1
|
Chomczyk M, Gazzola L, Dash S, Firmanty P, George BS, Mohanty V, Abbas HA, Baran N. Impact of p53-associated acute myeloid leukemia hallmarks on metabolism and the immune environment. Front Pharmacol 2024; 15:1409210. [PMID: 39161899 PMCID: PMC11330794 DOI: 10.3389/fphar.2024.1409210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/08/2024] [Indexed: 08/21/2024] Open
Abstract
Acute myeloid leukemia (AML), an aggressive malignancy of hematopoietic stem cells, is characterized by the blockade of cell differentiation, uncontrolled proliferation, and cell expansion that impairs healthy hematopoiesis and results in pancytopenia and susceptibility to infections. Several genetic and chromosomal aberrations play a role in AML and influence patient outcomes. TP53 is a key tumor suppressor gene involved in a variety of cell features, such as cell-cycle regulation, genome stability, proliferation, differentiation, stem-cell homeostasis, apoptosis, metabolism, senescence, and the repair of DNA damage in response to cellular stress. In AML, TP53 alterations occur in 5%-12% of de novo AML cases. These mutations form an important molecular subgroup, and patients with these mutations have the worst prognosis and shortest overall survival among patients with AML, even when treated with aggressive chemotherapy and allogeneic stem cell transplant. The frequency of TP53-mutations increases in relapsed and recurrent AML and is associated with chemoresistance. Progress in AML genetics and biology has brought the novel therapies, however, the clinical benefit of these agents for patients whose disease is driven by TP53 mutations remains largely unexplored. This review focuses on the molecular characteristics of TP53-mutated disease; the impact of TP53 on selected hallmarks of leukemia, particularly metabolic rewiring and immune evasion, the clinical importance of TP53 mutations; and the current progress in the development of preclinical and clinical therapeutic strategies to treat TP53-mutated disease.
Collapse
Affiliation(s)
- Monika Chomczyk
- Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Luca Gazzola
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Shubhankar Dash
- Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Patryk Firmanty
- Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Binsah S. George
- Department of Hematology-oncology, The University of Texas Health Sciences, Houston, TX, United States
| | - Vakul Mohanty
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Hussein A. Abbas
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Natalia Baran
- Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
2
|
Luo F, Li H, Ma W, Cao J, Chen Q, Lu F, Qiu M, Zhou P, Xia Z, Zeng K, Zhan J, Zhou T, Luo Q, Pan W, Zhang L, Lin C, Huang Y, Zhang L, Yang D, Zhao H. The BCL-2 inhibitor APG-2575 resets tumor-associated macrophages toward the M1 phenotype, promoting a favorable response to anti-PD-1 therapy via NLRP3 activation. Cell Mol Immunol 2024; 21:60-79. [PMID: 38062129 PMCID: PMC10757718 DOI: 10.1038/s41423-023-01112-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 10/12/2023] [Accepted: 11/13/2023] [Indexed: 01/01/2024] Open
Abstract
The main challenges in the use of immune checkpoint inhibitors (ICIs) are ascribed to the immunosuppressive tumor microenvironment and the lack of sufficient infiltration of activated CD8+ T cells. Transforming the tumor microenvironment (TME) from "cold" to "hot" and thus more likely to potentiate the effects of ICIs is a promising strategy for cancer treatment. We found that the selective BCL-2 inhibitor APG-2575 can enhance the antitumor efficacy of anti-PD-1 therapy in syngeneic and humanized CD34+ mouse models. Using single-cell RNA sequencing, we found that APG-2575 polarized M2-like immunosuppressive macrophages toward the M1-like immunostimulatory phenotype with increased CCL5 and CXCL10 secretion, restoring T-cell function and promoting a favorable immunotherapy response. Mechanistically, we demonstrated that APG-2575 directly binds to NF-κB p65 to activate NLRP3 signaling, thereby mediating macrophage repolarization and the activation of proinflammatory caspases and subsequently increasing CCL5 and CXCL10 chemokine production. As a result, APG-2575-induced macrophage repolarization could remodel the tumor immune microenvironment, thus improving tumor immunosuppression and further enhancing antitumor T-cell immunity. Multiplex immunohistochemistry confirmed that patients with better immunotherapeutic efficacy had higher CD86, p-NF-κB p65 and NLRP3 levels, accompanied by lower CD206 expression on macrophages. Collectively, these data provide evidence that further study on APG-2575 in combination with immunotherapy for tumor treatment is required.
