1
|
Walker BS, Schmidt RL, Moore RA, White SK, Fisher MA, Metcalf RA. Bacterial culture time to detection in platelet components: An evidence synthesis and estimation of detection failures. Transfusion 2023; 63:182-192. [PMID: 36371753 DOI: 10.1111/trf.17179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND Non-pathogen reduction platelet bacterial risk control strategies in the US FDA guidance include at least one culture. Almost all of these strategies have a culture hold time of ≥12 h. Studies have reported time to detection (TTD) of bacterial cultures inoculated with bacteria from contaminated platelets, but these data and estimates of risk associated with detection failures have not been synthesized. METHODS We performed a literature search to identify studies reporting TTD for samples obtained from spiked platelet components. Using extracted data, regression analysis was used to estimate TTD for culture bottles at different inoculum sizes. Detection failures were defined as events in which contaminated components are transfused to a patient. We then used published data on time of transfusion (ToT) to estimate the risk of detection failures in practice. RESULTS The search identified 1427 studies, of which 16 were included for analysis. TTD data were available for 16 different organisms, including 14 in aerobic cultures and 11 in anaerobic cultures. For inocula of 1 colony forming unit (CFU), the average TTD for aerobic organisms was 19.2 h while it was 24.9 h in anaerobic organisms, but there was substantial overall variation. A hold time of 12 versus 24 h had minimal effect for most organisms. CONCLUSION TTD variation occurs between bacterial species and within a particular species. Under typical inventory management, the relative contribution of culture detection failures is much smaller than the residual risk from sampling failures. Increasing the hold period beyond 12 h has limited value.
Collapse
Affiliation(s)
| | - Robert L Schmidt
- ARUP Laboratories, Salt Lake City, Utah, USA.,Department of Pathology, University of Utah, Salt Lake City, Utah, USA
| | - Ryleigh A Moore
- Department of Mathematics, University of Utah, Salt Lake City, Utah, USA
| | - Sandra K White
- Department of Pathology, University of Utah, Salt Lake City, Utah, USA
| | - Mark A Fisher
- ARUP Laboratories, Salt Lake City, Utah, USA.,Department of Pathology, University of Utah, Salt Lake City, Utah, USA
| | - Ryan A Metcalf
- ARUP Laboratories, Salt Lake City, Utah, USA.,Department of Pathology, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
2
|
Wilson-Nieuwenhuis J, El-Mohtadi M, Edwards K, Whitehead K, Dempsey-Hibbert N. Factors Involved in the onset of infection following bacterially contaminated platelet transfusions. Platelets 2021; 32:909-918. [PMID: 32762589 DOI: 10.1080/09537104.2020.1803253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Transfusion of platelet concentrates (PCs) is associated with several adverse patient reactions, the most common of which are febrile non-hemolytic transfusion reactions (FNHTRs) and transfusion-associated bacterial-infection/transfusion-associated sepsis (T-ABI/TA-S). Diagnosis of T-ABI/T-AS requires a positive blood culture (BC) result from the transfusion recipient and also a positive identification of bacterial contamination within a test aliquot of the transfused PC. In a significant number of cases, clinical symptoms post-transfusion are reported by the clinician, yet the BCs from the patient and/or PC are negative. The topic of 'missed bacterial detection' has therefore been the focus of several primary research studies and review articles, suggesting that biofilm formation in the blood bag and the presence of viable but non-culturable (VBNC) pathogens are the major causes of this missed detection. However, platelets are emerging as key players in early host responses to infection and as such, the aforementioned biofilm formation could elicit 'platelet priming', which could lead to significant immunological reactions in the host, in the absence of planktonic bacteria in the host bloodstream. This review reflects on what is known about missed detection and relates this to the emerging understanding of the effect of bacterial contamination on the platelets themselves and the significant role played by platelets in exacerbation of an immune response to infection within the transfusion setting.
