1
|
Marchini A, Ciulla MG, Antonioli B, Agnoli A, Bovio U, Visnoviz V, Bertuzzi F, Gelain F. Long-term cultures of human pancreatic islets in self-assembling peptides hydrogels. Front Bioeng Biotechnol 2023; 11:1105157. [PMID: 36911193 PMCID: PMC9995881 DOI: 10.3389/fbioe.2023.1105157] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/13/2023] [Indexed: 02/25/2023] Open
Abstract
Human pancreatic islets transplantation is an experimental therapeutic treatment for Type I Diabetes. Limited islets lifespan in culture remains the main drawback, due to the absence of native extracellular matrix as mechanical support after their enzymatic and mechanical isolation procedure. Extending the limited islets lifespan by creating a long-term in vitro culture remains a challenge. In this study, three biomimetic self-assembling peptides were proposed as potential candidates to recreate in vitro a pancreatic extracellular matrix, with the aim to mechanically and biologically support human pancreatic islets, by creating a three-dimensional culture system. The embedded human islets were analyzed for morphology and functionality in long-term cultures (14-and 28-days), by evaluating β-cells content, endocrine component, and extracellular matrix constituents. The three-dimensional support provided by HYDROSAP scaffold, and cultured into MIAMI medium, displayed a preserved islets functionality, a maintained rounded islets morphology and an invariable islets diameter up to 4 weeks, with results analogues to freshly-isolated islets. In vivo efficacy studies of the in vitro 3D cell culture system are ongoing; however, preliminary data suggest that human pancreatic islets pre-cultured for 2 weeks in HYDROSAP hydrogels and transplanted under subrenal capsule may restore normoglycemia in diabetic mice. Therefore, engineered self-assembling peptide scaffolds may provide a useful platform for long-term maintenance and preservation of functional human pancreatic islets in vitro.
Collapse
Affiliation(s)
- Amanda Marchini
- Institute for Stem-Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Maria Gessica Ciulla
- Institute for Stem-Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
- Center for Nanomedicine and Tissue Engineering (CNTE), ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Barbara Antonioli
- Tissue Bank and Tissue Therapy Unit, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Alessandro Agnoli
- Department of Biotechnology and Bioscience, University of Milan-Bicocca, Milan, Italy
| | - Umberto Bovio
- Department of Biotechnology and Bioscience, University of Milan-Bicocca, Milan, Italy
| | | | - Federico Bertuzzi
- Department of Diabetology, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Fabrizio Gelain
- Institute for Stem-Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
- Center for Nanomedicine and Tissue Engineering (CNTE), ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| |
Collapse
|
2
|
Salg GA, Giese NA, Schenk M, Hüttner FJ, Felix K, Probst P, Diener MK, Hackert T, Kenngott HG. The emerging field of pancreatic tissue engineering: A systematic review and evidence map of scaffold materials and scaffolding techniques for insulin-secreting cells. J Tissue Eng 2019; 10:2041731419884708. [PMID: 31700597 PMCID: PMC6823987 DOI: 10.1177/2041731419884708] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 10/04/2019] [Indexed: 12/18/2022] Open
Abstract
A bioartificial endocrine pancreas is proposed as a future alternative to current treatment options. Patients with insulin-secretion deficiency might benefit. This is the first systematic review that provides an overview of scaffold materials and techniques for insulin-secreting cells or cells to be differentiated into insulin-secreting cells. An electronic literature survey was conducted in PubMed/MEDLINE and Web of Science, limited to the past 10 years. A total of 197 articles investigating 60 different materials met the inclusion criteria. The extracted data on materials, cell types, study design, and transplantation sites were plotted into two evidence gap maps. Integral parts of the tissue engineering network such as fabrication technique, extracellular matrix, vascularization, immunoprotection, suitable transplantation sites, and the use of stem cells are highlighted. This systematic review provides an evidence-based structure for future studies. Accumulating evidence shows that scaffold-based tissue engineering can enhance the viability and function or differentiation of insulin-secreting cells both in vitro and in vivo.
