1
|
Xuan NT, Hop VQ, Kien TQ, Toan PQ, Thang LV, Binh HT, Van Tran P, Minh HT, Man PT, Cuong HX, Ben NH, Phuong NM, Linh NT, Linh NT, Dung VD, Quyen LTB, Hang DTT, Su HX. Frequencies and Association of CYP3A5 Polymorphism With Tacrolimus Concentration Among Renal Transplant Recipients in Vietnam. Transplant Proc 2022; 54:2140-2146. [PMID: 36085176 DOI: 10.1016/j.transproceed.2022.07.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 10/14/2022]
Abstract
BACKGROUND This study aims to investigate the frequencies and association of CYP3A5 polymorphism with tacrolimus concentration among renal transplant recipients in Vietnam. METHODS Sixty-eight kidney transplant recipients were included in this study from the department of nephrology and dialysis, Military Hospital 103. Blood samples were collected for monitoring of tacrolimus levels and determination of CYP3A5 genetic polymorphism. RESULTS A total of 68 patients studied. The CYP3A5*3*3, CYP3A5*1*3, and CYP3A5*1*1 genotypes were detected in 48 (70.6%), 16 (23.5%), and 4 (5.9%), respectively. Tacrolimus concentrations were much lower in CYP3A5 expressors than in CYP3A5 nonexpressors on the first day, month 1, 3, 6, and 12 (5.98 ± 1.05 vs 6.57 ± 1.03, P = .03; 5.79 ± 1.13 vs 6.82 ± 1.05, P < .001; 4.76 ± 1.48 vs 6.73 ± 1.09, P < .001; 4.29 ± 1.64 vs 6.46 ± 1.23, P < .001; 4.20 ± 1.36 vs 6.04 ± 1.26, P < .001), respectively. Notably, the concentration/dose ratio in the CYP3A5 expressors was lower than in CYP3A5 nonexpressors at time points of follow up (P < .001). However, there were no significant differences in the age, sex, HLA mismatch, type of donors, acute rejection, and creatinine levels at time points between group of CYP3A5 expressors and those of CYP3A5 nonexpressors. CONCLUSION In conclusion, this research indicated the significant association of CYP3A5 genetic polymorphism with daily dose and tacrolimus concentrations in renal transplant recipients. This study provided a closer step to individualize the dose of tacrolimus in renal transplant patients in Vietnam.
Collapse
Affiliation(s)
- Nguyen Thanh Xuan
- Department of Internal Medicine, Military Hospital 103, Vietnam Military Medical University, Hanoi, Vietnam
| | - Vu Quang Hop
- Department of Clinical Biochemistry, Military Hospital 103, Vietnam Military Medical University, Hanoi, Vietnam
| | - Truong Quy Kien
- Department of Nephrology and Dialysis, Military Hospital 103, Vietnam Military Medical University, Hanoi, Vietnam
| | - Pham Quoc Toan
- Department of Nephrology and Dialysis, Military Hospital 103, Vietnam Military Medical University, Hanoi, Vietnam
| | - Le Viet Thang
- Department of Nephrology and Dialysis, Military Hospital 103, Vietnam Military Medical University, Hanoi, Vietnam
| | - Ha Thanh Binh
- Department of Nephrology and Dialysis, Military Hospital 103, Vietnam Military Medical University, Hanoi, Vietnam
| | - Pham Van Tran
- Department of Clinical Biochemistry, Military Hospital 103, Vietnam Military Medical University, Hanoi, Vietnam
| | - Hoang Thi Minh
- Department of Clinical Biochemistry, Military Hospital 103, Vietnam Military Medical University, Hanoi, Vietnam
| | - Pham Thi Man
- Department of Pharmacy, National Hospital of Dermatology and Venereology, Hanoi, Vietnam
| | - Hoang Xuan Cuong
- Department of Occupational Medicine, Vietnam Military Medical University, Hanoi, Vietnam
| | - Nguyen Huu Ben
- Department of Occupational Medicine, Vietnam Military Medical University, Hanoi, Vietnam
| | - Nguyen Minh Phuong
- Department of Occupational Medicine, Vietnam Military Medical University, Hanoi, Vietnam
| | - Nguyen Tung Linh
- Department of Occupational Medicine, Vietnam Military Medical University, Hanoi, Vietnam
| | - Nguyen Thuy Linh
- Institute of Biomedicine and Pharmacy, Vietnam Military Medical University, Hanoi, Vietnam; Faculty of Biology, National University of Hanoi, Hanoi, Vietnam
| | - Vu Dinh Dung
- Institute of Biomedicine and Pharmacy, Vietnam Military Medical University, Hanoi, Vietnam; Hanoi University of Science and Technology, Hanoi, Vietnam
| | - Le Thi Bao Quyen
- Institute of Biomedicine and Pharmacy, Vietnam Military Medical University, Hanoi, Vietnam
| | - Dinh Thi Thu Hang
- Institute of Biomedicine and Pharmacy, Vietnam Military Medical University, Hanoi, Vietnam
| | - Hoang Xuan Su
- Institute of Biomedicine and Pharmacy, Vietnam Military Medical University, Hanoi, Vietnam.