Collapse
Affiliation(s)
- Fan Luo
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Han Li
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wenjuan Ma
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jiaxin Cao
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Qun Chen
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Feiteng Lu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Miaozhen Qiu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Penghui Zhou
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zengfei Xia
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Kangmei Zeng
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jianhua Zhan
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ting Zhou
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Qiuyun Luo
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wentao Pan
- Ascentage Pharma (Suzhou) Co Ltd, 218 Xinghu Street, Suzhou, Jiangsu Province, China
| | - Lin Zhang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Chaozhuo Lin
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yan Huang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Li Zhang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China.
| | - Dajun Yang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China.
| | - Hongyun Zhao
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
3
|
Leśniak M, Lipniarska J, Majka P, Lejman M, Zawitkowska J. Recent Updates in Venetoclax Combination Therapies in Pediatric Hematological Malignancies. Int J Mol Sci 2023; 24:16708. [PMID: 38069030 PMCID: PMC10706781 DOI: 10.3390/ijms242316708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Venetoclax is a strongly effective B-cell lymphoma-2 inhibitor (BCL-2) with an ability to selectively restore the apoptotic potential of cancerous cells. It has been proven that in combination with immunotherapy, targeted therapies, and lower-intensity therapies such as hypomethylating agents (HMAs) or low-dose cytarabine (LDAC), the drug can improve overall outcomes for adult patients with acute myeloid leukemia (AML), chronic lymphocytic leukemia (CLL), and multiple myeloma (MM), amongst other hematological malignancies, but its benefit in pediatric hematology remains unclear. With a number of preclinical and clinical trials emerging, the newest findings suggest that in many cases of younger patients, venetoclax combination treatment can be well-tolerated, with a safety profile similar to that in adults, despite often leading to severe infections. Studies aim to determine the activity of BCL-2 inhibitor in the treatment of both primary and refractory acute leukemias in combination with standard and high-dose chemotherapy. Although more research is required to identify the optimal venetoclax-based regimen for the pediatric population and its long-term effects on patients' outcomes, it can become a potential therapeutic agent for pediatric oncology.
Collapse
Affiliation(s)
- Maria Leśniak
- Student Scientific Society of Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland; (M.L.); (J.L.); (P.M.)
| | - Justyna Lipniarska
- Student Scientific Society of Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland; (M.L.); (J.L.); (P.M.)
| | - Patrycja Majka
- Student Scientific Society of Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland; (M.L.); (J.L.); (P.M.)
| | - Monika Lejman
- Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Joanna Zawitkowska
- Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
4
|
Milnerowicz S, Maszewska J, Skowera P, Stelmach M, Lejman M. AML under the Scope: Current Strategies and Treatment Involving FLT3 Inhibitors and Venetoclax-Based Regimens. Int J Mol Sci 2023; 24:15849. [PMID: 37958832 PMCID: PMC10647248 DOI: 10.3390/ijms242115849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/26/2023] [Accepted: 10/29/2023] [Indexed: 11/15/2023] Open
Abstract
Acute myeloid leukemia (AML) is a disease that mainly affects elderly patients who are more often unfit for intensive chemotherapy (median age of diagnosis is 68). The regimens, including venetoclax, a highly specific BCL-2 (B-cell lymphoma-2) inhibitor, are a common alternative because of their safer profile and fewer side effects. However, the resistance phenomenon of leukemic cells necessitates the search for drugs that would help to overcome the resistance and improve treatment outcomes. One of the resistance mechanisms takes place through the upregulation of MCL-1 and BCL-XL, preventing BAX/BAK-driven MOMP (mitochondrial outer membrane permeabilization), thus stopping the apoptosis process. Possible partners for BCL-2 inhibitors may include inhibitors from the FLT3i (FMS-like tyrosine kinase-3 inhibitor) group. They resensitize cancer cells through the downregulation of MCL-1 expression in the FLT3 mutated cells, resulting in the stronger efficacy of BCL-2 inhibitors. Also, they provide an additional pathway for targeting the clonal cell. Both preclinical and clinical data suggest that the combination might show a synergistic effect and improve patients' outcomes. The aim of this review is to determine whether the combination of venetoclax and FLT3 inhibitors can impact the therapeutic approaches and what other agents they can be combined with.
