1
|
Cai Z, Feng J, Dong N, Zhou P, Huang Y, Zhang H. Platelet-derived extracellular vesicles play an important role in platelet transfusion therapy. Platelets 2023; 34:2242708. [PMID: 37578045 DOI: 10.1080/09537104.2023.2242708] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 07/24/2023] [Indexed: 08/15/2023]
Abstract
Extracellular vesicles (EVs) contain the characteristics of their cell of origin and mediate cell-to-cell communication. Platelet-derived extracellular vesicles (PEVs) not only have procoagulant activity but also contain platelet-derived inflammatory factors (CD40L and mtDNA) that mediate inflammatory responses. Studies have shown that platelets are activated during storage to produce large amounts of PEVs, which may have implications for platelet transfusion therapy. Compared to platelets, PEVs have a longer storage time and greater procoagulant activity, making them an ideal alternative to platelets. This review describes the reasons and mechanisms by which PEVs may have a role in blood transfusion therapy.
Collapse
Affiliation(s)
- Zhi Cai
- Department of Transfusion, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Junyan Feng
- Class 2018 Medical Inspection Technology, Southwest Medical University, Luzhou, China
| | - Nian Dong
- Department of Clinical Laboratory, Gulin People's Hospital, Guilin, China
| | - Pan Zhou
- Department of Clinical Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Yuanshuai Huang
- Department of Transfusion, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Hongwei Zhang
- Department of Transfusion, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| |
Collapse
|
2
|
Li Y, Meng Y, Zhu X, Van Wijnen A, Eirin A, Lerman LO. Metabolic Syndrome Is Associated With Altered mRNA and miRNA Content in Human Circulating Extracellular Vesicles. Front Endocrinol (Lausanne) 2021; 12:687586. [PMID: 34456862 PMCID: PMC8387871 DOI: 10.3389/fendo.2021.687586] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/23/2021] [Indexed: 12/19/2022] Open
Abstract
As mediators of intercellular communication, circulating extracellular vehicles (EVs) can modulate tissue and cellular pathways by altering transcription profiles in recipient cells, and their content may reflect the status of their parent cells. However, whether their cargo is altered in the metabolic syndrome (Mets) remains unclear. We hypothesized that MetS altered mRNAs and miRNAs packed within circulating-EVs. EVs were collected from plasma of patients with MetS or age-matched Lean controls (n=4 each). RNA sequencing was performed to identify dysregulated mRNAs and miRNAs, and analyze genes targeted by miRNAs, top pathways, and diseases associated with MetS-EVs. MetS patients showed elevated body weight, blood pressure, glucose, insulin, and liver injury markers levels. 1,446 mRNAs were downregulated and 32 upregulated in MetS- compared to Lean-EVs, whereas 40 miRNAs were selectively enriched and 10 downregulated in MetS-EVs. MetS upregulated in EVs genes involved in apoptosis, mitochondrial regulation, transport, and lipoproteins, but downregulated vessel and heart development, protein complex biogenesis, and angiogenesis. MetS also upregulated miRNAs targeting genes implicated in cellular processes, including oxidation-reduction, and downregulated miRNAs capable of modulating catalytic activity, as well as heart, blood vessel, and skeletal development, transcriptional regulation, apoptosis, and cell cycle. Our study, thus, indicates that human subjects with MetS show modified cargo of circulating EVs, which in turn may modulate several critical cellular functions and fate. These EVs may reflect the anomalous status of their parent cells, and potentially serve as important regulators, biomarkers, and targets in the progression and treatment of MetS.
