1
|
The Fate of Transplanted Olfactory Progenitors Is Conditioned by the Cell Phenotypes of the Receiver Brain Tissue in Cocultures. Int J Mol Sci 2020; 21:ijms21197249. [PMID: 33008128 PMCID: PMC7582579 DOI: 10.3390/ijms21197249] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/13/2020] [Accepted: 09/25/2020] [Indexed: 02/07/2023] Open
Abstract
Among the numerous candidates for cell therapy of the central nervous system (CNS), olfactory progenitors (OPs) represent an interesting alternative because they are free of ethical concerns, are easy to collect, and allow autologous transplantation. In the present study, we focused on the optimization of neuron production and maturation. It is known that plated OPs respond to various trophic factors, and we also showed that the use of Nerve Growth Factor (NGF) allowed switching from a 60/40 neuron/glia ratio to an 80/20 one. Nevertheless, in order to focus on the integration of OPs in mature neural circuits, we cocultured OPs in primary cultures obtained from the cortex and hippocampus of newborn mice. When dissociated OPs were plated, they differentiated into both glial and neuronal phenotypes, but we obtained a 1.5-fold higher viability in cortex/OP cocultures than in hippocampus/OP ones. The fate of OPs in cocultures was characterized with different markers such as BrdU, Map-2, and Synapsin, indicating a healthy integration. These results suggest that the integration of transplanted OPs might by affected by trophic factors and the environmental conditions/cell phenotypes of the host tissue. Thus, a model of coculture could provide useful information on key cell events for the use of progenitors in cell therapy.
Collapse
|
2
|
Yun BG, Lee SH, Jeon JH, Kim SW, Jung CK, Park G, Kim SY, Jeon S, Lee MS, Park SH, Jang J, Yang HS, Cho DW, Lim JY, Kim SW. Accelerated Bone Regeneration via Three-Dimensional Cell-Printed Constructs Containing Human Nasal Turbinate-Derived Stem Cells as a Clinically Applicable Therapy. ACS Biomater Sci Eng 2019; 5:6171-6185. [DOI: 10.1021/acsbiomaterials.9b01356] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Byeong Gon Yun
- Department of Otolaryngology-Head and Neck Surgery, Seoul St. Mary’s Hospital, The Catholic University of Korea, 222 Banpo-Daero, Seocho-gu, Seoul 06591, Republic of Korea
| | - Se-Hwan Lee
- Department of Creative IT Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam ro, Nam-gu, Pohang, Kyungbuk 790-784, Republic of Korea
| | - Jung Ho Jeon
- Department of Otolaryngology-Head and Neck Surgery, Seoul St. Mary’s Hospital, The Catholic University of Korea, 222 Banpo-Daero, Seocho-gu, Seoul 06591, Republic of Korea
| | - Seok-Won Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam ro, Nam-gu, Pohang, Kyungbuk 790-784, Republic of Korea
| | - Chan Kwon Jung
- Department of Hospital Pathology, College of Medicine, The Catholic University of Korea, 222 Banpo-Daero, Seocho-gu, Seoul 06591, Republic of Korea
| | - Gyeongsin Park
- Department of Hospital Pathology, College of Medicine, The Catholic University of Korea, 222 Banpo-Daero, Seocho-gu, Seoul 06591, Republic of Korea
| | - Su Young Kim
- Department of Hospital Pathology, College of Medicine, The Catholic University of Korea, 222 Banpo-Daero, Seocho-gu, Seoul 06591, Republic of Korea
| | - Sora Jeon
- Department of Hospital Pathology, College of Medicine, The Catholic University of Korea, 222 Banpo-Daero, Seocho-gu, Seoul 06591, Republic of Korea
| | - Min Suk Lee
- Department of Nanobiomedical Science and BK21 PLUS Global Research Center for Regenerative Medicine, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, Chungnam 31116, Republic of Korea
| | - Sun Hwa Park
- Department of Otolaryngology-Head and Neck Surgery, Seoul St. Mary’s Hospital, The Catholic University of Korea, 222 Banpo-Daero, Seocho-gu, Seoul 06591, Republic of Korea
| | - Jinah Jang
- Department of Creative IT Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam ro, Nam-gu, Pohang, Kyungbuk 790-784, Republic of Korea
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam ro, Nam-gu, Pohang, Kyungbuk 790-784, Republic of Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam ro, Nam-gu, Pohang, Kyungbuk 790-784, Republic of Korea
| | - Hee Seok Yang
- Department of Nanobiomedical Science and BK21 PLUS Global Research Center for Regenerative Medicine, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, Chungnam 31116, Republic of Korea
| | - Dong-Woo Cho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam ro, Nam-gu, Pohang, Kyungbuk 790-784, Republic of Korea
| | - Jung Yeon Lim
- Department of Otolaryngology-Head and Neck Surgery, Seoul St. Mary’s Hospital, The Catholic University of Korea, 222 Banpo-Daero, Seocho-gu, Seoul 06591, Republic of Korea
| | - Sung Won Kim
- Department of Otolaryngology-Head and Neck Surgery, Seoul St. Mary’s Hospital, The Catholic University of Korea, 222 Banpo-Daero, Seocho-gu, Seoul 06591, Republic of Korea
| |
Collapse
|
3
|
Vijayavenkataraman S. A Perspective on Bioprinting Ethics. Artif Organs 2018; 40:1033-1038. [PMID: 28374411 DOI: 10.1111/aor.12873] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 08/12/2016] [Accepted: 09/01/2016] [Indexed: 12/12/2022]
|
4
|
Parvari S, Yazdekhasti H, Rajabi Z, Gerayeli Malek V, Rastegar T, Abbasi M. Differentiation of Mouse Ovarian Stem Cells Toward Oocyte-Like Structure by Coculture with Granulosa Cells. Cell Reprogram 2017; 18:419-428. [PMID: 27906587 DOI: 10.1089/cell.2016.0013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
An increasing body of evidence has confirmed existence and function of ovarian stem cells (OSCs). In this study, a novel approach on differentiation of OSCs into oocyte-like cells (OLCs) has been addressed. Recently, different methods have been recruited to isolate and describe aspects of OSCs, but newer and more convenient strategies in isolation are still growing. Herein, a morphology-based method was used to isolate OSCs. Cell suspension of mouse neonatal ovaries was cultured and formed colonies were harvested mechanically and cultivated on mouse embryonic fibroblasts. For differentiation induction, colonies transferred on inactive granulosa cells. Results showed that cells in colonies were positive for alkaline phosphatase activity and reverse transcription-polymerase chain reaction (RT-PCR) confirmed the pluripotency characteristics of cells. Immunofluorescence revealed a positive signal for OCT4, DAZL, MVH, and SSEA1 in colonies as well. Results of RT-PCR and immunofluorescence confirmed that some OLCs were generated within the germ stem cell (GSCs) colonies. The applicability of morphological selection for isolation of GSCs was verified. This method is easier and more economic than other techniques. Our results demonstrate that granulosa cells were effective in inducing the differentiation of OSCs into OLCs through direct cell-to-cell contacts.
