1
|
Singh S, Verma R. Exploring the Therapeutic Potential of Flavonoids in the Management of Cancer. Curr Pharm Biotechnol 2025; 26:17-47. [PMID: 38591206 DOI: 10.2174/0113892010297456240327062614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/10/2024] [Accepted: 02/21/2024] [Indexed: 04/10/2024]
Abstract
Flavonoids are a class of polyphenolic compounds that can be classified into six distinct categories, namely isoflavonoids, flavanones, flavanols, flavonols, flavones, and anthocyanidins. These compounds are naturally occurring and can be found in a diverse range of plant species. Flavonoids, a class of bioactive compounds, are mostly obtained through the consumption of vegetables, fruits and plant-derived beverages such as wine, cocoa-based products and green tea. Flavonoids have been demonstrated to exhibit a diverse range of anticancer properties. These include the modulation of activities of enzymes involved in scavenging reactive oxygen species, involvement in cell cycle arrest, induction of apoptosis and autophagy, as well as suppression of cancer cell proliferation and invasiveness. Flavonoids exhibit a dual role in maintaining reactive oxygen species balance. They function as antioxidants in regular physiological conditions, while also demonstrating significant pro-oxidant properties in cancer cells. This prooxidant activity induces apoptotic pathways and downregulates pro-inflammatory signalling pathways. The paper explores the biochemical characteristics, bioavailability, anticancer efficacy, and modes of action of flavonoids.
Collapse
Affiliation(s)
- Sonia Singh
- Institute of Pharmaceutical Research GLA University, Chaumuhan, Uttar Pradesh, 281406, India
| | - Riya Verma
- Institute of Pharmaceutical Research GLA University, Chaumuhan, Uttar Pradesh, 281406, India
| |
Collapse
|
2
|
Balykina A, Naida L, Kirkgöz K, Nikolaev VO, Fock E, Belyakov M, Whaley A, Whaley A, Shpakova V, Rukoyatkina N, Gambaryan S. Antiplatelet Effects of Flavonoid Aglycones Are Mediated by Activation of Cyclic Nucleotide-Dependent Protein Kinases. Int J Mol Sci 2024; 25:4864. [PMID: 38732081 PMCID: PMC11084604 DOI: 10.3390/ijms25094864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Flavonoid aglycones are secondary plant metabolites that exhibit a broad spectrum of pharmacological activities, including anti-inflammatory, antioxidant, anticancer, and antiplatelet effects. However, the precise molecular mechanisms underlying their inhibitory effect on platelet activation remain poorly understood. In this study, we applied flow cytometry to analyze the effects of six flavonoid aglycones (luteolin, myricetin, quercetin, eriodictyol, kaempferol, and apigenin) on platelet activation, phosphatidylserine externalization, formation of reactive oxygen species, and intracellular esterase activity. We found that these compounds significantly inhibit thrombin-induced platelet activation and decrease formation of reactive oxygen species in activated platelets. The tested aglycones did not affect platelet viability, apoptosis induction, or procoagulant platelet formation. Notably, luteolin, myricetin, quercetin, and apigenin increased thrombin-induced thromboxane synthase activity, which was analyzed by a spectrofluorimetric method. Our results obtained from Western blot analysis and liquid chromatography-tandem mass spectrometry demonstrated that the antiplatelet properties of the studied phytochemicals are mediated by activation of cyclic nucleotide-dependent signaling pathways. Specifically, we established by using Förster resonance energy transfer that the molecular mechanisms are, at least partly, associated with the inhibition of phosphodiesterases 2 and/or 5. These findings underscore the therapeutic potential of flavonoid aglycones for clinical application as antiplatelet agents.
Collapse
Affiliation(s)
- Anna Balykina
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint Petersburg 194223, Russia; (A.B.); (E.F.); (A.W.); (N.R.)
- Faculty of General Medicine, Saint Petersburg State University, Saint Petersburg 199034, Russia
| | - Lidia Naida
- Institute of Biomedical Systems and Biotechnologies, Peter the Great Saint Petersburg Polytechnic University, Saint Petersburg 195251, Russia;
| | - Kürsat Kirkgöz
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (K.K.); (V.O.N.)
| | - Viacheslav O. Nikolaev
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (K.K.); (V.O.N.)
