1
|
Pankotai-Bodó G, Oláh-Németh O, Sükösd F, Pankotai T. Routine molecular applications and recent advances in breast cancer diagnostics. J Biotechnol 2024; 380:20-28. [PMID: 38122830 DOI: 10.1016/j.jbiotec.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023]
Abstract
Cancer stands as one of the most common and lethal diseases, imposing a substantial burden on global mortality rates. Breast cancer is distinct from other forms of cancer in which it is the primary cause of death for women. Early detection of breast cancer can significantly lower the risk of mortality, improving the prognosis for those who are affected. The death rate of breast cancer has been steadily rising, according to epidemiological data, especially since the COVID-19 pandemic. This emphasizes the necessity of sensitive and precise technologies that can be utilized in early breast cancer diagnosis. In this process, biomarkers play a pivotal role by facilitating the early detection and diagnosis of breast cancer. Currently, a wide variety of cancer biomarkers have been identified, improving the accuracy of cancer diagnosis. These biomarkers can be applied in liquid biopsies as well as on solid tissues. In the context of breast cancer, biomarkers are particularly valuable for determining who is predisposed to the disease, predicting prognosis at the time of diagnosis, and selecting the best course of therapy. This review comprehensively explores the recently developed gene-based biomarkers from biofluids that are used in the context of breast cancer, as well as the conventional and cutting-edge techniques that have been employed for breast cancer diagnosis.
Collapse
Affiliation(s)
- Gabriella Pankotai-Bodó
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Állomás utca 1, Szeged H-6725, Hungary
| | - Orsolya Oláh-Németh
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Állomás utca 1, Szeged H-6725, Hungary; Hungarian Centre of Excellence for Molecular Medicine (HCEMM), Genome Integrity and DNA Repair Core Group, Budapesti út 9, Szeged H-6728, Hungary
| | - Farkas Sükösd
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Állomás utca 1, Szeged H-6725, Hungary
| | - Tibor Pankotai
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Állomás utca 1, Szeged H-6725, Hungary; Hungarian Centre of Excellence for Molecular Medicine (HCEMM), Genome Integrity and DNA Repair Core Group, Budapesti út 9, Szeged H-6728, Hungary; Competence Centre of the Life Sciences Cluster of the Centre of Excellence for Interdisciplinary Research, Development and Innovation, University of Szeged, Dugonics tér 13, Szeged H-6720, Hungary.
| |
Collapse
|
2
|
Nagy-Mikó B, Németh-Szatmári O, Faragó-Mészáros R, Csókási A, Bognár B, Ördög N, Borsos BN, Majoros H, Ujfaludi Z, Oláh-Németh O, Nikolényi A, Dobi Á, Kószó R, Sántha D, Lázár G, Simonka Z, Paszt A, Ormándi K, Pankotai T, Boros IM, Villányi Z, Vörös A. Predictive Potential of RNA Polymerase B (II) Subunit 1 (RPB1) Cytoplasmic Aggregation for Neoadjuvant Chemotherapy Failure. Int J Mol Sci 2023; 24:15869. [PMID: 37958852 PMCID: PMC10650411 DOI: 10.3390/ijms242115869] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
We aimed to investigate the contribution of co-translational protein aggregation to the chemotherapy resistance of tumor cells. Increased co-translational protein aggregation reflects altered translation regulation that may have the potential to buffer transcription under genotoxic stress. As an indicator for such an event, we followed the cytoplasmic aggregation of RPB1, the aggregation-prone largest subunit of RNA polymerase II, in biopsy samples taken from patients with invasive carcinoma of no special type. RPB1 frequently aggregates co-translationally in the absence of proper HSP90 chaperone function or in ribosome mutant cells as revealed formerly in yeast. We found that cytoplasmic foci of RPB1 occur in larger sizes in tumors that showed no regression after therapy. Based on these results, we propose that monitoring the cytoplasmic aggregation of RPB1 may be suitable for determining-from biopsy samples taken before treatment-the effectiveness of neoadjuvant chemotherapy.