Collapse
Affiliation(s)
- Soraya Parvari
- 1 Department of Anatomy, Faculty of Medicine, Alborz University of Medical Sciences , Karaj, Iran
| | - Hossein Yazdekhasti
- 2 Department of Anatomy, Faculty of Medicine, Tehran University of Medical Sciences , Tehran, Iran
| | - Zahra Rajabi
- 2 Department of Anatomy, Faculty of Medicine, Tehran University of Medical Sciences , Tehran, Iran
| | | | - Tayebeh Rastegar
- 2 Department of Anatomy, Faculty of Medicine, Tehran University of Medical Sciences , Tehran, Iran
| | - Mehdi Abbasi
- 2 Department of Anatomy, Faculty of Medicine, Tehran University of Medical Sciences , Tehran, Iran
| |
Collapse
|
5
|
Xie Q, Xie J, Zhong J, Cun X, Lin S, Lin Y, Cai X. Hypoxia enhances angiogenesis in an adipose-derived stromal cell/endothelial cell co-culture 3D gel model. Cell Prolif 2016; 49:236-45. [PMID: 26997164 DOI: 10.1111/cpr.12244] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 12/19/2015] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVES This study aimed to investigate the influence of hypoxia on angiogenesis in a 3D gel, with co-culturing adipose-derived stromal cells (ASCs) and endothelial cells (ECs). MATERIALS AND METHODS ASCs from green fluorescent protein-labeled mice and ECs from red fluorescent protein-labeled mice were co-cultured in 3D collagen gels at 1:1 ratio, in normal and hypoxic oxygen conditions, and morphology of angiogenesis was observed using confocal laser scanning microscopy. To discover changes in growth factors between monoculture ASCs and ECs, transwell co-cultures of ASCs and ECs were applied. Semi-quantitative PCR was performed to explore mRNA expression of growth factors. RESULTS Enhanced angiogenesis was observed in 3D gels implanted with 1:1 mixture of ASCs and ECs after 7 days hypoxia. Genes including VEGFA/B, EGF-1, HIF-1a, IGF-1, PDGF, TGF-β1 and BMP-2/4 in ECs, both monoculture and co-culture, were significantly enhanced after being cultured under hypoxia. In comparison, genes VEGFA/B, EGF-1, HIF-1a, TGF-β1 and BMP-2 in ASCs increased. In all, factors VEGFA/B, EGF-1, HIF-1a, TGF-β1 and BMP-2 increased in both ASCs and ECs after being cultured in hypoxia no matter whether as monoculture or co-culture. CONCLUSIONS Co-culture of ASCs and ECs at 1:1 ratio in a 3D gel under hypoxia promoted angiogenesis. Those growth factors which were increased in both ASCs and ECs, indicate that VEGFA/B, EGF-1, HIF-1a, TGF-β1 and BMP-2 might be responsible for enhancement in angiogenesis triggered by hypoxia.
Collapse
Affiliation(s)
- Qiang Xie
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Jing Xie
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Juan Zhong
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Xiangzhu Cun
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Shiyu Lin
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Xiaoxiao Cai
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, 610041, China
| |
Collapse
|
6
|
Vijayavenkataraman S, Lu W, Fuh J. 3D bioprinting – An Ethical, Legal and Social Aspects (ELSA) framework. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.bprint.2016.08.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
Tresoldi C, Pellegata AF, Mantero S. Cells and stimuli in small-caliber blood vessel tissue engineering. Regen Med 2015; 10:505-27. [DOI: 10.2217/rme.15.19] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The absence of successful solutions in treatments of small-caliber vessel diseases led to the Vascular Tissue Engineering approach to develop functional nonimmunogenic tissue engineered blood vessels. In this context, the choice of cells to be seeded and the microenvironment conditioning are pivotal. Biochemical and biomechanical stimuli seem to activate physiological regulatory pathways that induce the production of molecules and proteins stimulating stem cell differentiation toward vascular lineage and reproducing natural cross-talks among vascular cells to improve the maturation of tissue engineered blood vessels. Thus, this review focuses on (1) available cell sources, and (2) biochemical and biomechanical stimuli, with the final aim to obtain the long-term stability of the endothelium and mechanical properties suitable for withstanding physiological load.