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Ekaterina Fock
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint Petersburg 194223, Russia; (A.B.); (E.F.); (A.W.); (N.R.)
| | - Michael Belyakov
- Research Institute of Hygiene, Occupational Pathology and Human Ecology, Saint Petersburg 188663, Russia;
| | - Anastasiia Whaley
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint Petersburg 194223, Russia; (A.B.); (E.F.); (A.W.); (N.R.)
- Department of Pharmacognosy, Saint Petersburg State Chemical and Pharmaceutical University, Saint Petersburg 197022, Russia;
| | - Andrei Whaley
- Department of Pharmacognosy, Saint Petersburg State Chemical and Pharmaceutical University, Saint Petersburg 197022, Russia;
| | - Valentina Shpakova
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading RG6 6AS, UK;
| | - Natalia Rukoyatkina
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint Petersburg 194223, Russia; (A.B.); (E.F.); (A.W.); (N.R.)
| | - Stepan Gambaryan
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint Petersburg 194223, Russia; (A.B.); (E.F.); (A.W.); (N.R.)
| |
Collapse
|
3
|
Cooper E, Oyagawa CRM, Johnson R, Choi PJ, Foliaki JM, Correia J, Schweder P, Heppner P, Mee E, Turner C, Faull R, Denny WA, Dragunow M, Jose J, Park TIH. Involvement of the tumour necrosis factor receptor system in glioblastoma cell death induced by palbociclib-heptamethine cyanine dye conjugate. Cell Commun Signal 2024; 22:30. [PMID: 38212807 PMCID: PMC10782607 DOI: 10.1186/s12964-023-01277-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/14/2023] [Indexed: 01/13/2024] Open
Abstract
Glioblastoma is the most common and aggressive primary brain tumour in adults. The development of anti-brain cancer agents are challenged by the blood-brain barrier and the resistance conferred by the local tumour microenvironment. Heptamethine cyanine dyes (HMCDs) are a class of near-infrared fluorescence compounds that have recently emerged as promising agents for drug delivery. We conjugated palbociclib, a cyclin-dependent kinase (CDK) 4/6 inhibitor, to an HMCD, MHI-148, and conducted drug activity analysis on primary patient-derived glioblastoma cell lines. In addition to the expected cytostatic activity, our in vitro studies revealed that palbociclib-MHI-148 conjugate resulted in an almost 100-fold increase in cytotoxicity compared to palbociclib alone. This shift of palbociclib from cytostatic to cytotoxic when conjugated to MHI-148 was due to increased DNA damage, as indicated by an increase in γH2AX foci, followed by an increased expression of key extrinsic apoptosis genes, including TP53, TNFR1, TRAIL, FADD and caspase 8. In addition, we observed a time-dependent increase in the cell surface expression of TNFR1, consistent with an observed increase in the secretion TNFα, followed by TNFR1 endocytosis at 48 h. The treatment of patient GBM cells with the palbociclib-MHI-148 conjugate prevented TNFα-induced NFκB translocation, suggesting conjugate-induced TNFR1 signalling favoured the TNFR1-mediated apoptotic response rather than the pro-inflammatory response pathway. Notably, pharmacological inhibition of endocytosis of TNFR1, and siRNA-knockdown of TNFR1 reversed the palbociclib-MHI-148-induced cell death. These results show a novel susceptibility of glioblastoma cells to TNFR1-dependent apoptosis, dependent on inhibition of canonical NFκB signalling using our previously reported palbociclib-HMCD conjugate. Video Abstract.