Collapse
Affiliation(s)
- Gabriel Alexander Salg
- Department of General, Abdominal and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Nathalia A Giese
- Department of General, Abdominal and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Miriam Schenk
- Department of General, Abdominal and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Felix J Hüttner
- Department of General, Abdominal and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Klaus Felix
- Department of General, Abdominal and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Pascal Probst
- Department of General, Abdominal and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Markus K Diener
- Department of General, Abdominal and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Thilo Hackert
- Department of General, Abdominal and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Hannes Götz Kenngott
- Department of General, Abdominal and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
3
|
Abstract
The pancreas is a complex organ with exocrine and endocrine components. Many pathologies impair exocrine function, including chronic pancreatitis, cystic fibrosis and pancreatic ductal adenocarcinoma. Conversely, when the endocrine pancreas fails to secrete sufficient insulin, patients develop diabetes mellitus. Pathology in either the endocrine or exocrine pancreas results in devastating economic and personal consequences. The current standard therapy for treating patients with type 1 diabetes mellitus is daily exogenous insulin injections, but cell sources of insulin provide superior glycaemic regulation and research is now focused on the goal of regenerating or replacing β cells. Stem-cell-based models might be useful to study exocrine pancreatic disorders, and mesenchymal stem cells or secreted factors might delay disease progression. Although the standards that bioengineered cells must meet before being considered as a viable therapy are not yet established, any potential therapy must be acceptably safe and functionally superior to current therapies. Here, we describe progress and challenges in cell-based methods to restore pancreatic function, with a focus on optimizing the site for cell delivery and decreasing requirements for immunosuppression through encapsulation. We also discuss the tools and strategies being used to generate exocrine pancreas and insulin-producing β-cell surrogates in situ and highlight obstacles to clinical application.
Collapse
|
4
|
Liu J, Liu S, Chen Y, Zhao X, Lu Y, Cheng J. Functionalized self-assembling peptide improves INS-1 β-cell function and proliferation via the integrin/FAK/ERK/cyclin pathway. Int J Nanomedicine 2015; 10:3519-31. [PMID: 25999715 PMCID: PMC4436204 DOI: 10.2147/ijn.s80502] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Islet transplantation is considered to be a curative treatment for type 1 diabetes mellitus. However, disruption of the extracellular matrix (ECM) leads to β-cell destruction and graft dysfunction. In this study, we developed a functionalized self-assembling peptide, KLD-F, with ECM mimic motifs derived from fibronectin and collagen IV, and evaluated its effect on β-cell function and proliferation. Atomic force microscopy and rheological results showed that KLD-F could self-assemble into a nanofibrous scaffold and change into a hydrogel in physiological saline condition. In a three-dimensional cell culture model, KLD-F improved ECM remodeling and cell-cell adhesion of INS-1 β-cells by upregulation of E-cadherin, fibronectin, and collagen IV. KLD-F also enhanced glucose-stimulated insulin secretion and expression of β-cell function genes, including Glut2, Ins1, MafA, and Pdx-1 in INS-1 cells. Moreover, KLD-F promoted proliferation of INS-1 β-cells and upregulated Ki67 expression by mediating cell cycle progression. In addition, KLD-F improved β-cell function and proliferation via an integrin/focal adhesion kinase/extracellular signal-regulated kinase/cyclin D pathway. This study highlights the fact that the β-cell-ECM interaction reestablished with this functionalized self-assembling peptide is a promising method to improve the therapeutic efficacy of islet transplantation.
Collapse
Affiliation(s)
- Jingping Liu
- Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, Sichuan University, Chengdu, People’s Republic of China
| | - Shuyun Liu
- Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, Sichuan University, Chengdu, People’s Republic of China
| | - Younan Chen
- Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, Sichuan University, Chengdu, People’s Republic of China
| | - Xiaojun Zhao
- Laboratory of Nanomedicine, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Yanrong Lu
- Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, Sichuan University, Chengdu, People’s Republic of China
| | - Jingqiu Cheng
- Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, Sichuan University, Chengdu, People’s Republic of China
| |
Collapse
|
5
|
Kyle S, Felton SH, McPherson MJ, Aggeli A, Ingham E. Rational molecular design of complementary self-assembling peptide hydrogels. Adv Healthc Mater 2012. [PMID: 23184800 PMCID: PMC3607250 DOI: 10.1002/adhm.201200047] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Stuart Kyle
- Institute of Medical & Biological Engineering, Institute of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | | | | | | | | |
Collapse
|
6
|
Kyle S, McPherson MJ, Aggeli A, Ingham E. WITHDRAWN: The effect of molecular design on the physical and biological properties of complementary self-assembling peptides. Biomaterials 2011:S0142-9612(11)00653-3. [PMID: 21723600 DOI: 10.1016/j.biomaterials.2011.05.082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 05/27/2011] [Indexed: 11/16/2022]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.