Collapse
Affiliation(s)
- Yongxin Li
- Department of Vascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, United States
| | - Yu Meng
- Central Laboratory, The Fifth Affiliated Hospital of Jinan University, Heyuan, China
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou, China
- *Correspondence: Lilach O. Lerman, ; Yu Meng,
| | - Xiangyang Zhu
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, United States
| | - Andre Van Wijnen
- Departments of Orthopedic Surgery, Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
| | - Alfonso Eirin
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, United States
| | - Lilach O. Lerman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, United States
- *Correspondence: Lilach O. Lerman, ; Yu Meng,
| |
Collapse
|
3
|
Noulsri E, Lerdwana S, Palasuwan D, Palasuwan A. Cell-Derived Microparticles in Blood Products from Thalassemic Blood Donors. Lab Med 2020; 52:150-157. [PMID: 32789465 DOI: 10.1093/labmed/lmaa041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVE To determine the number of cell-derived microparticles (MPs) in blood products obtained from donors who have thalassemia. METHODS Packed red blood cells (PRBCs), plasma, and platelet concentrate (PC) were prepared according to routine procedures. We used flow cytometry to quantitate the concentration of MPs. RESULTS The results of a comparison of MP levels in unprocessed whole blood showed that the concentration of all MPs in the donors without thalassemia trait (n = 255) was higher than in donors with thalassemia trait (n = 70). After processing, increased concentrations of MPs were documented in both groups. Among the blood components, PRBC showed higher platelet-derived MP concentrations in donors with thalassemia than in donors without thalassemia. However, PC showed higher concentrations of total MPs in donors without thalassemia than in donors with that condition. CONCLUSIONS Our results suggest little influence of thalassemia-trait status on changes in MP concentrations in blood components.
Collapse
Affiliation(s)
- Egarit Noulsri
- Research Division, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Surada Lerdwana
- Biomedical Research Incubator Unit, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Duangdao Palasuwan
- Oxidation in Red Cell Disorders and Health Task Force, Department of Clinical Microscopy, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Attakorn Palasuwan
- Oxidation in Red Cell Disorders and Health Task Force, Department of Clinical Microscopy, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
4
|
Wirtz MR, Jurgens J, Zuurbier CJ, Roelofs JJTH, Spinella PC, Muszynski JA, Carel Goslings J, Juffermans NP. Washing or filtering of blood products does not improve outcome in a rat model of trauma and multiple transfusion. Transfusion 2018; 59:134-145. [PMID: 30461025 PMCID: PMC7379301 DOI: 10.1111/trf.15039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 09/04/2018] [Accepted: 09/16/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND Transfusion is associated with organ failure and nosocomial infection in trauma patients, which may be mediated by soluble bioactive substances in blood products, including extracellular vesicles (EVs). We hypothesize that removing EVs, by washing or filtering of blood products, reduces organ failure and improves host immune response. MATERIALS AND METHODS Blood products were prepared from syngeneic rat blood. EVs were removed from RBCs and platelets by washing. Plasma was filtered through a 0.22‐μm filter. Rats were traumatized by crush injury to the intestines and liver, and a femur was fractured. Rats were hemorrhaged until a mean arterial pressure of 40 mm Hg and randomized to receive resuscitation with standard or washed/filtered blood products, in a 1:1:1 ratio. Sham controls were not resuscitated. Ex vivo whole blood stimulation tests were performed and histopathology was done. RESULTS Washing of blood products improved quality metrics compared to standard products. Also, EV levels reduced by 12% to 77%. The coagulation status, as assessed by thromboelastometry, was deranged in both groups and normalized during transfusion, without significant differences. Use of washed/filtered products did not reduce organ failure, as assessed by histopathologic score and biochemical measurements. Immune response ex vivo was decreased following transfusion compared to sham but did not differ between transfusion groups. CONCLUSION Filtering or washing of blood products improved biochemical properties and reduced EV counts, while maintaining coagulation abilities. However, in this trauma and transfusion model, the use of optimized blood components did not attenuate organ injury or immune suppression.