Collapse
Affiliation(s)
- Claudia Tresoldi
- Department of Chemistry, Materials & Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milan, Italy
| | - Alessandro Filippo Pellegata
- Department of Chemistry, Materials & Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milan, Italy
| | - Sara Mantero
- Department of Chemistry, Materials & Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milan, Italy
| |
Collapse
|
8
|
Tajiri N, Duncan K, Borlongan MC, Pabon M, Acosta S, de la Pena I, Hernadez-Ontiveros D, Lozano D, Aguirre D, Reyes S, Sanberg PR, Eve DJ, Borlongan CV, Kaneko Y. Adult stem cell transplantation: is gender a factor in stemness? Int J Mol Sci 2014; 15:15225-43. [PMID: 25170809 PMCID: PMC4200754 DOI: 10.3390/ijms150915225] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 08/19/2014] [Accepted: 08/25/2014] [Indexed: 01/23/2023] Open
Abstract
Cell therapy now constitutes an important area of regenerative medicine. The aging of the population has mandated the discovery and development of new and innovative therapeutic modalities to combat devastating disorders such as stroke. Menstrual blood and Sertoli cells represent two sources of viable transplantable cells that are gender-specific, both of which appear to have potential as donor cells for transplantation in stroke. During the subacute phase of stroke, the use of autologous cells offers effective and practical clinical application and is suggestive of the many benefits of using the aforementioned gender-specific cells. For example, in addition to being exceptionally immunosuppressive, testis-derived Sertoli cells secrete many growth and trophic factors and have been shown to aid in the functional recovery of animals transplanted with fetal dopaminergic cells. Correspondingly, menstrual blood cells are easily obtainable and exhibit angiogenic characteristics, proliferative capability, and pluripotency. Of further interest is the ability of menstrual blood cells, following transplantation in stroke models, to migrate to the infarct site, secrete neurotrophic factors, regulate the inflammatory response, and be steered towards neural differentiation. From cell isolation to transplantation, we emphasize in this review paper the practicality and relevance of the experimental and clinical use of gender-specific stem cells, such as Sertoli cells and menstrual blood cells, in the treatment of stroke.
Collapse
Affiliation(s)
- Naoki Tajiri
- Center of Excellence for Aging & Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA.
| | - Kelsey Duncan
- Center of Excellence for Aging & Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA.
| | - Mia C Borlongan
- Center of Excellence for Aging & Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA.
| | - Mibel Pabon
- Center of Excellence for Aging & Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA.
| | - Sandra Acosta
- Center of Excellence for Aging & Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA.
| | - Ike de la Pena
- Center of Excellence for Aging & Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA.
| | - Diana Hernadez-Ontiveros
- Center of Excellence for Aging & Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA.
| | - Diego Lozano
- Center of Excellence for Aging & Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA.
| | - Daniela Aguirre
- Center of Excellence for Aging & Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA.
| | - Stephanny Reyes
- Center of Excellence for Aging & Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA.
| | - Paul R Sanberg
- Center of Excellence for Aging & Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA. psanberg@.usf.edu
| | - David J Eve
- Center of Excellence for Aging & Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA.
| | - Cesar V Borlongan
- Center of Excellence for Aging & Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA.
| | - Yuji Kaneko
- Center of Excellence for Aging & Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA.
| |
Collapse
|
9
|
Kaneko Y, Dailey T, Weinbren NL, Rizzi J, Tamboli C, Allickson JG, Kuzmin-Nichols N, Sanberg PR, Eve DJ, Tajiri N, Borlongan CV. The battle of the sexes for stroke therapy: female- versus male-derived stem cells. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2014; 12:405-412. [PMID: 23469849 DOI: 10.2174/1871527311312030013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 09/10/2012] [Accepted: 09/14/2012] [Indexed: 12/14/2022]
Abstract
Cell therapy is a major discipline of regenerative medicine that has been continually growing over the last two decades. The aging of the population necessitates discovery of therapeutic innovations to combat debilitating disorders, such as stroke. Menstrual blood and Sertoli cells are two gender-specific sources of viable transplantable cells for stroke therapy. The use of autologous cells for the subacute phase of stroke offers practical clinical application. Menstrual blood cells are readily available, display proliferative capacity, pluripotency and angiogenic features, and, following transplantation in stroke models, have the ability to migrate to the infarct site, regulate the inflammatory response, secrete neurotrophic factors, and have the possibility to differentiate into neural lineage. Similarly, the testis-derived Sertoli cells secrete many growth and trophic factors, are highly immunosuppressive, and exert neuroprotective effects in animal models of neurological disorders. We highlight the practicality of experimental and clinical application of menstrual blood cells and Sertoli cells to treat stroke, from cell isolation and cryopreservation to administration.