Collapse
Affiliation(s)
- Szymon Milnerowicz
- Student Scientific Society, Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland; (S.M.); (J.M.)
| | - Julia Maszewska
- Student Scientific Society, Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland; (S.M.); (J.M.)
| | - Paulina Skowera
- Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland; (P.S.); (M.S.)
| | - Magdalena Stelmach
- Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland; (P.S.); (M.S.)
| | - Monika Lejman
- Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland; (P.S.); (M.S.)
| |
Collapse
|
5
|
Neely V, Manchikalapudi A, Nguyen K, Dalton K, Hu B, Koblinski JE, Faber AC, Deb S, Harada H. Targeting Oncogenic Mutant p53 and BCL-2 for Small Cell Lung Cancer Treatment. Int J Mol Sci 2023; 24:13082. [PMID: 37685889 PMCID: PMC10487506 DOI: 10.3390/ijms241713082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Through a unique genomics and drug screening platform with ~800 solid tumor cell lines, we have found a subset of SCLC cell lines are hypersensitive to venetoclax, an FDA-approved inhibitor of BCL-2. SCLC-A (ASCL1 positive) and SCLC-P (POU2F3 positive), which make up almost 80% of SCLC, frequently express high levels of BCL-2. We found that a subset of SCLC-A and SCLC-P showed high BCL-2 expression but were venetoclax-resistant. In addition, most of these SCLC cell lines have TP53 missense mutations, which make a single amino acid change. These mutants not only lose wild-type (WT) p53 tumor suppressor functions, but also acquire novel cancer-promoting activities (oncogenic, gain-of-function). A recent study with oncogenic mutant (Onc)-p53 knock-in mouse models of SCLC suggests gain-of-function activity can attenuate chemotherapeutic efficacy. Based on these observations, we hypothesize that Onc-p53 confers venetoclax resistance and that simultaneous inhibition of BCL-2 and Onc-p53 induces synergistic anticancer activity in a subset of SCLC-A and SCLC-P. We show here that (1) down-regulation of Onc-p53 increases the expression of a BH3-only pro-apoptotic BIM and sensitizes to venetoclax in SCLC-P cells; (2) targeting Onc-p53 by the HSP90 inhibitor, ganetespib, increases BIM expression and sensitizes to venetoclax in SCLC-P and SCLC-A cells. Although there are currently many combination studies for venetoclax proposed, the concept of simultaneous targeting of BCL-2 and Onc-p53 by the combination of venetoclax and HSP90 inhibitors would be a promising approach for SCLC treatment.
Collapse
Affiliation(s)
- Victoria Neely
- Philips Institute for Oral Health Research, School of Dentistry, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA; (V.N.); (A.M.); (K.N.); (K.D.); (A.C.F.)
| | - Alekhya Manchikalapudi
- Philips Institute for Oral Health Research, School of Dentistry, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA; (V.N.); (A.M.); (K.N.); (K.D.); (A.C.F.)
| | - Khanh Nguyen
- Philips Institute for Oral Health Research, School of Dentistry, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA; (V.N.); (A.M.); (K.N.); (K.D.); (A.C.F.)
| | - Krista Dalton
- Philips Institute for Oral Health Research, School of Dentistry, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA; (V.N.); (A.M.); (K.N.); (K.D.); (A.C.F.)