Collapse
Affiliation(s)
- Mathijs R Wirtz
- Department of Intensive Care Medicine, Academic Medical Center, Amsterdam, The Netherlands.,Laboratory of Experimental Intensive Care and Anesthesiology, Academic Medical Center, Amsterdam, The Netherlands.,Department of Trauma Surgery, Academic Medical Center, Amsterdam, The Netherlands
| | - Jordy Jurgens
- Department of Intensive Care Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - Coert J Zuurbier
- Laboratory of Experimental Intensive Care and Anesthesiology, Academic Medical Center, Amsterdam, The Netherlands
| | - Joris J T H Roelofs
- Department of Pathology, Academic Medical Center, Amsterdam, The Netherlands
| | - Philip C Spinella
- Department of Pediatrics, Division of Critical Care, Washington University in St Louis, St Louis, Missouri
| | - Jennifer A Muszynski
- Department of Pediatrics, Division of Critical Care Medicine, Nationwide Children's Hospital, Columbus, Ohio
| | - J Carel Goslings
- Department of Trauma Surgery, Onze Lieve Vrouwe Gasthuis, Amsterdam, The Netherlands
| | - Nicole P Juffermans
- Department of Intensive Care Medicine, Academic Medical Center, Amsterdam, The Netherlands.,Laboratory of Experimental Intensive Care and Anesthesiology, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Seghatchian J, Goubran H. Transfusion and alternatives therapeutic support for oncology patients with hematological problems: “Are we doing more harm than benefit”? Transfus Apher Sci 2017. [DOI: 10.1016/j.transci.2017.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
García-Roa M, del Carmen Vicente-Ayuso M, Bobes AM, Pedraza AC, González-Fernández A, Martín MP, Sáez I, Seghatchian J, Gutiérrez L. Red blood cell storage time and transfusion: current practice, concerns and future perspectives. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2017; 15:222-231. [PMID: 28518049 PMCID: PMC5448828 DOI: 10.2450/2017.0345-16] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 12/24/2016] [Indexed: 12/25/2022]
Abstract
Red blood cells (RBCs) units are the most requested transfusion product worldwide. Indications for transfusion include symptomatic anaemia, acute sickle cell crisis, and acute blood loss of more than 30% of the blood volume, with the aim of restoring tissue oxygen delivery. However, stored RBCs from donors are not a qualitative equal product, and, in many ways, this is a matter of concern in the transfusion practice. Besides donor-to-donor variation, the storage time influences the RBC unit at the qualitative level, as RBCs age in the storage bag and are exposed to the so-called storage lesion. Several studies have shown that the storage lesion leads to post-transfusion enhanced clearance, plasma transferrin saturation, nitric oxide scavenging and/or immunomodulation with potential unwanted transfusion-related clinical outcomes, such as acute lung injury or higher mortality rate. While, to date, several studies have claimed the risk or deleterious effects of "old" vs "young" RBC transfusion regimes, it is still a matter of debate, and consideration should be taken of the clinical context. Transfusion-dependent patients may benefit from transfusion with "young" RBC units, as it assures longer inter-transfusion periods, while transfusion with "old" RBC units is not itself harmful. Unbiased Omics approaches are being applied to the characterisation of RBC through storage, to better understand the (patho)physiological role of microparticles (MPs) that are found naturally, and also on stored RBC units. Perhaps RBC storage time is not an accurate surrogate for RBC quality and there is a need to establish which parameters do indeed reflect optimal efficacy and safety. A better Omics characterisation of components of "young" and "old" RBC units, including MPs, donor and recipient, might lead to the development of new therapies, including the use of engineered RBCs or MPs as cell-based drug delivering tools, or cost-effective personalised transfusion strategies.