| |
Collapse
|
2
|
Ben-Fredj N, Hannachi I, Chadli Z, Ben-Romdhane H, A Boughattas N, Ben-Fadhel N, Aouam K. Dosing algorithm for Tacrolimus in Tunisian Kidney transplant patients: Effect of CYP 3A4*1B and CYP3A4*22 polymorphisms. Toxicol Appl Pharmacol 2020; 407:115245. [DOI: 10.1016/j.taap.2020.115245] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/28/2020] [Accepted: 09/14/2020] [Indexed: 11/28/2022]
|
3
|
Khan AR, Raza A, Firasat S, Abid A. CYP3A5 gene polymorphisms and their impact on dosage and trough concentration of tacrolimus among kidney transplant patients: a systematic review and meta-analysis. THE PHARMACOGENOMICS JOURNAL 2020; 20:553-562. [PMID: 31902947 DOI: 10.1038/s41397-019-0144-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 11/29/2019] [Accepted: 12/18/2019] [Indexed: 12/11/2022]
Abstract
Tacrolimus is an immunosuppressive drug widely used in kidney transplantation. Cytochrome P450 3A5 (CYP3A5) protein is involved in tacrolimus metabolism. Single nucleotide polymorphism in the CYP3A5 gene (6986A>G) results in alteration in metabolic activity of CYP3A5 protein which eventually affects the tacrolimus concentration. Patients with CYP3A5 expresser genotypes (A/A *1/*1 and A/G *1/*3) metabolize tacrolimus more rapidly than CYP3A5 nonexpressers (G/G *3/*3). We performed meta-analysis to estimate the effect of CYP3A5 polymorphism on the trough concentration-dose ratio (Co/D) and risk of renal allograft rejection with similar post-transplant periods and Asian vs. European populations. Our results showed that the tacrolimus Co/D ratio is significantly lower in CYP3A5 expresser group as compared with nonexpresser in Asian as well as in European populations at any post-transplant period (p < 0.00001). No significant association was found with renal allograft rejection episodes between expressers and nonexpressers in European populations (OR: 1.12; p = 0.47). Interestingly, Asian population (with expresser genotypes) and patients after 3 years post-transplantation (with expresser genotypes) have a higher risk of rejection (OR: 1.62; p < 0.05), (OR: 1.68; p < 0.05), respectively. This could be due to high prevalence of expresser genotypes in Asian population. Few tacrolimus-based studies are identified with long-term graft survival. There is a need to have more studies looking for long-term graft survival in expresser as well as no-expresser groups especially in Asian populations who have high frequency of CYP3A5 functional genotype.
Collapse
Affiliation(s)
- Abdul Rafay Khan
- Centre for Human Genetics and Molecular Medicine, Sindh Institute of Urology and Transplantation, Karachi, Pakistan
| | - Ali Raza
- Centre for Human Genetics and Molecular Medicine, Sindh Institute of Urology and Transplantation, Karachi, Pakistan
| | - Sadaf Firasat
- Centre for Human Genetics and Molecular Medicine, Sindh Institute of Urology and Transplantation, Karachi, Pakistan
| | - Aiysha Abid
- Centre for Human Genetics and Molecular Medicine, Sindh Institute of Urology and Transplantation, Karachi, Pakistan.
| |
Collapse
|
4
|
Zhang Z, Lu X, Dong L, Ma J, Fan X. Clinical observation on the effect of Wuzhi soft capsule on FK506 concentration in membranous nephropathy patients. Medicine (Baltimore) 2019; 98:e18150. [PMID: 31770256 PMCID: PMC6890353 DOI: 10.1097/md.0000000000018150] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The current research aimed to investigate the correlation between the effect of Wuzhi soft capsule (WZC) on FK506 concentration and CYP3A5 gene polymorphism in patients with membranous nephropathy (MN).Seventy-five patients with idiopathic MN were enrolled and divided according to the expression of CYP3A5 gene metabolic enzyme into group A (CP3A5 metabolic enzyme function expression types CYP3A5*1/*1 type and CYP3A5*1/*3 type), and group B (non-expression type CYP3A5*3/*3 type). All patients were given oral administration of tacrolimus capsule at the initial dose of 1 mg for twice a day 1 hour before breakfast and dinner. Afterwards, the oral administration of WZC was added at the dose of 0.5 g for 3 times a day within half an hour after 3 meals.The blood concentrations of FK506 in groups A and B were significantly higher than those before administration. Compared with that before administration, the FK506 blood concentration was increased by 3.051 ± 0.774 ng/ml after adding the WZC. Besides, the blood concentrations of FK506 in group A were lower than those in group B before and after administration; meanwhile, the 24 hours total urine protein and the biochemical indexes in both groups displayed no statistically significant difference. Only 1 case of diarrhea was observed, which was relieved after the reduction of tacrolimus.Wuzhi soft capsule can significantly increase the blood concentration of FK506 in MN patients. Moreover, the CYP3A5 genotyping should be considered when WZC is used to increase the blood concentration of FK506.