Collapse
Affiliation(s)
- Yuji Kaneko
- Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL USA
| | - Travis Dailey
- Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL USA
| | - Nathan L Weinbren
- Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL USA
| | - Jessica Rizzi
- Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL USA
| | - Cyrus Tamboli
- Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL USA
| | | | | | - Paul R Sanberg
- Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL USA
| | - David J Eve
- Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL USA
| | - Naoki Tajiri
- Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL USA
| | - Cesar V Borlongan
- Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL USA
| |
Collapse
|
10
|
Oerlemans AJM, van Hoek MEC, van Leeuwen E, van der Burg S, Dekkers WJM. Towards a richer debate on tissue engineering: a consideration on the basis of NEST-ethics. SCIENCE AND ENGINEERING ETHICS 2013; 19:963-81. [PMID: 23229374 DOI: 10.1007/s11948-012-9419-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 11/06/2012] [Indexed: 05/04/2023]
Abstract
In their 2007 paper, Swierstra and Rip identify characteristic tropes and patterns of moral argumentation in the debate about the ethics of new and emerging science and technologies (or "NEST-ethics"). Taking their NEST-ethics structure as a starting point, we considered the debate about tissue engineering (TE), and argue what aspects we think ought to be a part of a rich and high-quality debate of TE. The debate surrounding TE seems to be predominantly a debate among experts. When considering the NEST-ethics arguments that deal directly with technology, we can generally conclude that consequentialist arguments are by far the most prominently featured in discussions of TE. In addition, many papers discuss principles, rights and duties relevant to aspects of TE, both in a positive and in a critical sense. Justice arguments are only sporadically made, some "good life" arguments are used, others less so (such as the explicit articulation of perceived limits, or the technology as a technological fix for a social problem). Missing topics in the discussion, at least from the perspective of NEST-ethics, are second "level" arguments-those referring to techno-moral change connected to tissue engineering. Currently, the discussion about tissue engineering mostly focuses on its so-called "hard impacts"-quantifiable risks and benefits of the technology. Its "soft impacts"-effects that cannot easily be quantified, such as changes to experience, habits and perceptions, should receive more attention.
Collapse
Affiliation(s)
- A J M Oerlemans
- Scientific Institute for Quality of Healthcare, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.
| | | | | | | | | |
Collapse
|
11
|
Manzar N, Manzar B, Hussain N, Hussain MFA, Raza S. The ethical dilemma of embryonic stem cell research. SCIENCE AND ENGINEERING ETHICS 2013; 19:97-106. [PMID: 22038063 DOI: 10.1007/s11948-011-9326-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Accepted: 10/18/2011] [Indexed: 05/31/2023]
Abstract
To determine the knowledge, attitude, and ethical concerns of medical students and graduates with regard to Embryonic Stem Cell (ESC) research. This questionnaire based descriptive study was conducted at the Civil Hospital Karachi (CHK), Pakistan from February to July 2008. A well structured questionnaire was administered to medical students and graduate doctors, which included their demographic profile as well as questions in line with the study objective. Informed consent was taken and full confidentiality was assured to the participants. Data were entered in a Statistical Package for Social Sciences (SPSS version.12) and analyzed. A total of 204 male and 216 female medical students and doctors were administered questionnaires out of which 105 males (51.4%) and 108 females (50%) were aware of the embryonic stem cell research and its ethical implications. Forty percent males and 47% of females were of the opinion that life begins at conception. Forty-six percent males and 39% females were in favor of stem cell research while only 31% males and 28% females supported the ESC research. Less than 1/3 of students supported using frozen embryos for research purposes while more than 2/3 indicated that they were unlikely to support abortion for stem cell research purposes. The majority of the students were in favor of stem cell research with some reservations regarding ESC research. A sizeable number of students withheld their views, reflecting their poor understanding of medical ethics. The result of the study indicates a need for incorporating bioethics into the medical curriculum.
Collapse
Affiliation(s)
- Nabeel Manzar
- Dow University of Health Sciences, Karachi, Pakistan.
| | | | | | | | | |
Collapse
|
12
|
Borlongan CV, Glover LE, Sanberg PR, Hess DC. Permeating the blood brain barrier and abrogating the inflammation in stroke: implications for stroke therapy. Curr Pharm Des 2012; 18:3670-6. [PMID: 22574981 DOI: 10.2174/138161212802002841] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 01/24/2012] [Indexed: 01/18/2023]
Abstract
Cell therapy has been shown as a potential treatment for stroke and other neurological disorders. Human umbilical cord blood (HUCB) may be a promising source of stem cells for cell therapy. The most desired outcomes occur when stem cells cross the blood brain barrier (BBB) and eventually reach the injured brain site. We propose, from our previous studies, that mannitol is capable of disrupting the BBB, allowing the transplanted cells to enter the brain from the periphery. However, when the BBB is compromised, the inflammatory response from circulation may also be able to penetrate the brain and thus may actually exacerbate the stroke rather than afford therapeutic effects. We discuss how an NF-kB decoy can inhibit the inflammatory responses in the stroke brain thereby reducing the negative effects associated with BBB disruption. In this review, we propose the combination of mannitol-induced BBB permeation and NF-kB decoy for enhancing the therapeutic benefits of cell therapy in stroke.
Collapse
Affiliation(s)
- Cesar V Borlongan
- Department of Neurology, Georgia Health Sciences University, Augusta, Georgia 30912, USA.
| | | | | | | |
Collapse
|
13
|
RODRIGUES MARIACAROLINAO, DMITRIEV DMITRIY, RODRIGUES ANTONIO, GLOVER LORENE, SANBERG PAULR, ALLICKSON JULIEG, KUZMIN-NICHOLS NICOLE, TAJIRI NAOKI, SHINOZUKA KAZUTAKA, GARBUZOVA-DAVIS SVITLANA, KANEKO YUJI, BORLONGAN CESARV. Menstrual blood transplantation for ischemic stroke: Therapeutic mechanisms and practical issues. Interv Med Appl Sci 2012; 4:59-68. [PMID: 25267932 PMCID: PMC4177033 DOI: 10.1556/imas.4.2012.2.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Cerebrovascular diseases are a major cause of death and long-term disability in developed countries. Tissue plasmin activator (tPA) is the only approved therapy for ischemic stroke, strongly limited by the short therapeutic window and hemorrhagic complications, therefore excluding most patients from its benefits. The rescue of the penumbra area of the ischemic infarct is decisive for functional recovery after stroke. Inflammation is a key feature in the penumbra area and it plays a dual role, improving injury in early phases but impairing neural survival at later stages. Stem cells can be opportunely used to modulate inflammation, abrogate cell death and, therefore, preserve neural function. We here discuss the possible role of stem cells derived from menstrual blood as restorative treatment for stroke. We highlight the availability, proliferative capacity, pluripotentiality and angiogenic features of these cells and explore their present and future experimental and clinical applications.