| | - Bin Hu
- Department of Pathology, School of Medicine, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA; (B.H.); (J.E.K.)
| | - Jennifer E. Koblinski
- Department of Pathology, School of Medicine, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA; (B.H.); (J.E.K.)
| | - Anthony C. Faber
- Philips Institute for Oral Health Research, School of Dentistry, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA; (V.N.); (A.M.); (K.N.); (K.D.); (A.C.F.)
| | - Sumitra Deb
- Department of Biochemistry & Molecular Biology, School of Medicine, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Hisashi Harada
- Philips Institute for Oral Health Research, School of Dentistry, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA; (V.N.); (A.M.); (K.N.); (K.D.); (A.C.F.)
| |
Collapse
|
6
|
Wu RH, Zhu CY, Yu PH, Ma Y, Hussain L, Naranmandura H, Wang QQ. The landscape of novel strategies for acute myeloid leukemia treatment: Therapeutic trends, challenges, and future directions. Toxicol Appl Pharmacol 2023; 473:116585. [PMID: 37302559 DOI: 10.1016/j.taap.2023.116585] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 06/13/2023]
Abstract
Acute myeloid leukemia (AML) is a highly heterogeneous subtype of hematological malignancies with a wide spectrum of cytogenetic and molecular abnormalities, which makes it difficult to manage and cure. Along with the deeper understanding of the molecular mechanisms underlying AML pathogenesis, a large cohort of novel targeted therapeutic approaches has emerged, which considerably expands the medical options and changes the therapeutic landscape of AML. Despite that, resistant and refractory cases caused by genomic mutations or bypass signalling activation remain a great challenge. Therefore, discovery of novel treatment targets, optimization of combination strategies, and development of efficient therapeutics are urgently required. This review provides a detailed and comprehensive discussion on the advantages and limitations of targeted therapies as a single agent or in combination with others. Furthermore, the innovative therapeutic approaches including hyperthermia, monoclonal antibody-based therapy, and CAR-T cell therapy are also introduced, which may provide safe and viable options for the treatment of patients with AML.
Collapse
Affiliation(s)
- Ri Han Wu
- College of Life Sciences, Changchun Normal University, Changchun 130032, China
| | - Chen Ying Zhu
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Pei Han Yu
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yafang Ma
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Liaqat Hussain
- Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Hua Naranmandura
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China.
| | - Qian Qian Wang
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China.
| |
Collapse
|
7
|
Haage TR, Schraven B, Mougiakakos D, Fischer T. How ITD Insertion Sites Orchestrate the Biology and Disease of FLT3-ITD-Mutated Acute Myeloid Leukemia. Cancers (Basel) 2023; 15:cancers15112991. [PMID: 37296951 DOI: 10.3390/cancers15112991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Mutations of the FLT3 gene are among the most common genetic aberrations detected in AML and occur mainly as internal tandem duplications (FLT3-ITD). However, the specific sites of FLT3-ITD insertion within FLT3 show marked heterogeneity regarding both biological and clinical features. In contrast to the common assumption that ITD insertion sites (IS) are restricted to the juxtamembrane domain (JMD) of FLT3, 30% of FLT3-ITD mutations insert at the non-JMD level, thereby integrating into various segments of the tyrosine kinase subdomain 1 (TKD1). ITDs inserted within TKD1 have been shown to be associated with inferior complete remission rates as well as shorter relapse-free and overall survival. Furthermore, resistance to chemotherapy and tyrosine kinase inhibition (TKI) is linked to non-JMD IS. Although FLT3-ITD mutations in general are already recognized as a negative prognostic marker in currently used risk stratification guidelines, the even worse prognostic impact of non-JMD-inserting FLT3-ITD has not yet been particularly considered. Recently, the molecular and biological assessment of TKI resistance highlighted the pivotal role of activated WEE1 kinase in non-JMD-inserting ITDs. Overcoming therapy resistance in non-JMD FLT3-ITD-mutated AML may lead to more effective genotype- and patient-specific treatment approaches.