Collapse
Affiliation(s)
- Stuart Kyle
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK; Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK; Centre for Molecular Nanoscience, School of Chemistry, Faculty of Mathematics & Physical Sciences, University of Leeds, Leeds LS2 9JT, UK; Institute of Medical & Biological Engineering, University of Leeds, Leeds LS2 9JT, UK
| | | | | | | |
Collapse
|
7
|
Kahan BD. Forty years of publication of Transplantation Proceedings--the fourth decade: Globalization of the enterprise. Transplant Proc 2011; 43:3-29. [PMID: 21335147 DOI: 10.1016/j.transproceed.2010.12.052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Barry D Kahan
- Division of Immunology and Organ Transplantation, The University of Texas-Health Science Center at Houston Medical School, Houston, Texas 77030, USA.
| |
Collapse
|
8
|
Kyle S, Aggeli A, Ingham E, McPherson MJ. Recombinant self-assembling peptides as biomaterials for tissue engineering. Biomaterials 2010; 31:9395-405. [PMID: 20932572 PMCID: PMC3111806 DOI: 10.1016/j.biomaterials.2010.08.051] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Accepted: 08/23/2010] [Indexed: 12/26/2022]
Abstract
Synthetic nanostructures based on self-assembling systems that aim to mimic natural extracellular matrix are now being used as substrates in tissue engineering applications. Peptides are excellent starting materials for the self-assembly process as they can be readily synthesised both chemically and biologically. P₁₁-4 is an 11 amino acid peptide that undergoes triggered self-assembly to form a self-supporting hydrogel. It exists as unimers of random coil conformations in water above pH 7.5 but at low pH adopts an antiparallel β-sheet conformation. It also self-assembles under physiological conditions in a concentration-dependent manner. Here we describe an unimer P₁₁-4 production system and the use of a simple site-directed mutagenesis approach to generate a series of other P₁₁-family peptide expression vectors. We have developed an efficient purification strategy for these peptide biomaterials using a simple procedure involving chemical cleavage with cyanogen bromide then repeated filtration, lyophilisation and wash steps. We report peptide-fusion protein yields of ca. 4.64 g/L and we believe the highest reported recovery of a recombinant self-assembling peptide at 203 mg/L of pure recombinant P₁₁-4. This peptide forms a self-supporting hydrogel under physiological conditions with essentially identical physico-chemical properties to the chemically synthesised peptide. Critically it also displays excellent cytocompatibility when tested with primary human dermal fibroblasts. This study demonstrates that high levels of a series of recombinant self-assembling peptides can be purified using a simple process for applications as scaffolds in tissue engineering.