Collapse
Affiliation(s)
- María García-Roa
- Department of Hematology, “Instituto de Investigación Sanitaria San Carlos” (IdISSC), “Hospital Clínico San Carlos”, Madrid, Spain
| | - María del Carmen Vicente-Ayuso
- Department of Hematology, “Instituto de Investigación Sanitaria San Carlos” (IdISSC), “Hospital Clínico San Carlos”, Madrid, Spain
| | - Alejandro M. Bobes
- Department of Hematology, “Instituto de Investigación Sanitaria San Carlos” (IdISSC), “Hospital Clínico San Carlos”, Madrid, Spain
| | - Alexandra C. Pedraza
- Department of Hematology, “Instituto de Investigación Sanitaria San Carlos” (IdISSC), “Hospital Clínico San Carlos”, Madrid, Spain
| | - Ataúlfo González-Fernández
- Department of Hematology, “Instituto de Investigación Sanitaria San Carlos” (IdISSC), “Hospital Clínico San Carlos”, Madrid, Spain
| | - María Paz Martín
- Department of Hematology, “Instituto de Investigación Sanitaria San Carlos” (IdISSC), “Hospital Clínico San Carlos”, Madrid, Spain
| | - Isabel Sáez
- ”Servicio de Hematología y Hemoterapia”, “Hospital Clínico San Carlos”, Madrid, Spain
| | - Jerard Seghatchian
- International Consultancy in Blood Components Quality/Safety Improvement and DDR Strategy, London, United Kingdom
| | - Laura Gutiérrez
- Department of Hematology, “Instituto de Investigación Sanitaria San Carlos” (IdISSC), “Hospital Clínico San Carlos”, Madrid, Spain
| |
Collapse
|
7
|
Almizraq RJ, Seghatchian J, Holovati JL, Acker JP. Extracellular vesicle characteristics in stored red blood cell concentrates are influenced by the method of detection. Transfus Apher Sci 2017; 56:254-260. [DOI: 10.1016/j.transci.2017.03.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
8
|
Seghatchian J. Evolving concepts of the RBC storage lesion using Omics and other novel diagnostic tools. Transfus Apher Sci 2017; 56:245-247. [PMID: 28363590 DOI: 10.1016/j.transci.2017.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Jerard Seghatchian
- International Consultancy in Blood Components Quality and Safety Improvement, Audit/Inspection & DDR Strategies, London, UK.
| |
Collapse
|
9
|
D'Alessandro A, Seghatchian J. Hitchhiker's guide to the red cell storage galaxy: Omics technologies and the quality issue. Transfus Apher Sci 2017; 56:248-253. [PMID: 28343934 DOI: 10.1016/j.transci.2017.03.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Red blood cell storage in the blood bank makes millions of units of available for transfusion to civilian and military recipients every year. From glass bottles to plastic bags, from anticoagulants to complex additives, from whole blood to leukocyte filtered packed red blood cells: huge strides have been made in the field of blood component processing and storage in the blood bank during the last century. Still, refrigerated preservation of packed red blood cells under blood bank conditions results in the progressive accumulation of a wide series of biochemical and morphological changes to the stored erythrocytes, collectively referred to as the storage lesion(s). Approximately ten years ago, retrospective clinical evidence had suggested that such lesion(s) may be clinically relevant and mediate some of the untoward transfusion-related effects observed especially in some categories of recipients at risk (e.g. massively or chronically transfused recipients). Since then, randomized clinical trials have failed to prospectively detect any signal related to red cell storage duration and increased morbidity and mortality in several categories of recipients, at the limits of the statistical power of these studies. While a good part of the transfusion community has immediately adopted the take-home message "if it isn't broken, don't fix it" (i.e. no change to the standard of practice should be pursued), decision makers have been further questioning whether there may be room for further improvements in this field. Provocatively, we argue that consensus has yet to be unanimously reached on what makes a good quality marker of the red cell storage lesion and transfusion safety/efficacy. In other words, if it is true that "you can't manage what you can't measure", then future advancements in the field of transfusion medicine will necessarily rely on state of the art analytical omics technologies of well-defined quality parameters. Heavily borrowing from Douglas Adam's imaginary repertoire from the world famous "Hitchhiker's guide to the galaxy", we briefly summarize how some of the principles for intergalactic hitchhikers may indeed apply to inform navigation through the complex universe of red cell storage quality, safety and efficacy.
Collapse
Affiliation(s)
- Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA.
| | - Jerard Seghatchian
- International Consultancy in Blood Component Quality/Safety Improvement, Audit/Inspection and DDR Strategies, London, UK.
| |
Collapse
|
10
|
Petrik J, Seghatchian J. Big things from small packages: The multifaceted roles of extracellular vesicles in the components quality, therapy and infection. Transfus Apher Sci 2016; 55:4-8. [DOI: 10.1016/j.transci.2016.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|