Collapse
Affiliation(s)
- Tobias R Haage
- Department of Hematology and Oncology, Medical Center, Otto-von-Guericke University, 39120 Magdeburg, Germany
- Gesundheitscampus Immunology, Inflammation and Infectiology (GC-I3), Medical Center, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Burkhart Schraven
- Gesundheitscampus Immunology, Inflammation and Infectiology (GC-I3), Medical Center, Otto-von-Guericke University, 39120 Magdeburg, Germany
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany
- Center of Health and Medical Prevention (CHaMP), Otto-von-Guericke University, 39106 Magdeburg, Germany
| | - Dimitrios Mougiakakos
- Department of Hematology and Oncology, Medical Center, Otto-von-Guericke University, 39120 Magdeburg, Germany
- Gesundheitscampus Immunology, Inflammation and Infectiology (GC-I3), Medical Center, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Thomas Fischer
- Gesundheitscampus Immunology, Inflammation and Infectiology (GC-I3), Medical Center, Otto-von-Guericke University, 39120 Magdeburg, Germany
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany
| |
Collapse
|
8
|
Zhang T, Zhou H, Xu M, Qian C, Sun A, Wu D, Xue S. Combination venetoclax and olverembatinib (HQP1351) as a successful therapeutic strategy for relapsed/refractory (R/R) mixed-phenotype blast phase of chronic myeloid leukemia. Ann Hematol 2023; 102:973-975. [PMID: 36745193 DOI: 10.1007/s00277-023-05110-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/24/2023] [Indexed: 02/07/2023]
Affiliation(s)
- Tongtong Zhang
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215000, China
| | - Haixia Zhou
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215000, China
| | - Mingzhu Xu
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215000, China
| | - Chongsheng Qian
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215000, China
| | - Aining Sun
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215000, China
| | - Depei Wu
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215000, China
| | - Shengli Xue
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China.
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215000, China.
| |
Collapse
|
9
|
Yin Z, Liao M, Yan R, Li G, Ou R, Liu Z, Zhong Q, Shen H, Zhu Y, Xie S, Zhang Q, Liu S, Huang J. Transcriptome- and metabolome-based candidate mechanism of BCR-ABL-independent resistance to olverembatinib in Philadelphia chromosome-positive acute lymphoblastic leukemia. Funct Integr Genomics 2023; 23:53. [PMID: 36717477 DOI: 10.1007/s10142-023-00980-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/19/2023] [Accepted: 01/25/2023] [Indexed: 02/01/2023]
Abstract
Olverembatinib represents the third-generation breakpoint cluster region protein-Abelson-murine leukemia 1 (BCR-ABL1) tyrosine kinase inhibitor with oral bioavailability, which can be used to overcome the T315I mutation in Philadelphia chromosome-positive (Ph +) leukemia. BCR-ABL-independent resistance to olverembatinib has been reported among patients in various clinical cases. However, the mechanism of olverembatinib resistance has rarely been reported. This study has illustrated bone marrow cell transcriptome and metabolome profiles among Ph + acute lymphoblastic leukemias (ALL) cases pre- and post-olverembatinib resistance. The transcriptome studies demonstrated that PI3K/AKT, purine metabolism, and other signaling pathways could play a vital role in olverembatinib resistance. As suggested by metabolomics, olverembatinib resistance in Ph + ALL was associated with purine metabolism alterations. Subsequently, high-performance liquid chromatography along with real-time quantitative PCR was utilized to measure purine metabolism-related mRNA levels and metabolism expression levels between olverembatinib resistance and sensitive cell lines. Our results elucidate the mechanism of olverembatinib resistance in Ph + ALL at transcriptome and metabolome levels, which facilitate a better understanding of olverembatinib resistance and hence may prove crucial in identifying novel drugs to tackle this conundrum.