Collapse
Affiliation(s)
- Stuart Kyle
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, LS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, LS2 9JT, UK
- Centre for Molecular Nanoscience, School of Chemistry, University of Leeds, LS2 9JT, UK
- Institute of Medical and Biological Engineering, University of Leeds, LS2 9JT, UK
| | - Amalia Aggeli
- Centre for Molecular Nanoscience, School of Chemistry, University of Leeds, LS2 9JT, UK
| | - Eileen Ingham
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, LS2 9JT, UK
- Institute of Medical and Biological Engineering, University of Leeds, LS2 9JT, UK
| | - Michael J. McPherson
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, LS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, LS2 9JT, UK
| |
Collapse
|
9
|
Chow LW, Wang LJ, Kaufman DB, Stupp SI. Self-assembling nanostructures to deliver angiogenic factors to pancreatic islets. Biomaterials 2010; 31:6154-61. [PMID: 20552727 PMCID: PMC2965796 DOI: 10.1016/j.biomaterials.2010.04.002] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Supramolecular self-assembly of nanoscale filaments offers a vehicle to signal cells within dense cell aggregates such as pancreatic islets. We previously developed a heparin-binding peptide amphiphile (HBPA) that self-assembles into nanofiber gels at concentrations of 1% by weight when mixed with heparin and activates heparin-binding, angiogenic growth factors. We report here on the use of these molecules at concentrations 100 times lower to drive delivery of the nanofibers into the dense islet interior. Using fluorescent markers, HBPA molecules, heparin, and FGF2 were shown to be present in and on the surface of murine islets. The intraislet nanofibers were found to be necessary to retain FGF2 within the islet for 48 h and to increase cell viability significantly for at least 7 days in culture. Furthermore, enhanced insulin secretion was observed with the nanofibers for 3 days in culture. Delivery of FGF2 and VEGF in conjunction with the HBPA/heparin nanofibers also induced a significant amount of islet endothelial cell sprouting from the islets into a peptide amphiphile 3-D matrix. We believe the infiltration of bioactive nanofibers in the interior of islets as an artificial ECM can improve cell viability and function in vitro and enhance their vascularization in the presence of growth factors such as FGF2 and VEGF. The approach described here may have significant impact on islet transplantation to treat type 1 diabetes.
Collapse
Affiliation(s)
- Lesley W. Chow
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, United States
| | - Ling-jia Wang
- Department of Surgery, Division of Organ Transplantation, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, United States
| | - Dixon B. Kaufman
- Department of Surgery, Division of Organ Transplantation, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, United States
- Institute for BioNanotechnology in Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, United States
| | - Samuel I. Stupp
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, United States
- Institute for BioNanotechnology in Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, United States
- Department of Chemistry, Northwestern University, Evanston, IL 60208, United States
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, United States
| |
Collapse
|
10
|
Beachley V, Wen X. Polymer nanofibrous structures: Fabrication, biofunctionalization, and cell interactions. Prog Polym Sci 2010; 35:868-892. [PMID: 20582161 PMCID: PMC2889711 DOI: 10.1016/j.progpolymsci.2010.03.003] [Citation(s) in RCA: 272] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Extracellular matrix fibers (ECM) such as collagen, elastin, and keratin provide biological and physical support for cell attachment, proliferation, migration, differentiation and ultimately cell fate. Therefore, ECM fibers are an important component in tissue and organ development and regeneration. Meanwhile, polymer nanofibers could play the same critical role in tissue regeneration process. Fibrous structures can be fabricated from a variety of materials and methods with diameters ranging throughout the size scale where cells can sense individual fibers (several nanometers to several microns). Polymer nanofiber scaffolds can be designed in a way that predictably modulates a variety of important cell behaviors towards a desired overall function. The nanofibrous topography itself, independent of the fiber material, has demonstrated the potential to modulate cell behaviors desirable in tissue engineering such as: unidirectional alignment; increased viability, attachment, and ECM production; guided migration; and controlled differentiation. The versatility of polymer nanofibers for functionalization with biomolecules opens the door to vast opportunities for the design of tissue engineering scaffolds with even greater control over cell incorporation and function. Despite the promise of polymer nanofibers as tissue engineering scaffolds there have been few clinically relevant successes because no single fabrication technique currently combines control over structural arrangement, material composition, and biofunctionalization, while maintaining reasonable cost and yield. Promising strategies are currently being investigated to allow for the fabrication of optimal polymer nanofiber tissue engineering scaffolds with the goal of treating damaged and degenerated tissues in a clinical setting.
Collapse
Affiliation(s)
- Vince Beachley
- Clemson-MUSC Bioengineering program; Department of Bioengineering, Clemson University, Charleston, SC 29425, USA
| | - Xuejun Wen
- Clemson-MUSC Bioengineering program; Department of Bioengineering, Clemson University, Charleston, SC 29425, USA
- Department of Cell Biology and Anatomy, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Orthopedic Surgery, Medical university of South Carolina, Charleston, SC 29425, USA
- The Institute for Advanced Materials and Nano Biomedicine (iNANO), Tongji University, Shanghai 200072, People’s Republic of China
| |
Collapse
|