Collapse
Affiliation(s)
| | - Mohamed El-Mohtadi
- Centre for Bioscience, Manchester Metropolitan University, Manchester, UK
| | - Kurtis Edwards
- Centre for Bioscience, Manchester Metropolitan University, Manchester, UK
| | - Kathryn Whitehead
- Centre for Bioscience, Manchester Metropolitan University, Manchester, UK
| | | |
Collapse
|
3
|
Carré G, Charpentier E, Audonnet S, Terryn C, Boudifa M, Doliwa C, Belgacem ZB, Gangloff SC, Gelle MP. Contribution of Fluorescence Techniques in Determining the Efficiency of the Non-thermal Plasma Treatment. Front Microbiol 2018; 9:2171. [PMID: 30250463 PMCID: PMC6140754 DOI: 10.3389/fmicb.2018.02171] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/23/2018] [Indexed: 11/13/2022] Open
Abstract
We have recently developed a non-thermal plasma (NTP) equipment intended to sterilize fragile medical devices and maintain the sterile state of items downstream the treatment. With traditional counts on agar plate a six log reduction of Staphylococcus aureus viability was obtained within 120 min of O2, Ar, or N2 NTP treatments. However to determine the best NTP process, we studied the different physiological states of S. aureus by flow cytometry (FC) and confocal laser scanning microscopy (CLSM) focusing on the esterasic activity and membrane integrity of the bacteria. Two fluorochromes, 5-(and-6)-carboxy-2',7'-dichlorofluorescein diacetate and propidium iodide were used in order to distinguish three sub-populations: metabolically active, permeabilized, and damaged bacteria that can be in the viable but nonculturable state. FC and CLSM highlight that O2 and Ar NTP treatments were the most attractive processes. Indeed, a 5 min of Ar NTP generated a high destruction of the structure of bacteria and a 120 min of O2 NTP treatment led to the higher decrease of the total damaged bacteria population. SEM observations showed that in presence of clusters, bacteria of upper layers are easily altered compared to bacteria in the deeper layers. In conclusion, the plate counting method is not sufficient by itself to determine the best NTP treatment. FC and CLSM represent attractive indicator techniques to select the most efficient gas NTP treatment generating the lowest proportion of viable bacteria and the most debris.
Collapse
Affiliation(s)
- Gaëlle Carré
- Laboratoire de Biomatériaux et Inflammation en Site Osseux (EA 4691), SFR CAP-Santé, FED 4231, Université de Reims Champagne-Ardenne, Reims, France
| | - Emilie Charpentier
- Laboratoire de Biomatériaux et Inflammation en Site Osseux (EA 4691), SFR CAP-Santé, FED 4231, Université de Reims Champagne-Ardenne, Reims, France.,Unité de Formation et de Recherche de Pharmacie, Université de Reims Champagne-Ardenne, Reims, France
| | - Sandra Audonnet
- URCACyt - Plateau technique de cytométrie en flux, Université de Reims Champagne-Ardenne, Reims, France.,PICT - Plateforme d'Imagerie Cellulaire et Tissulaire, Université de Reims Champagne-Ardenne, Reims, France
| | - Christine Terryn
- PICT - Plateforme d'Imagerie Cellulaire et Tissulaire, Université de Reims Champagne-Ardenne, Reims, France
| | | | - Christelle Doliwa
- Laboratoire de Biomatériaux et Inflammation en Site Osseux (EA 4691), SFR CAP-Santé, FED 4231, Université de Reims Champagne-Ardenne, Reims, France
| | - Zouhaier Ben Belgacem
- Laboratoire de Biomatériaux et Inflammation en Site Osseux (EA 4691), SFR CAP-Santé, FED 4231, Université de Reims Champagne-Ardenne, Reims, France
| | - Sophie C Gangloff
- Laboratoire de Biomatériaux et Inflammation en Site Osseux (EA 4691), SFR CAP-Santé, FED 4231, Université de Reims Champagne-Ardenne, Reims, France.,Unité de Formation et de Recherche de Pharmacie, Université de Reims Champagne-Ardenne, Reims, France
| | - Marie-Paule Gelle
- Laboratoire de Biomatériaux et Inflammation en Site Osseux (EA 4691), SFR CAP-Santé, FED 4231, Université de Reims Champagne-Ardenne, Reims, France.,UFR Odontologie, Reims, France.,Pôle Médecine Bucco-Dentaire, Centre Hospitalier Universitaire de Reims, Reims, France
| |
Collapse
|