Collapse
Affiliation(s)
- Zhao Yin
- Department of Hematology, Guangdong Second Provincial General Hospital, Xin Gang Zhong Road 466#, Haizhu Distict, Guangzhou, 510317, China
| | - Meiyan Liao
- Department of Hematology, Guangdong Second Provincial General Hospital, Xin Gang Zhong Road 466#, Haizhu Distict, Guangzhou, 510317, China
| | - Rongrong Yan
- Department of Hematology, Guangdong Second Provincial General Hospital, Xin Gang Zhong Road 466#, Haizhu Distict, Guangzhou, 510317, China
| | - Guangchao Li
- Department of Hematology, Guangdong Second Provincial General Hospital, Xin Gang Zhong Road 466#, Haizhu Distict, Guangzhou, 510317, China
| | - Ruiming Ou
- Department of Hematology, Guangdong Second Provincial General Hospital, Xin Gang Zhong Road 466#, Haizhu Distict, Guangzhou, 510317, China
| | - Zhi Liu
- Department of Hematology, Guangdong Second Provincial General Hospital, Xin Gang Zhong Road 466#, Haizhu Distict, Guangzhou, 510317, China
| | - Qi Zhong
- Department of Hematology, Guangdong Second Provincial General Hospital, Xin Gang Zhong Road 466#, Haizhu Distict, Guangzhou, 510317, China
| | - Huijuan Shen
- Department of Hematology, Guangdong Second Provincial General Hospital, Xin Gang Zhong Road 466#, Haizhu Distict, Guangzhou, 510317, China
| | - Yangmin Zhu
- Department of Hematology, Guangdong Second Provincial General Hospital, Xin Gang Zhong Road 466#, Haizhu Distict, Guangzhou, 510317, China
| | - Shuangfeng Xie
- Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Yanjiang West Road 107#, Guangzhou, 510080, China.
| | - Qing Zhang
- Department of Hematology, Guangdong Second Provincial General Hospital, Xin Gang Zhong Road 466#, Haizhu Distict, Guangzhou, 510317, China.
| | - Shuang Liu
- Department of Hematology, Guangdong Second Provincial General Hospital, Xin Gang Zhong Road 466#, Haizhu Distict, Guangzhou, 510317, China.
| | - Jing Huang
- Department of Hematology, Guangdong Second Provincial General Hospital, Xin Gang Zhong Road 466#, Haizhu Distict, Guangzhou, 510317, China.
| |
Collapse
|
10
|
Qian H, Gang D, He X, Jiang S. A review of the therapeutic role of the new third-generation TKI olverembatinib in chronic myeloid leukemia. Front Oncol 2022; 12:1036437. [PMID: 36568202 PMCID: PMC9772831 DOI: 10.3389/fonc.2022.1036437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 11/16/2022] [Indexed: 12/13/2022] Open
Abstract
Several tyrosine kinase inhibitors (TKIs) have been developed as targeted therapies to inhibit the oncogenic activity of several tyrosine kinases in chronic myeloid leukemia (CML), acute lymphoid leukemia (ALL), gastrointestinal stromal tumor (GIST), and other diseases. TKIs have significantly improved the overall survival of these patients and changed the treatment strategy in the clinic. However, approximately 50% of patients develop resistance or intolerance to imatinib. For second-generation TKIs, approximately 30%-40% of patients need to change therapy by 5 years when they are used as first-line treatment. Clinical study analysis showed that the T315I mutation is highly associated with TKI resistance. Developing new drugs that target the T315I mutation will address the dilemma of treatment failure. Olverembatinib, as a third-generation TKI designed for the T315I mutation, is being researched in China. Preliminary clinical data show the safety and efficacy in treating CML patients harboring the T315I mutation or who are resistant to first- or second-line TKI treatment. Herein, we review the characteristics and clinical trials of olverembatinib. We also discuss its role in the management of CML patients.
