
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - João A Machado-Neto
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| |
Collapse
|
8
|
Ma YS, Hou LK, Yao SH, Liu JB, Yu XC, Shi Y, Yang XL, Wu W, Wu CY, Jiang GX, Fu D. Elevated Stratifin promotes cisplatin-based chemotherapy failure and poor prognosis in non-small cell lung cancer. MOLECULAR THERAPY-ONCOLYTICS 2021; 22:326-335. [PMID: 34553022 PMCID: PMC8426184 DOI: 10.1016/j.omto.2021.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/14/2021] [Indexed: 01/15/2023]
Abstract
Drug resistance is a key factor in the treatment failure of clinical non-small cell lung cancer (NSCLC) patients after adjuvant chemotherapy. Here, our results provide the first evidence that eukaryotic translation initiation factor 2b subunit delta (EIF2B4)-Stratifin (SFN) fusion and increased SFN expression are associated with chemotherapy tolerance and activation of the phosphatidylinositol 3 kinase/v-akt murine thymoma viral oncogene (PI3K/Akt) signaling pathway in NSCLC patients, suggesting that SFN might have potential prognostic value as a tumor biomarker for the prognosis of patients with NSCLC.
Collapse
Affiliation(s)
- Yu-Shui Ma
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.,Cancer Institute, Affiliated Tumor Hospital of Nantong University, Nantong 226631, China
| | - Li-Kun Hou
- Department of Pathology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Shi-Hua Yao
- Department of Thoracic Surgery, Navy Military Medical University Affiliated Changhai Hospital, Shanghai 200433, China
| | - Ji-Bin Liu
- Cancer Institute, Affiliated Tumor Hospital of Nantong University, Nantong 226631, China
| | - Xue-Chen Yu
- Department of Mathematics, Statistics, and Computer Science, Macalester College, Saint Paul, MN 55105, USA
| | - Yi Shi
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Xiao-Li Yang
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Wei Wu
- Department of Pathology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Chun-Yan Wu
- Department of Pathology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Geng-Xi Jiang
- Department of Thoracic Surgery, Navy Military Medical University Affiliated Changhai Hospital, Shanghai 200433, China
| | - Da Fu
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| |
Collapse
|