Collapse
Affiliation(s)
- Zhu Zhang
- Department of Nephrology, Fuwai Central China Cardiovascular Hospital
| | - Xiaobei Lu
- Department of Nephrology, People's Hospital of Zhengzhou, Zhengzhou
| | - Leipeng Dong
- Department of Nephrology, The people's Hospital of Xuchang, Xuchang
| | - Jiwei Ma
- Department of Nephrology, First affiliated Hospital of Henan university of traditional Chinese medicine, Zhengzhou, China
| | - Xiaoguang Fan
- Department of Nephrology, Fuwai Central China Cardiovascular Hospital
| |
Collapse
|
5
|
Dorji PW, Tshering G, Na‐Bangchang K. CYP2C9, CYP2C19, CYP2D6 and CYP3A5 polymorphisms in South‐East and East Asian populations: A systematic review. J Clin Pharm Ther 2019; 44:508-524. [DOI: 10.1111/jcpt.12835] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 02/15/2019] [Accepted: 03/10/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Palden Wangyel Dorji
- Chulabhorn International College of Medicine, Rangsit Center Thammasat University Klong Luang Pathum Thani Thailand
| | - Gyem Tshering
- Chulabhorn International College of Medicine, Rangsit Center Thammasat University Klong Luang Pathum Thani Thailand
| | - Kesara Na‐Bangchang
- Chulabhorn International College of Medicine, Rangsit Center Thammasat University Klong Luang Pathum Thani Thailand
- Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Chulabhorn International College of Medicine, Rangsit Center Thammasat University Klong Luang Pathum Thani Thailand
| |
Collapse
|
6
|
Hamadeh IS, Zhang Q, Steuerwald N, Hamilton A, Druhan LJ, McSwain M, Diez Y, Rusin S, Han Y, Symanowski J, Gerber J, Grunwald MR, Ghosh N, Plesca D, Arnall J, Trivedi J, Avalos B, Copelan E, Patel JN. Effect of CYP3A4, CYP3A5, and ABCB1 Polymorphisms on Intravenous Tacrolimus Exposure and Adverse Events in Adult Allogeneic Stem Cell Transplant Patients. Biol Blood Marrow Transplant 2018; 25:656-663. [PMID: 30597277 DOI: 10.1016/j.bbmt.2018.12.766] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 12/21/2018] [Indexed: 01/01/2023]
Abstract
Pharmacogenetics influences oral tacrolimus exposure; however, little data exist regarding i.v. tacrolimus. We investigated the impact of genetic polymorphisms in CYP3A4, CYP3A5, and ABCB1 on i.v. tacrolimus exposure and toxicity in adult patients receiving an allogeneic hematopoietic stem cell transplant for hematologic malignancies. Germline DNA was extracted from buccal swabs and genotyped for CYP3A4, CYP3A5, and ABCB1 polymorphisms. Continuous i.v. infusion of tacrolimus .03 mg/kg/day was initiated on day +5 post-transplant, and steady-state blood concentrations were measured 4days later. We evaluated the association between phenotypes and prevalence of nontherapeutic target concentrations (below or above 5 to 15 ng/mL) as well as tacrolimus-related toxicities. Of 63 patients, 28.6% achieved the target concentration; 71.4% were >15ng/mL, which was more common in CYP3A4 intermediate/normal metabolizers (compared with rapid) and those with at least 1 ABCB1 C2677T loss-of-function allele (P < .05). ABCB1 C2677T was significantly associated with concentrations >15ng/mL (odds ratio, 6.2; 95% confidence interval, 1.8 to 23.6; P = .004) and tacrolimus-related toxicities (odds ratio, 7.5; 95% confidence interval, 1.6 to 55.2; P = .02). ABCB1 C2677T and CYP3A4 are important determinants of i.v. tacrolimus exposure, whereas ABCB1 C2677T also impacts tacrolimus-related toxicities in stem cell transplants.