Collapse
|
11
|
Wei W, Huang S, Ling Q, Mao S, Qian Y, Ye W, Li F, Pan J, Lin X, Huang J, Huang X, Zhai Y, Sun J, Jin J. Homoharringtonine is synergistically lethal with BCL-2 inhibitor APG-2575 in acute myeloid leukemia. Lab Invest 2022; 20:299. [PMID: 35794605 PMCID: PMC9258085 DOI: 10.1186/s12967-022-03497-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 06/21/2022] [Indexed: 11/10/2022]
Abstract
Abstract
Background
Despite advances in targeted agent development, effective treatment of acute myeloid leukemia (AML) remains a major clinical challenge. The B-cell lymphoma-2 (BCL-2) inhibitor exhibited promising clinical activity in AML, acute lymphoblastic leukemia (ALL) and diffuse large B-cell lymphoma (DLBCL) treatment. APG-2575 is a novel BCL-2 selective inhibitor, which has demonstrated anti-tumor activity in hematologic malignancies. Homoharringtonine (HHT), an alkaloid, exhibited anti-AML activity.
Methods
The synergistic effects of APG-2575 and HHT were studied in AML cell lines and primary samples. MTS was used to measure the cell viability. Annexin V/propidium iodide staining was used to measure the apoptosis rate by flow cytometry. AML cell xenografted mouse models were established to evaluate the anti-leukemic effect of BCL-2 inhibitor, HHT and their combination in vivo. Western blot was used to determine the expression of related proteins.
Results
APG-2575 showed comparable anti-leukemic effect to the FDA-approved BCL-2 inhibitor ABT-199 in vitro and in vivo. Combined treatment of HHT with APG-2575 synergistically inhibited AML cell growth and engraftment. Mechanistically, HHT promoted degradation of myeloid cell leukemia-1 (MCL-1), which was reported to induce BCL-2 inhibitor resistant, through the PI3K/AKT/GSK3β signaling pathway.
Conclusion
Our results provide an effective AML treatment strategy through combination of APG-2575 and HHT, which is worthy of further clinical research.
Collapse
|
12
|
Xu Y, Ye H. Progress in understanding the mechanisms of resistance to BCL-2 inhibitors. Exp Hematol Oncol 2022; 11:31. [PMID: 35598030 PMCID: PMC9124382 DOI: 10.1186/s40164-022-00283-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/28/2022] [Indexed: 12/18/2022] Open
Abstract
Venetoclax is a new type of BH3 mimetic compound that can target the binding site in the BCL-2 protein and induce apoptosis in cancer cells by stimulating the mitochondrial apoptotic pathway. Venetoclax is especially used to treat haematological malignancies. However, with the recent expansion in the applications of venetoclax, some cases of venetoclax resistance have appeared, posing a major problem in clinical treatment. In this article, we explored several common mechanisms of venetoclax resistance. Increased expression of the antiapoptotic proteins MCL-1 and BCL-XL plays a key role in conferring cellular resistance to venetoclax. These proteins can bind to the released BIM in the context of venetoclax binding to BCL-2 and thus continue to inhibit mitochondrial apoptosis. Structural mutations in BCL-2 family proteins caused by genetic instability lead to decreased affinity for venetoclax and inhibit the intrinsic apoptosis pathway. Mutation or deletion of the BAX gene renders the BAX protein unable to anchor to the outer mitochondrial membrane to form pores. In addition to changes in BCL-2 family genes, mutations in other oncogenes can also confer resistance to apoptosis induced by venetoclax. TP53 mutations and the expansion of FLT3-ITD promote the expression of antiapoptotic proteins MCL-1 and BCL-XL through multiple signalling pathways, and interfere with venetoclax-mediated apoptosis processes depending on their affinity for BH3-only proteins. Finally, the level of mitochondrial oxidative phosphorylation in venetoclax-resistant leukaemia stem cells is highly abnormal. Not only the metabolic pathways but also the levels of important metabolic components are changed, and all of these alterations antagonize the venetoclax-mediated inhibition of energy metabolism and promote the survival and proliferation of leukaemia stem cells. In addition, venetoclax can change mitochondrial morphology independent of the BCL-2 protein family, leading to mitochondrial dysfunction. However, mitochondria resistant to venetoclax antagonize this effect, forming tighter mitochondrial cristae, which provide more energy for cell survival.