Collapse
Affiliation(s)
- MARIA CAROLINA O. RODRIGUES
- Department of Neurosurgery and Brain Repair, University of South Florida, College of Medicine, Tampa, FL, USA
- Department of Internal Medicine, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - DMITRIY DMITRIEV
- Department of Neurosurgery and Brain Repair, University of South Florida, College of Medicine, Tampa, FL, USA
| | - ANTONIO RODRIGUES
- Department of Neurosurgery and Brain Repair, University of South Florida, College of Medicine, Tampa, FL, USA
- Department of Internal Medicine, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - LOREN E. GLOVER
- Department of Neurosurgery and Brain Repair, University of South Florida, College of Medicine, Tampa, FL, USA
| | - PAUL R. SANBERG
- Department of Neurosurgery and Brain Repair, University of South Florida, College of Medicine, Tampa, FL, USA
| | | | | | - NAOKI TAJIRI
- Department of Neurosurgery and Brain Repair, University of South Florida, College of Medicine, Tampa, FL, USA
| | - KAZUTAKA SHINOZUKA
- Department of Neurosurgery and Brain Repair, University of South Florida, College of Medicine, Tampa, FL, USA
| | - SVITLANA GARBUZOVA-DAVIS
- Department of Neurosurgery and Brain Repair, University of South Florida, College of Medicine, Tampa, FL, USA
| | - YUJI KANEKO
- Department of Neurosurgery and Brain Repair, University of South Florida, College of Medicine, Tampa, FL, USA
| | - CESAR V. BORLONGAN
- Department of Neurosurgery and Brain Repair, University of South Florida, College of Medicine, Tampa, FL, USA
| |
Collapse
|
14
|
Mesenchymal stem cells as a potent cell source for bone regeneration. Stem Cells Int 2012; 2012:980353. [PMID: 22448175 PMCID: PMC3289837 DOI: 10.1155/2012/980353] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 11/21/2011] [Accepted: 12/05/2011] [Indexed: 02/07/2023] Open
Abstract
While small bone defects heal spontaneously, large bone defects need surgical intervention for bone transplantation. Autologous bone grafts are the best and safest strategy for bone repair. An alternative method is to use allogenic bone graft. Both methods have limitations, particularly when bone defects are of a critical size. In these cases, bone constructs created by tissue engineering technologies are of utmost importance. Cells are one main component in the manufacture of bone construct. A few cell types, including embryonic stem cells (ESCs), adult osteoblast, and adult stem cells, can be used for this purpose. Mesenchymal stem cells (MSCs), as adult stem cells, possess characteristics that make them good candidate for bone repair. This paper discusses different aspects of MSCs that render them an appropriate cell type for clinical use to promote bone regeneration.
Collapse
|
15
|
Rodrigues MCO, Glover LE, Weinbren N, Rizzi JA, Ishikawa H, Shinozuka K, Tajiri N, Kaneko Y, Sanberg PR, Allickson JG, Kuzmin-Nichols N, Garbuzova-Davis S, Voltarelli JC, Cruz E, Borlongan CV. Toward personalized cell therapies: autologous menstrual blood cells for stroke. J Biomed Biotechnol 2011; 2011:194720. [PMID: 22162629 PMCID: PMC3227246 DOI: 10.1155/2011/194720] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 09/12/2011] [Indexed: 01/14/2023] Open
Abstract
Cell therapy has been established as an important field of research with considerable progress in the last years. At the same time, the progressive aging of the population has highlighted the importance of discovering therapeutic alternatives for diseases of high incidence and disability, such as stroke. Menstrual blood is a recently discovered source of stem cells with potential relevance for the treatment of stroke. Migration to the infarct site, modulation of the inflammatory reaction, secretion of neurotrophic factors, and possible differentiation warrant these cells as therapeutic tools. We here propose the use of autologous menstrual blood cells in the restorative treatment of the subacute phase of stroke. We highlight the availability, proliferative capacity, pluripotency, and angiogenic features of these cells and explore their mechanistic pathways of repair. Practical aspects of clinical application of menstrual blood cells for stroke will be discussed, from cell harvesting and cryopreservation to administration to the patient.