Collapse
Affiliation(s)
- Elizabeth Cooper
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
- Department of Pharmacology, The Centre for Brain Research, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
- Neurosurgery Research Unit, The Centre for Brain Research, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Caitlin R M Oyagawa
- Department of Pharmacology, The Centre for Brain Research, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
- Neurosurgery Research Unit, The Centre for Brain Research, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Rebecca Johnson
- Department of Pharmacology, The Centre for Brain Research, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
- Neurosurgery Research Unit, The Centre for Brain Research, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Peter J Choi
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Jena Macapagal Foliaki
- Department of Pharmacology, The Centre for Brain Research, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
- Neurosurgery Research Unit, The Centre for Brain Research, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Jason Correia
- Neurosurgery Research Unit, The Centre for Brain Research, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
- Department of Neurosurgery, Auckland City Hospital, Private Bag 92024, Auckland, 1142, New Zealand
| | - Patrick Schweder
- Neurosurgery Research Unit, The Centre for Brain Research, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
- Department of Neurosurgery, Auckland City Hospital, Private Bag 92024, Auckland, 1142, New Zealand
| | - Peter Heppner
- Neurosurgery Research Unit, The Centre for Brain Research, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
- Department of Neurosurgery, Auckland City Hospital, Private Bag 92024, Auckland, 1142, New Zealand
| | - Edward Mee
- Neurosurgery Research Unit, The Centre for Brain Research, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
- Department of Neurosurgery, Auckland City Hospital, Private Bag 92024, Auckland, 1142, New Zealand
| | - Clinton Turner
- Neurosurgery Research Unit, The Centre for Brain Research, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
- Department of Anatomical Pathology, Auckland City Hospital, 2 Park Road, LabPlus, Auckland, New Zealand
| | - Richard Faull
- Neurosurgery Research Unit, The Centre for Brain Research, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - William A Denny
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Mike Dragunow
- Department of Pharmacology, The Centre for Brain Research, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand.
- Neurosurgery Research Unit, The Centre for Brain Research, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand.
| | - Jiney Jose
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand.
| | - Thomas I-H Park
- Department of Pharmacology, The Centre for Brain Research, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand.
- Neurosurgery Research Unit, The Centre for Brain Research, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand.
| |
Collapse
|
4
|
Tang X, Liu L, Li Y, Hao S, Zhao Y, Wu X, Li M, Chen Y, Deng S, Gou S, Cai D, Chen M, Li X, Sun Y, Gu L, Li W, Wang F, Zhang Z, Yao L, Shen J, Xiao Z, Du F. Chemical profiling and investigation of molecular mechanisms underlying anti-hepatocellular carcinoma activity of extracts from Polygonum perfoliatum L. Biomed Pharmacother 2023; 166:115315. [PMID: 37579693 DOI: 10.1016/j.biopha.2023.115315] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/16/2023] Open
Abstract
Polygonum perfoliatum L. is an herbal medicine that has been extensively used in traditional Chinese medicine to treat various health conditions ranging from ancient internal to surgical and gynecological diseases. Numerous studies suggest that P. perfoliatum extract elicits significant anti-tumor, anti-inflammatory, anti-bacterial, and anti-viral effects. Nevertheless, the underlying mechanisms of its anti-liver cancer effects remain poorly understood. Our study suggests that P. perfoliatum stem extract (PPLA) has a favorable safety profile and exhibits a significant anti-liver cancer effect both in vitro and in vivo. We identified that PPLA activates the cGMP-PKG signaling pathway, and key regulatory genes including ADRA1B, PLCB2, PRKG2, CALML4, and GLO1 involved in this activation. Moreover, PPLA modulates the expression of genes responsible for the cell cycle. Additionally, we identified four constituents of PPLA, namely taxifolin, myricetin, eriodictyol, and pinocembrin, that plausibly act via the cGMP-PKG signaling pathway. Both in vitro and in vivo experiments confirmed that PPLA, along with its constituting compounds taxifolin, myricetin, and eriodictyol, exhibit potent anti-cancer activities and hold the promise of being developed into therapeutic agents.
Collapse
Affiliation(s)
- Xiaolong Tang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646600, Sichuan, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646600, Sichuan, China; The Key Laboratory for Human Disease Gene Study of Sichuan Province and Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China; Research Unit for Blindness Prevention of Chinese Academy of Medical Science (2019RU026), Sichuan Academy of Medical Sciences, Chengdu 610072, China
| | - Lin Liu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646600, Sichuan, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646600, Sichuan, China
| | - Yan Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646600, Sichuan, China; Public Center of Experimental Technology, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Siyu Hao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646600, Sichuan, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646600, Sichuan, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646600, Sichuan, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646600, Sichuan, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646600, Sichuan, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646600, Sichuan, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646600, Sichuan, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646600, Sichuan, China
| | - Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646600, Sichuan, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646600, Sichuan, China
| | - Shuai Deng
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646600, Sichuan, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646600, Sichuan, China
| | - Shuang Gou
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646600, Sichuan, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646600, Sichuan, China
| | - Dan Cai
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646600, Sichuan, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646600, Sichuan, China
| | - Meijuan Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646600, Sichuan, China
| | - Xiaobing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646600, Sichuan, China
| | - Yuhong Sun
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646600, Sichuan, China
| | - Li Gu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646600, Sichuan, China
| | - Wanping Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646600, Sichuan, China
| | - Fang Wang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646600, Sichuan, China
| | - Zhuo Zhang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646600, Sichuan, China
| | - Lei Yao
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China; Research Unit for Blindness Prevention of Chinese Academy of Medical Science (2019RU026), Sichuan Academy of Medical Sciences, Chengdu 610072, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646600, Sichuan, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646600, Sichuan, China.