Collapse
Affiliation(s)
- Yilan Xu
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University-Zhejiang, Wenzhou, China
| | - Haige Ye
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University-Zhejiang, Wenzhou, China.
| |
Collapse
|
13
|
Zhang J, Shang L, Jiang W, Wu W. Shikonin induces apoptosis and autophagy via downregulation of pyrroline-5-carboxylate reductase1 in hepatocellular carcinoma cells. Bioengineered 2022; 13:7904-7918. [PMID: 35293266 PMCID: PMC9208523 DOI: 10.1080/21655979.2022.2052673] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Shikonin(SK) is a natural small molecule naphthoquinone compound, which has anti-cancer activity in various human malignant tumors. Pyrroline-5-carboxylate reductase 1(PYCR1) is involved in tumorigenesis and regulates various cellular processes, including growth, invasion, migration, and apoptosis. However, the effect of SK and PYCR1 on apoptosis and autophagy in hepatocellular carcinoma are unclear. Our goal is to determine the internal molecular mechanism of the interaction between SK and PYCR1 and its role in the occurrence and development of liver cancer. The CCK8 assay, wound healing assay, and transwell assays show that SK and siPYCR1(gene silence PYCR1) inhibited the malignant phenotype of HCC cells, including cell viability, colony formation, migration, and invasion, respectively. The flow cytometry assays and immunofluorescence show that SK and siPYCR1 activated apoptosis and autophagy, respectively. SK induces apoptosis and autophagy in a dose-dependent manner. In addition, HCC cells were transfected with small interference fragment PYCR1 siRNA to construct siPYCR1 and SK single treatment group and co-treatment group to verify the interaction between SK and PYCR1. The Western blot identified that PI3K/Akt/mTOR signal pathway protein expression was significantly downregulated in HCC cells treated with SK and siPYCR1 together. Collectively, SK may induce apoptosis and autophagy by reducing the expression of PYCR1 and suppressing PI3K/Akt/mTOR. Thus, SK may be a promising antineoplastic drug in Hepatocellular carcinoma (HCC). SK downregulating PYCR1 might supply a theoretical foundation for the potential therapeutic application in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Junli Zhang
- Bengbu Medical College Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu Medical College, Bengbu, China
| | - Ling Shang
- Bengbu Medical College Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu Medical College, Bengbu, China
| | - Wendi Jiang
- Bengbu Medical College Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu Medical College, Bengbu, China
| | - Wenjuan Wu
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, China
| |
Collapse
|
14
|
Abstract
Olverembatinib (HQP1351) is an oral, third-generation BCR-ABL1 tyrosine kinase inhibitor (TKI) developed by Ascentage Pharma for the treatment of chronic myeloid leukaemia (CML), acute myeloid leukaemia, acute lymphoblastic leukaemia (ALL) and solid tumours, including gastrointestinal stromal tumours (GIST). Olverembatinib is an ATP binding-site inhibitor of wild type BCR-ABL1 kinase and a broad spectrum of BCR-ABL1 mutants, including mutant T315I, which confers resistance against all first- and second-generation TKIs. In November 2021, olverembatinib received its first approval in China for the treatment of adult patients with TKI-resistant chronic-phase CML (CML-CP) or accelerated-phase CML (CML-AP) harbouring the T315I mutation, as confirmed by a validated diagnostic test. Clinical studies are underway in the US for CML and precursor cell ALL, and in China for solid tumours, including GIST. This article summarizes the milestones in the development of olverembatinib leading to this first approval for the treatment of CML-CP or CML-AP.
Collapse
Affiliation(s)
- Sohita Dhillon
- Springer Nature, Private Bag 65901, Mairangi Bay, Auckland, 0754, New Zealand.
| |
Collapse
|