Collapse
Affiliation(s)
- Bence Nagy-Mikó
- Department of Biochemistry and Molecular Biology, University of Szeged, 52 Középfasor, H-6726 Szeged, Hungary
| | - Orsolya Németh-Szatmári
- Department of Biochemistry and Molecular Biology, University of Szeged, 52 Középfasor, H-6726 Szeged, Hungary
| | - Réka Faragó-Mészáros
- Department of Biochemistry and Molecular Biology, University of Szeged, 52 Középfasor, H-6726 Szeged, Hungary
| | - Aliz Csókási
- Department of Biochemistry and Molecular Biology, University of Szeged, 52 Középfasor, H-6726 Szeged, Hungary
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Állomás utca 1, H-6725 Szeged, Hungary
| | - Bence Bognár
- Department of Biochemistry and Molecular Biology, University of Szeged, 52 Középfasor, H-6726 Szeged, Hungary
| | - Nóra Ördög
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Állomás utca 1, H-6725 Szeged, Hungary
| | - Barbara N. Borsos
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Állomás utca 1, H-6725 Szeged, Hungary
| | - Hajnalka Majoros
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Állomás utca 1, H-6725 Szeged, Hungary
- Competence Centre of the Life Sciences Cluster of the Centre of Excellence for Interdisciplinary Research, Development and Innovation, University of Szeged, Dugonics tér 13, H-6720 Szeged, Hungary
| | - Zsuzsanna Ujfaludi
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Állomás utca 1, H-6725 Szeged, Hungary
- Competence Centre of the Life Sciences Cluster of the Centre of Excellence for Interdisciplinary Research, Development and Innovation, University of Szeged, Dugonics tér 13, H-6720 Szeged, Hungary
| | - Orsolya Oláh-Németh
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Állomás utca 1, H-6725 Szeged, Hungary
| | - Aliz Nikolényi
- Department of Oncotherapy, Albert Szent-Györgyi Health Centre, University of Szeged, 12 Korányi Fasor, H-6720 Szeged, Hungary
| | - Ágnes Dobi
- Department of Oncotherapy, Albert Szent-Györgyi Health Centre, University of Szeged, 12 Korányi Fasor, H-6720 Szeged, Hungary
| | - Renáta Kószó
- Department of Oncotherapy, Albert Szent-Györgyi Health Centre, University of Szeged, 12 Korányi Fasor, H-6720 Szeged, Hungary
| | - Dóra Sántha
- Department of Oncotherapy, Albert Szent-Györgyi Health Centre, University of Szeged, 12 Korányi Fasor, H-6720 Szeged, Hungary
| | - György Lázár
- Department of Surgery, Albert Szent-Györgyi Health Centre, University of Szeged, 8 Semmelweis Street, H-6725 Szeged, Hungary
| | - Zsolt Simonka
- Department of Surgery, Albert Szent-Györgyi Health Centre, University of Szeged, 8 Semmelweis Street, H-6725 Szeged, Hungary
| | - Attila Paszt
- Department of Surgery, Albert Szent-Györgyi Health Centre, University of Szeged, 8 Semmelweis Street, H-6725 Szeged, Hungary
| | - Katalin Ormándi
- Department of Radiology, Albert Szent-Györgyi Health Centre, University of Szeged, 6 Semmelweis Street, H-6725 Szeged, Hungary
| | - Tibor Pankotai
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Állomás utca 1, H-6725 Szeged, Hungary
- Competence Centre of the Life Sciences Cluster of the Centre of Excellence for Interdisciplinary Research, Development and Innovation, University of Szeged, Dugonics tér 13, H-6720 Szeged, Hungary
- Genome Integrity and DNA Repair Core Group, Hungarian Centre of Excellence for Molecular Medicine (HCEMM), University of Szeged, Budapesti út 9, H-6728 Szeged, Hungary
| | - Imre M. Boros
- Department of Biochemistry and Molecular Biology, University of Szeged, 52 Középfasor, H-6726 Szeged, Hungary
| | - Zoltán Villányi
- Department of Biochemistry and Molecular Biology, University of Szeged, 52 Középfasor, H-6726 Szeged, Hungary
| | - András Vörös
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Állomás utca 1, H-6725 Szeged, Hungary
| |
Collapse
|