1
|
Consoli GML, Maugeri L, Musso N, Gulino A, D'Urso L, Bonacci P, Buscarino G, Forte G, Petralia S. One-Pot Synthesis of Luminescent and Photothermal Carbon Boron-Nitride Quantum Dots Exhibiting Cell Damage Protective Effects. Adv Healthc Mater 2024; 13:e2303692. [PMID: 38508224 DOI: 10.1002/adhm.202303692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/26/2024] [Indexed: 03/22/2024]
Abstract
Zero-dimensional boron nitride quantum dots (BNQDs) are arousing interest for their versatile optical, chemical, and biochemical properties. Introducing carbon contents in BNQDs nanostructures is a great challenge to modulate their physicochemical properties. Among the carbon moieties, phenolic groups have attracted attention for their biochemical properties and phenol-containing nanomaterials are showing great promise for biomedical applications. Herein, the first example of direct synthesis of water dispersible BNQDs exposing phenolic and carboxylic groups is presented. The carbon-BNQDs are prepared in a single-step by solvent-assisted reaction of urea with boronic reagents and are characterized by optical absorption, luminescence, Raman, Fourier transform infrared and NMR spectroscopy, X-ray photoelectron spectroscopy, dynamic light scattering, and atomic force microscopy. The carbon-BNQDs exhibit nanodimension, stability, high photothermal conversion efficiency, pH-responsive luminescence and Z-potential. The potential of the carbon-BNQDs to provide photothermal materials in solid by embedding in agarose substrate is successfully investigated. The carbon-BNQDs exhibit biocompatibility on colorectal adenocarcinoma cells (Caco-2) and protective effects from chemical and oxidative stress on Caco-2, osteosarcoma (MG-63), and microglial (HMC-3) cells. Amplicon mRNA-seq analyses for the expression of 56 genes involve in oxidative-stress and inflammation are performed to evaluate the molecular events responsible for the cell protective effects of the carbon-BNQDs.
Collapse
Affiliation(s)
- Grazia M L Consoli
- CNR-Institute of Biomolecular Chemistry, Via Paolo Gaifami 18, Catania, 95126, Italy
- CIB-Interuniversity Consortium for Biotechnologies U.O. of Catania, Via Flavia, 23/1, Trieste, 34148, Italy
| | - Ludovica Maugeri
- Department of Drug and Health Sciences, University of Catania, Via Santa Sofia 64, Catania, 95125, Italy
| | - Nicolò Musso
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, Catania, Italy
| | - Antonino Gulino
- Department of Chemical Science, University of Catania and I.N.S.T.M. UdR of Catania, Via Santa Sofia 64, Catania, 95125, Italy
| | - Luisa D'Urso
- Department of Chemical Science, University of Catania and I.N.S.T.M. UdR of Catania, Via Santa Sofia 64, Catania, 95125, Italy
| | - Paolo Bonacci
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, Catania, Italy
| | - Gianpiero Buscarino
- Department of Physic and Chemistry, University of Palermo, Via Archirafi 36, Palermo, Italy
| | - Giuseppe Forte
- Department of Drug and Health Sciences, University of Catania, Via Santa Sofia 64, Catania, 95125, Italy
| | - Salvatore Petralia
- CNR-Institute of Biomolecular Chemistry, Via Paolo Gaifami 18, Catania, 95126, Italy
- CIB-Interuniversity Consortium for Biotechnologies U.O. of Catania, Via Flavia, 23/1, Trieste, 34148, Italy
- Department of Drug and Health Sciences, University of Catania, Via Santa Sofia 64, Catania, 95125, Italy
- NANOMED, Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, Viale A. Doria 6, Catania, 95124, Italy
| |
Collapse
|
2
|
Rane A, Jarmoshti J, Siddique AB, Adair S, Torres-Castro K, Honrado C, Bauer TW, Swami NS. Dielectrophoretic enrichment of live chemo-resistant circulating-like pancreatic cancer cells from media of drug-treated adherent cultures of solid tumors. LAB ON A CHIP 2024; 24:561-571. [PMID: 38174422 PMCID: PMC10826460 DOI: 10.1039/d3lc00804e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024]
Abstract
Due to low numbers of circulating tumor cells (CTCs) in liquid biopsies, there is much interest in enrichment of alternative circulating-like mesenchymal cancer cell subpopulations from in vitro tumor cultures for utilization within molecular profiling and drug screening. Viable cancer cells that are released into the media of drug-treated adherent cancer cell cultures exhibit anoikis resistance or anchorage-independent survival away from their extracellular matrix with nutrient sources and waste sinks, which serves as a pre-requisite for metastasis. The enrichment of these cell subpopulations from tumor cultures can potentially serve as an in vitro source of circulating-like cancer cells with greater potential for scale-up in comparison with CTCs. However, these live circulating-like cancer cell subpopulations exhibit size overlaps with necrotic and apoptotic cells in the culture media, which makes it challenging to selectively enrich them, while maintaining them in their suspended state. We present optimization of a flowthrough high frequency (1 MHz) positive dielectrophoresis (pDEP) device with sequential 3D field non-uniformities that enables enrichment of the live chemo-resistant circulating cancer cell subpopulation from an in vitro culture of metastatic patient-derived pancreatic tumor cells. Central to this strategy is the utilization of single-cell impedance cytometry with gates set by supervised machine learning, to optimize the frequency for pDEP, so that live circulating cells are selected based on multiple biophysical metrics, including membrane physiology, cytoplasmic conductivity and cell size, which is not possible using deterministic lateral displacement that is solely based on cell size. Using typical drug-treated samples with low levels of live circulating cells (<3%), we present pDEP enrichment of the target subpopulation to ∼44% levels within 20 minutes, while rejecting >90% of dead cells. This strategy of utilizing single-cell impedance cytometry to guide the optimization of dielectrophoresis has implications for other complex biological samples.
Collapse
Affiliation(s)
- Aditya Rane
- Chemistry, University of Virginia, Charlottesville, USA.
| | - Javad Jarmoshti
- Electrical & Computer Engineering, University of Virginia, Charlottesville, USA
| | | | - Sara Adair
- Surgery, School of Medicine, University of Virginia, Charlottesville, USA
| | | | - Carlos Honrado
- International Iberian Nanotechnology Laboratory, Braga, Portugal
| | - Todd W Bauer
- Surgery, School of Medicine, University of Virginia, Charlottesville, USA
| | - Nathan S Swami
- Chemistry, University of Virginia, Charlottesville, USA.
- Electrical & Computer Engineering, University of Virginia, Charlottesville, USA
| |
Collapse
|