1
|
Ji MM, Shen YG, Gong JC, Tang W, Xu XQ, Zheng Z, Chen SY, He Y, Zheng X, Zhao LD, Zhao WL, Wu W. [Efficiency and safety analysis of Plerixafor combined with granulocyte colony-stimulating factor on autologous hematopoietic stem cell mobilization in lymphoma]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2023; 44:112-117. [PMID: 36948864 PMCID: PMC10033277 DOI: 10.3760/cma.j.issn.0253-2727.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Indexed: 03/24/2023]
Abstract
Objective: To evaluate the advantages and safety of Plerixafor in combination with granulocyte colony-stimulating factor (G-CSF) in autologous hematopoietic stem cell mobilization of lymphoma. Methods: Lymphoma patients who received autologous hematopoietic stem cell mobilization with Plerixafor in combination with G-CSF or G-CSF alone were obtained. The clinical data, the success rate of stem cell collection, hematopoietic reconstitution, and treatment-related adverse reactions between the two groups were evaluated retrospectively. Results: A total of 184 lymphoma patients were included in this analysis, including 115 cases of diffuse large B-cell lymphoma (62.5%) , 16 cases of classical Hodgkin's lymphoma (8.7%) , 11 cases of follicular non-Hodgkin's lymphoma (6.0%) , 10 cases of angioimmunoblastic T-cell lymphoma (5.4%) , 6 cases of mantle cell lymphoma (3.3%) , and 6 cases of anaplastic large cell lymphoma (3.3%) , 6 cases of NK/T-cell lymphoma (3.3%) , 4 cases of Burkitt's lymphoma (2.2%) , 8 cases of other types of B-cell lymphoma (4.3%) , and 2 cases of other types of T-cell lymphoma (1.1%) ; 31 patients had received radiotherapy (16.8%) . The patients in the two groups were recruited with Plerixafor in combination with G-CSF or G-CSF alone. The baseline clinical characteristics of the two groups were basically similar. The patients in the Plerixafor in combination with the G-CSF mobilization group were older, and the number of recurrences and third-line chemotherapy was higher. 100 patients were mobilized with G-CSF alone. The success rate of the collection was 74.0% for one day and 89.0% for two days. 84 patients in the group of Plerixafor combined with G-CSF were recruited successfully with 85.7% for one day and 97.6% for two days. The success rate of mobilization in the group of Plerixafor combined with G-CSF was substantially higher than that in the group of G-CSF alone (P=0.023) . The median number of CD34(+) cells obtained in the mobilization group of Plerixafor combined with G-CSF was 3.9×10(6)/kg. The median number of CD34(+) cells obtained in the G-CSF Mobilization group alone was 3.2×10(6)/kg. The number of CD34(+) cells collected by Plerixafor combined with G-CSF was considerably higher than that in G-CSF alone (P=0.001) . The prevalent adverse reactions in the group of Plerixafor combined with G-CSF were grade 1-2 gastrointestinal reactions (31.2%) and local skin redness (2.4%) . Conclusion: The success rate of autologous hematopoietic stem cell mobilization in lymphoma patients treated with Plerixafor combined with G-CSF is significantly high. The success rate of collection and the absolute count of CD34(+) stem cells were substantially higher than those in the group treated with G-CSF alone. Even in older patients, second-line collection, recurrence, or multiple chemotherapies, the combined mobilization method also has a high success rate of mobilization.