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646600, Sichuan, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646600, Sichuan, China; Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou 646600, Sichuan, China.
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646600, Sichuan, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646600, Sichuan, China.
| |
Collapse
|
5
|
Magadán-Corpas P, Ye S, Pérez-Valero Á, McAlpine PL, Valdés-Chiara P, Torres-Bacete J, Nogales J, Villar CJ, Lombó F. Optimized De Novo Eriodictyol Biosynthesis in Streptomyces albidoflavus Using an Expansion of the Golden Standard Toolkit for Its Use in Actinomycetes. Int J Mol Sci 2023; 24:8879. [PMID: 37240225 PMCID: PMC10219347 DOI: 10.3390/ijms24108879] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Eriodictyol is a hydroxylated flavonoid displaying multiple pharmaceutical activities, such as antitumoral, antiviral or neuroprotective. However, its industrial production is limited to extraction from plants due to its inherent limitations. Here, we present the generation of a Streptomyces albidoflavus bacterial factory edited at the genome level for an optimized de novo heterologous production of eriodictyol. For this purpose, an expansion of the Golden Standard toolkit (a Type IIS assembly method based on the Standard European Vector Architecture (SEVA)) has been created, encompassing a collection of synthetic biology modular vectors (adapted for their use in actinomycetes). These vectors have been designed for the assembly of transcriptional units and gene circuits in a plug-and-play manner, as well as for genome editing using CRISPR-Cas9-mediated genetic engineering. These vectors have been used for the optimization of the eriodictyol heterologous production levels in S. albidoflavus by enhancing the flavonoid-3'-hydroxylase (F3'H) activity (by means of a chimera design) and by replacing three native biosynthetic gene clusters in the bacterial chromosome with the plant genes matBC (involved in extracellular malonate uptake and its intracellular activation into malonyl-CoA), therefore allowing more malonyl-CoA to be devoted to the heterologous production of plant flavonoids in this bacterial factory. These experiments have allowed an increase in production of 1.8 times in the edited strain (where the three native biosynthetic gene clusters have been deleted) in comparison with the wild-type strain and a 13 times increase in eriodictyol overproduction in comparison with the non-chimaera version of the F3'H enzyme.
Collapse
Affiliation(s)
- Patricia Magadán-Corpas
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006 Oviedo, Spain; (P.M.-C.); (S.Y.); (Á.P.-V.); (P.L.M.); (P.V.-C.); (C.J.V.)
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), 33006 Oviedo, Spain
- ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), 33006 Oviedo, Spain
| | - Suhui Ye
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006 Oviedo, Spain; (P.M.-C.); (S.Y.); (Á.P.-V.); (P.L.M.); (P.V.-C.); (C.J.V.)
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), 33006 Oviedo, Spain
- ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), 33006 Oviedo, Spain
| | - Álvaro Pérez-Valero
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006 Oviedo, Spain; (P.M.-C.); (S.Y.); (Á.P.-V.); (P.L.M.); (P.V.-C.); (C.J.V.)
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), 33006 Oviedo, Spain
- ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), 33006 Oviedo, Spain
| | - Patrick L. McAlpine
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006 Oviedo, Spain; (P.M.-C.); (S.Y.); (Á.P.-V.); (P.L.M.); (P.V.-C.); (C.J.V.)
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), 33006 Oviedo, Spain
- ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), 33006 Oviedo, Spain
| | - Paula Valdés-Chiara
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006 Oviedo, Spain; (P.M.-C.); (S.Y.); (Á.P.-V.); (P.L.M.); (P.V.-C.); (C.J.V.)