Collapse
Affiliation(s)
- Maria Carolina O. Rodrigues
- Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Boulevard, Tampa, FL 33612, USA
- Department of Internal Medicine, School of Medicine of Ribeirão Preto, University of São Paulo, 14049-900 Ribeirão Preto, SP, Brazil
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Boulevard, Tampa, FL 33612, USA
| | - Loren E. Glover
- Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Boulevard, Tampa, FL 33612, USA
| | - Nathan Weinbren
- Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Boulevard, Tampa, FL 33612, USA
| | - Jessica A. Rizzi
- Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Boulevard, Tampa, FL 33612, USA
| | - Hiroto Ishikawa
- Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Boulevard, Tampa, FL 33612, USA
| | - Kazutaka Shinozuka
- Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Boulevard, Tampa, FL 33612, USA
| | - Naoki Tajiri
- Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Boulevard, Tampa, FL 33612, USA
| | - Yuji Kaneko
- Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Boulevard, Tampa, FL 33612, USA
| | - Paul R. Sanberg
- Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Boulevard, Tampa, FL 33612, USA
| | | | | | - Svitlana Garbuzova-Davis
- Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Boulevard, Tampa, FL 33612, USA
| | - Julio Cesar Voltarelli
- Department of Internal Medicine, School of Medicine of Ribeirão Preto, University of São Paulo, 14049-900 Ribeirão Preto, SP, Brazil
| | - Eduardo Cruz
- Cryopraxis, Cell Praxis, BioRio, Póde Biotechnologia do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cesar V. Borlongan
- Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Boulevard, Tampa, FL 33612, USA
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Boulevard, Tampa, FL 33612, USA
| |
Collapse
|
16
|
Oerlemans AJ, van den Berg PP, van Leeuwen E, Dekkers WJ. Ethical Issues Regarding the Donation and Source of Cells for Tissue Engineering: A European Focus Group Study. TISSUE ENGINEERING PART B-REVIEWS 2011; 17:229-34. [DOI: 10.1089/ten.teb.2010.0683] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Anke J.M. Oerlemans
- Section Ethics, Philosophy, and History of Medicine, Scientific Institute for Quality of Healthcare, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Paul P. van den Berg
- Department of Obstetrics and Gynaecology, University Medical Centre Groningen, Groningen, The Netherlands
| | - Evert van Leeuwen
- Section Ethics, Philosophy, and History of Medicine, Scientific Institute for Quality of Healthcare, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Wim J.M. Dekkers
- Section Ethics, Philosophy, and History of Medicine, Scientific Institute for Quality of Healthcare, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
17
|
Recent progress in cell therapy for basal ganglia disorders with emphasis on menstrual blood transplantation in stroke. Neurosci Biobehav Rev 2011; 36:177-90. [PMID: 21645544 DOI: 10.1016/j.neubiorev.2011.05.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 04/25/2011] [Accepted: 05/20/2011] [Indexed: 12/13/2022]
Abstract
Cerebrovascular diseases are the third leading cause of death and the primary cause of long-term disability in the United States. The only approved therapy for stroke is tPA, strongly limited by the short therapeutic window and hemorrhagic complications, therefore excluding most patients from its benefits. Parkinson's and Huntington's disease are the other two most studied basal ganglia diseases and, as stroke, have very limited treatment options. Inflammation is a key feature in central nervous system disorders and it plays a dual role, either improving injury in early phases or impairing neural survival at later stages. Stem cells can be opportunely used to modulate inflammation, abrogate cell death and, therefore, preserve neural function. We here discuss the role of stem cells as restorative treatments for basal ganglia disorders, including Parkinson's disease, Huntington's disease and stroke, with special emphasis to the recently investigated menstrual blood stem cells. We highlight the availability, proliferative capacity, pluripotentiality and angiogenic features of these cells and explore their present and future experimental and clinical applications.
Collapse
|
18
|
Nussler AK, Zeilinger K, Schyschka L, Ehnert S, Gerlach JC, Yan X, Lee SML, Ilowski M, Thasler WE, Weiss TS. Cell therapeutic options in liver diseases: cell types, medical devices and regulatory issues. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2011; 22:1087-1099. [PMID: 21461918 DOI: 10.1007/s10856-011-4306-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 03/24/2011] [Indexed: 05/30/2023]
Abstract
Although significant progress has been made in the field of orthotopic liver transplantation, cell-based therapies seem to be a promising alternative to whole-organ transplantation. The reasons are manifold but organ shortage is the main cause for this approach. However, many problems such as the question which cell type should be used or which application site is best for transplantation have been raised. In addition, some clinicians have had success by cultivating liver cells in bioreactors for temporary life support. Besides answering the question which cell type, which injection site or even which culture form should be used for liver support recent international harmonization of legal requirements is needed to be addressed by clinicians, scientists and companies dealing with cellular therapies. We here briefly summarize the possible cell types used to partially or temporarily correct liver diseases, the most recent development of bioreactor technology and important regulatory issues.
Collapse
Affiliation(s)
- Andreas K Nussler
- Department of Traumatology, MRI, Klinikum rechts der Isar, Technische Universität München, Ismaningerstr. 22, 81675, Munich, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Park DH, Lee JH, Borlongan CV, Sanberg PR, Chung YG, Cho TH. Transplantation of umbilical cord blood stem cells for treating spinal cord injury. Stem Cell Rev Rep 2011; 7:181-94. [PMID: 20532836 DOI: 10.1007/s12015-010-9163-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Spinal cord injury (SCI) develops primary and secondary damage to neural tissue and this often results in permanent disability of the motor and sensory functions. However, there is currently no effective treatment except methylprednisolone, and the use of methylprednisolone has also been questioned due to its moderate efficacy and the drug's downside. Regenerative medicine has remarkably developed since the discovery of stem cells, and many studies have suggested the potential of cell-based therapies for neural injury. Especially, the therapeutic potential of human umbilical cord blood cells (hUCB cells) for intractable neurological disorders has been demonstrated using in vitro and vivo models. The hUCB cells are immune naïve and they are able to differentiate into other phenotypes, including the neural lineage. Their ability to produce several neurotropic factors and to modulate immune and inflammatory reactions has also been noted. Recent evidence has emerged suggesting alternative pathways of graft-mediated neural repair that involve neurotrophic effects. These effects are caused by the release of various growth factors that promote cell survival, angiogenesis and anti-inflammation, and this is all aside from a cell replacement mechanism. In this review, we present the recent findings on the stemness properties and the therapeutic potential of hUCB as a safe, feasible and effective cellular source for transplantation in SCI. These multifaceted protective and restorative effects from hUCB grafts may be interdependent and they act in harmony to promote therapeutic benefits for SCI. Nevertheless, clinical studies with hUCB are still rare because of the concerns about safety and efficiency. Among these concerns, the major histocompatibility in allogeneic transplantation is an important issue to be addressed in future clinical trials for treating SCI.