Collapse
Affiliation(s)
- M M Ji
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Y G Shen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - J C Gong
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - W Tang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - X Q Xu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Z Zheng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - S Y Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Y He
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - X Zheng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - L D Zhao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - W L Zhao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - W Wu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
2
|
Luo C, Wu G, Huang X, Zhang Y, Ma Y, Huang Y, Huang Z, Li H, Hou Y, Chen J, Li X, Xu S. Efficacy of hematopoietic stem cell mobilization regimens in patients with hematological malignancies: a systematic review and network meta-analysis of randomized controlled trials. Stem Cell Res Ther 2022; 13:123. [PMID: 35317856 PMCID: PMC8939102 DOI: 10.1186/s13287-022-02802-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 03/07/2022] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Efficient mobilization of hematopoietic stem cells (HSCs) from bone marrow niche into circulation is the key to successful collection and transplantation in patients with hematological malignancies. The efficacy of various HSCs mobilization regimens has been widely investigated, but the results are inconsistent. METHODS We performed comprehensive databases searching for eligible randomized controlled trials (RCTs) that comparing the efficacy of HSCs mobilization regimens in patients with hematological malignancies. Bayesian network meta-analyses were performed with WinBUGS. Standard dose of granulocyte colony-stimulating factor (G-CSF SD) was chosen as the common comparator. Estimates of relative treatment effects for other regimens were reported as mean differences (MD) or odds ratio (OR) with associated 95% credibility interval (95% CrI). The surface under the cumulative ranking curve (SUCRA) were obtained to present rank probabilities of all included regimens. RESULTS Databases searching and study selection identified 44 eligible RCTs, of which the mobilization results are summarized. Then we compared the efficacy of mobilization regimens separately for patients with multiple myeloma (MM) and non-Hodgkin lymphoma (NHL) by including 13 eligible trials for network meta-analysis, involving 638 patients with MM and 592 patients with NHL. For patients with MM, data are pooled from 8 trials for 6 regimens, including G-CSF in standard dose (SD) or reduced dose (RD) combined with cyclophosphamide (CY), intermediate-dose cytarabine (ID-AraC) or plerixafor. The results show that compared with G-CSF SD alone, 3 regimens including ID-AraC + G-CSF SD (MD 14.29, 95% CrI 9.99-18.53; SUCRA 1.00), G-CSF SD + Plerixafor SD (MD 4.15, 95% CrI 2.92-5.39; SUCRA 0.80), and CY + G-CSF RD (MD 1.18, 95% CrI 0.29-2.07; SUCRA 0.60) are associated with significantly increased total number of collected CD34+ cells (× 106/kg), among which ID-AraC + G-CSF SD ranked first with a probability of being best regimen of 100%. Moreover, ID-AraC + G-CSF SD and G-CSF SD + Plerixafor SD are associated with significantly higher successful rate of achieving optimal target (collecting ≥ 4-6 × 106 CD34+ cells/kg). For patients with NHL, data are pooled from 5 trials for 4 regimens, the results show that compared with G-CSF SD alone, G-CSF SD + Plerixafor SD (MD 3.62, 95% CrI 2.86-4.38; SUCRA 0.81) and G-CSF SD plus the new CXC chemokine receptor-4 (CXCR-4) antagonist YF-H-2015005 (MD 3.43, 95% CrI 2.51-4.35; SUCRA 0.69) are associated with significantly higher number of total CD34+ cells collected. These 2 regimens are also associated with significantly higher successful rate of achieving optimal target. There are no significant differences in rate of achieving optimal target between G-CSF SD + Plerixafor SD and G-CSF + YF-H-2015005. CONCLUSIONS In conclusion, ID-AraC plus G-CSF is associated with the highest probability of being best mobilization regimen in patients with MM. For patients with NHL, G-CSF in combination with plerixafor or YF-H-2015005 showed similar improvements in HSCs mobilization efficacy. The relative effects of other chemotherapy-based mobilization regimens still require to be determined with further investigations.
Collapse
Affiliation(s)
- Chengxin Luo
- Center for Hematology, Southwest Hospital, Third Military Medical University, #30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
- Key Laboratory of Cancer Immunotherapy of Chongqing, Chongqing, China
| | - Guixian Wu
- Center for Hematology, Southwest Hospital, Third Military Medical University, #30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
- Key Laboratory of Cancer Immunotherapy of Chongqing, Chongqing, China
| | - Xiangtao Huang
- Center for Hematology, Southwest Hospital, Third Military Medical University, #30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
- Key Laboratory of Cancer Immunotherapy of Chongqing, Chongqing, China
| | - Yali Zhang
- Center for Hematology, Southwest Hospital, Third Military Medical University, #30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
- Key Laboratory of Cancer Immunotherapy of Chongqing, Chongqing, China
| | - Yanni Ma
- Center for Hematology, Southwest Hospital, Third Military Medical University, #30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
- Key Laboratory of Cancer Immunotherapy of Chongqing, Chongqing, China
| | - Yarui Huang
- Center for Hematology, Southwest Hospital, Third Military Medical University, #30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
- Key Laboratory of Cancer Immunotherapy of Chongqing, Chongqing, China
| | - Zhen Huang
- Center for Hematology, Southwest Hospital, Third Military Medical University, #30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
- Key Laboratory of Cancer Immunotherapy of Chongqing, Chongqing, China
| | - Hui Li
- Center for Hematology, Southwest Hospital, Third Military Medical University, #30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
- Key Laboratory of Cancer Immunotherapy of Chongqing, Chongqing, China
| | - Yu Hou
- Center for Hematology, Southwest Hospital, Third Military Medical University, #30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
- Key Laboratory of Cancer Immunotherapy of Chongqing, Chongqing, China
| | - Jieping Chen
- Center for Hematology, Southwest Hospital, Third Military Medical University, #30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
- Key Laboratory of Cancer Immunotherapy of Chongqing, Chongqing, China
| | - Xi Li
- Institute of Infectious Disease, Southwest Hospital, Third Military Medical University, #30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.
| | - Shuangnian Xu
- Center for Hematology, Southwest Hospital, Third Military Medical University, #30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.
- Key Laboratory of Cancer Immunotherapy of Chongqing, Chongqing, China.
| |
Collapse
|