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), 33006 Oviedo, Spain
- ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), 33006 Oviedo, Spain
| | - Jesús Torres-Bacete
- Department of Systems Biology, Centro Nacional de Biotecnologia, CSIC, 28049 Madrid, Spain; (J.T.-B.); (J.N.)
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), 28040 Madrid, Spain
| | - Juan Nogales
- Department of Systems Biology, Centro Nacional de Biotecnologia, CSIC, 28049 Madrid, Spain; (J.T.-B.); (J.N.)
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), 28040 Madrid, Spain
| | - Claudio J. Villar
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006 Oviedo, Spain; (P.M.-C.); (S.Y.); (Á.P.-V.); (P.L.M.); (P.V.-C.); (C.J.V.)
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), 33006 Oviedo, Spain
- ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), 33006 Oviedo, Spain
| | - Felipe Lombó
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006 Oviedo, Spain; (P.M.-C.); (S.Y.); (Á.P.-V.); (P.L.M.); (P.V.-C.); (C.J.V.)
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), 33006 Oviedo, Spain
- ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), 33006 Oviedo, Spain
| |
Collapse
|
6
|
Guo S, Xing N, Xiang G, Zhang Y, Wang S. Eriodictyol: a review of its pharmacological activities and molecular mechanisms related to ischemic stroke. Food Funct 2023; 14:1851-1868. [PMID: 36757280 DOI: 10.1039/d2fo03417d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Ischemic stroke (IS) is characterized by a prominent mortality and disability rate, which has increased the burden on the global economy to a certain extent. Meanwhile, patients benefit little from the limited clinical strategies of intravenous alteplase and thrombectomy due to the limited therapeutic window. Given this, it is urgent to study new therapeutic methods to intervene in these patients. Eriodyctiol (ERD) is a major natural flavonoid, which widely exists in fruits, vegetables, and medicinal herbs, and has various pharmacological properties. It has been reported that ERD can maintain homeostasis in organisms by exerting neuroprotective and vascular protective effects. Therefore, more and more studies have focused on the pharmacological activity and mechanism of ERD in IS. This paper provides an overview of the plant sources, phytochemical properties, pharmacokinetics, and pathogenesis, as well as the pharmacological effects and mechanisms of ERD in IS. To date, preclinical studies on ERD in diverse cell lines and animal models have established the idea of ERD as a feasible agent capable of specifically ameliorating IS. The molecular mechanisms of ERD to prevent or reduce IS are mainly based on the inhibition of inflammation, oxidative stress, autophagy and apoptosis. Nevertheless, the mechanism of ERD against IS is flawed and needs more exploration by the research community. Moreover, well-designed clinical trials are needed to increase the scientific validity of the beneficial effects of ERD against IS.
Collapse
Affiliation(s)
- Sa Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Nan Xing
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Gelin Xiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Yi Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Shaohui Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
7
|
Liu Y, Li X, Zhou X, Wang J, Ao X. FADD as a key molecular player in cancer progression. Mol Med 2022; 28:132. [DOI: 10.1186/s10020-022-00560-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/05/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022] Open
Abstract
AbstractCancer is a leading disease-related cause of death worldwide. Despite advances in therapeutic interventions, cancer remains a major global public health problem. Cancer pathogenesis is extremely intricate and largely unknown. Fas-associated protein with death domain (FADD) was initially identified as an adaptor protein for death receptor-mediated extrinsic apoptosis. Recent evidence suggests that FADD plays a vital role in non-apoptotic cellular processes, such as proliferation, autophagy, and necroptosis. FADD expression and activity of are modulated by a complicated network of processes, such as DNA methylation, non-coding RNA, and post-translational modification. FADD dysregulation has been shown to be closely associated with the pathogenesis of numerous types of cancer. However, the detailed mechanisms of FADD dysregulation involved in cancer progression are still not fully understood. This review mainly summarizes recent findings on the structure, functions, and regulatory mechanisms of FADD and focuses on its role in cancer progression. The clinical implications of FADD as a biomarker and therapeutic target for cancer patients are also discussed. The information reviewed herein may expand researchers’ understanding of FADD and contribute to the development of FADD-based therapeutic strategies for cancer patients.
Collapse
|