Collapse
Affiliation(s)
- Dong-Hyuk Park
- Department of Neurosurgery, Korea University Medical Center, Anam Hospital, Korea University College of Medicine, #126, 5-GA, Anam-Dong, Sungbuk-Ku, Seoul 136-705, Korea.
| | | | | | | | | | | |
Collapse
|
20
|
de Vries RBM, Oerlemans A, Trommelmans L, Dierickx K, Gordijn B. Ethical aspects of tissue engineering: a review. TISSUE ENGINEERING PART B-REVIEWS 2009; 14:367-75. [PMID: 18834330 DOI: 10.1089/ten.teb.2008.0199] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Tissue engineering (TE) is a promising new field of medical technology. However, like other new technologies, it is not free of ethical challenges. Identifying these ethical questions at an early stage is not only part of science's responsibility toward society, but also in the interest of the field itself. In this review, we map which ethical issues related to TE have already been documented in the scientific literature. The issues that turn out to dominate the debate are the use of human embryonic stem cells and therapeutic cloning. Nevertheless, a variety of other ethical aspects are mentioned, which relate to different phases in the development of the field. In addition, we discuss a number of ethical issues that have not yet been raised in the literature.
Collapse
Affiliation(s)
- Rob B M de Vries
- Section Ethics, Philosophy, and History of Medicine, Scientific Institute for Quality of Healthcare, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.
| | | | | | | | | |
Collapse
|
21
|
Park DH, Borlongan CV, Willing AE, Eve DJ, Cruz LE, Sanberg CD, Chung YG, Sanberg PR. Human Umbilical Cord Blood Cell Grafts for Brain Ischemia. Cell Transplant 2009; 18:985-98. [DOI: 10.3727/096368909x471279] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Irreversible and permanent damage develop immediately adjacent to the region of reduced cerebral blood perfusion in stroke patients. Currently, the proven thrombolytic treatment for stroke, tissue plasminogen activator, is only effective when administered within 3 h after stroke. These disease characteristics should be taken under consideration in developing any therapeutic intervention designed to widen the narrow therapeutic range, especially cell-based therapy. Over the past several years, our group and others have characterized the therapeutic potential of human umbilical cord blood cells for stroke and other neurological disorders using in vitro and vivo models focusing on the cells' ability to differentiate into nonhematopoietic cells including neural lineage, as well as their ability to produce several neurotrophic factors and modulate immune and inflammatory reaction. Rather than the conventional cell replacement mechanism, we advance alternative pathways of graft-mediated brain repair involving neurotrophic effects resulting from release of various growth factors that afford cell survival, angiogenesis, and anti-inflammation. Eventually, these multiple protective and restorative effects from umbilical cord blood cell grafts may be interdependent and act in harmony in promoting therapeutic benefits for stroke.
Collapse
Affiliation(s)
- Dong-Hyuk Park
- Center of Excellence for Aging & Brain Repair, Department of Neurosurgery & Brain Repair, University of South Florida College of Medicine, Tampa, FL, USA
- Department of Neurosurgery, Korea University Medical Center, Korea University College of Medicine, Seoul, Korea
| | - Cesar V. Borlongan
- Center of Excellence for Aging & Brain Repair, Department of Neurosurgery & Brain Repair, University of South Florida College of Medicine, Tampa, FL, USA
| | - Alison E. Willing
- Center of Excellence for Aging & Brain Repair, Department of Neurosurgery & Brain Repair, University of South Florida College of Medicine, Tampa, FL, USA
| | - David J. Eve
- Center of Excellence for Aging & Brain Repair, Department of Neurosurgery & Brain Repair, University of South Florida College of Medicine, Tampa, FL, USA
| | - L. Eduardo Cruz
- Cryopraxis and Silvestre Laboratory, Cryopraxis, BioRio, Pólo de Biotechnologia do Rio de Janeiro, Rio di Janiero, Brazil
| | | | - Yong-Gu Chung
- Cryopraxis and Silvestre Laboratory, Cryopraxis, BioRio, Pólo de Biotechnologia do Rio de Janeiro, Rio di Janiero, Brazil
| | - Paul R. Sanberg
- Center of Excellence for Aging & Brain Repair, Department of Neurosurgery & Brain Repair, University of South Florida College of Medicine, Tampa, FL, USA
- Office of Research and Innovation, University of South Florida, Tampa, FL, USA
| |
Collapse
|
22
|
Zhang D, Fouad H, Zoma WD, Salama SA, Wentz MJ, Al-Hendy A. Expression of stem and germ cell markers within nonfollicle structures in adult mouse ovary. Reprod Sci 2007; 15:139-46. [PMID: 18089589 DOI: 10.1177/1933719107310708] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Recent studies have suggested that germline stem cells may generate new follicles in the adult murine ovary. In this study, the authors use a pou5f1-enhanced green fluorescent protein (EGFP) transgenic mouse model to study the expression of stem and germ cell markers in adult murine ovaries. Immunohistochemical analyses and reverse transcription polymerase chain reaction were performed to detect the expression of mouse vasa homologue, stem cells factor receptor, stage-specific embryonic antigen 1, synaptonemal complex proteins, disrupted meiotic, and growth differentiation factor-9 in GFP+ ovarian tissues. GFP+ cell aggregates of nonfollicle structures were identified and isolated from adult B6.CBA-Tg(pou5f1-EGFP)2Mnn/J transgenic mouse ovaries. This study shows the presence of cell aggregates that are distinct from ovarian follicles and are coexpressing germline and stem cell surface markers in adult murine ovaries. These cell aggregates may represent a mixed population of germ cells and germline stem cells. Further research is necessary to evaluate the plasticity of the potential stem cell population in these cell aggregates.
Collapse
Affiliation(s)
- Dong Zhang
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX, USA
| | | | | | | | | | | |
Collapse
|
23
|
Hall CM, Kicic A, Lai CM, Rakoczy PE. Using stem cells to repair the degenerate retina. Stem cells in the context of retinal degenerations. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 572:381-8. [PMID: 17249600 DOI: 10.1007/0-387-32442-9_54] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Affiliation(s)
- Christine M Hall
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Australia
| | | | | | | |
Collapse
|
24
|
Hall VJ, Stojkovic P, Stojkovic M. Using therapeutic cloning to fight human disease: a conundrum or reality? Stem Cells 2006; 24:1628-37. [PMID: 16556706 DOI: 10.1634/stemcells.2005-0592] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The development and transplantation of autologous cells derived from nuclear transfer embryonic stem cell (NT-ESC) lines to treat patients suffering from disease has been termed therapeutic cloning. Human NT is still a developing field, with further research required to improve somatic cell NT and human embryonic stem cell differentiation to deliver safe and effective cell replacement therapies. Furthermore, the implications of transferring mitochondrial heteroplasmic cells, which may harbor aberrant epigenetic gene expression profiles, are of concern. The production of human NT-ESC lines also remains plagued by ethical dilemmas, societal concerns, and controversies. Recently, a number of alternate therapeutic strategies have been proposed to circumvent the moral implications surrounding human nuclear transfer. It will be critical to overcome these biological, legislative, and moral restraints to maximize the potential of this therapeutic strategy and to alleviate human disease.
Collapse
Affiliation(s)
- Vanessa J Hall
- Neuronal Survival Unit, Department of Experimental Medical Science, Wallenberg Neuroscience Centre, Lund University, Sweden.
| | | | | |
Collapse
|
25
|
Garbuzova-Davis S, Willing AE, Saporta S, Bickford PC, Gemma C, Chen N, Sanberg CD, Klasko SK, Borlongan CV, Sanberg PR. Novel cell therapy approaches for brain repair. PROGRESS IN BRAIN RESEARCH 2006; 157:207-22. [PMID: 17046673 DOI: 10.1016/s0079-6123(06)57014-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Numerous reports elucidate that tissue-specific stem cells are phenotypically plastic and their differentiation pathways are not strictly delineated. Although the identity of all the epigenetic factors which may trigger stem cells to make a lineage selection are still unknown, the plasticity of adult stem cells opens new approaches for their application in the treatment of various disorders. There is increasing researcher interest in hematopoietic stem cells for treatment of not only blood-related diseases but also various unrelated disorders including neurodegenerative diseases. Human umbilical cord blood (hUCB) cells, due to their primitive nature and ability to develop into nonhematopoietic cells of various tissue lineages, including neural cells, may be useful as an alternative cell source for cell-based therapies requiring either the replacement of individual cell types and/or substitution of missing substances. Here we focus on recent findings showing the robustness of adult stem cells derived from hUCB and their potential as a source of transplant cells for the treatment of diseased or injured brains and spinal cords. Depending upon the pathological microenvironment in which the hUCB cells are introduced, neuroprotective and/or trophic effects of these cells, from release of various growth or anti-inflammatory factors to moderation of immune-inflammatory effectors, may be more likely than neural replacement. These protective effects may prove essential to maintaining restored tissue integrity over the course of various diseases or injuries.
Collapse
Affiliation(s)
- Svitlana Garbuzova-Davis
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery, College of Medicine, University of South Florida, MDC 78, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Organ transplantation centers have expanded and increased in the last 20 years as transplant recipient outcomes have improved steadily and transplantation has moved from experimentation to treatment of choice for several indications. Transplantation presents difficult ethical and legal challenges for the transplant community and society. These include declarations of death, consent to donation and allocation of a scarce societal resource, i.e. transplantable organs. Policy and practice reflect the law, societal beliefs and prevailing values. A bioethicist contributes to a transplant team by clarifying values held by various stakeholders or embodied in decisions and policies, conducting clinical consultations, developing and interpreting policy and researching the ethics of innovations for rationing and increasing available supply of organs for transplantation. The bioethicist's interdisciplinary education, preparation, experience and familiarity with ethics, law, sociology and philosophy and skills of mediation, communication and ethical analysis contribute to addressing and resolving many issues in transplantation. This paper outlines the various roles of a bioethicist on a transplantation service, using case examples to illustrate some of the ethical issues.
Collapse
Affiliation(s)
- Linda Wright
- Toronto General Hospital, 11C1270, University Health Network, Toronto, Ontario, Canada.
| | | | | |
Collapse
|