Collapse
Affiliation(s)
- Issam S Hamadeh
- Department of Cancer Pharmacology, Levine Cancer Institute, Atrium Health, Charlotte, North Carolina.
| | - Qing Zhang
- Department of Biostatistics, Levine Cancer Institute, Atrium Health, Charlotte, North Carolina
| | - Nury Steuerwald
- Molecular Biology Core Laboratory, Levine Cancer Institute, Atrium Health, Charlotte, North Carolina
| | - Alicia Hamilton
- Molecular Biology Core Laboratory, Levine Cancer Institute, Atrium Health, Charlotte, North Carolina
| | - Lawrence J Druhan
- Department of Hematologic Oncology and Blood Disorders, Levine Cancer Institute, Atrium Health, Charlotte, North Carolina
| | - Meredith McSwain
- Department of Pharmacy, Levine Cancer Institute, Atrium Health, Charlotte, North Carolina
| | - Yordanis Diez
- Department of Pharmacy, Levine Cancer Institute, Atrium Health, Charlotte, North Carolina
| | - Stephanie Rusin
- Department of Pharmacy, Levine Cancer Institute, Atrium Health, Charlotte, North Carolina
| | - Yimei Han
- Department of Biostatistics, Levine Cancer Institute, Atrium Health, Charlotte, North Carolina
| | - James Symanowski
- Department of Biostatistics, Levine Cancer Institute, Atrium Health, Charlotte, North Carolina
| | - Jonathan Gerber
- Department of Hematologic Oncology and Blood Disorders, Levine Cancer Institute, Atrium Health, Charlotte, North Carolina
| | - Michael R Grunwald
- Department of Hematologic Oncology and Blood Disorders, Levine Cancer Institute, Atrium Health, Charlotte, North Carolina
| | - Nilanjan Ghosh
- Department of Hematologic Oncology and Blood Disorders, Levine Cancer Institute, Atrium Health, Charlotte, North Carolina
| | - Dragos Plesca
- Department of Pharmacy, Levine Cancer Institute, Atrium Health, Charlotte, North Carolina
| | - Justin Arnall
- Department of Pharmacy, Levine Cancer Institute, Atrium Health, Charlotte, North Carolina
| | - Jigar Trivedi
- Department of Pharmacy, Levine Cancer Institute, Atrium Health, Charlotte, North Carolina
| | - Belinda Avalos
- Department of Hematologic Oncology and Blood Disorders, Levine Cancer Institute, Atrium Health, Charlotte, North Carolina
| | - Edward Copelan
- Department of Hematologic Oncology and Blood Disorders, Levine Cancer Institute, Atrium Health, Charlotte, North Carolina
| | - Jai N Patel
- Department of Cancer Pharmacology, Levine Cancer Institute, Atrium Health, Charlotte, North Carolina.
| |
Collapse
|
7
|
The role of CYP3A5 polymorphism and dose adjustments following conversion of twice-daily to once-daily tacrolimus in renal transplant recipients. Transplant Res 2016; 5:2. [PMID: 26823971 PMCID: PMC4730664 DOI: 10.1186/s13737-016-0031-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 01/05/2016] [Indexed: 01/08/2023] Open
Abstract
Background Tacrolimus is available as twice-daily Prograf® (Tac-BID) and the once-daily formulation, Advagraf® (Tac-OD). Although therapeutically equivalent, some transplant recipients require dose adjustments to achieve similar tacrolimus trough concentrations [Tac C0] after conversion between formulations. Tacrolimus is primarily metabolized by cytochrome P450 3A5 (CYP3A5). We sought to determine whether genetic polymorphisms in the CYP3A5 enzyme; CYP3A5 *1/*1 and CYP3A5 *1/*3 (expressers) compared to CYP3A5 *3/*3 (non-expressers) could account for discrepancies in dose requirements following conversion from Tac-BID to Tac-OD. Methods A cohort of 60 renal transplant recipients (RTR) from our larger conversion study of 496 patients underwent additional testing for CY3A5 genetic polymorphisms. Analysis included demographics, tac dosing and [Tac C0] pre- and post-conversion and dosing changes relative to CYP3A5 genotypes. CYP3A5 genetic polymorphisms were identified through analysis of genomic DNA. Results Conversion from tac bid to tac OD in this cohort required a mean (SD) dose increase from 3.1 (1.0) mg/day to 3.8 (1.3) mg/day (p = 0.007), to achieve similar [Tac C0]. The *1/*3 expresser group required a greater percentage dose adjustment (56.7 %) in converting from Tac-BID to Tac-OD as compared to the *3/*3 non-expresser group (26.6 %). Similar findings were observed with the both expresser groups combined (*1/*1 &*1/*3). The expressers were significantly more highly represented in the East Asian cohort. Conclusions The CYP3A5 expresser polymorphism necessitates an increase in dosing upon conversion from Tac-BID to Tac-OD, with the expresser genotypes contributing significantly to this finding. Given the variability in frequency of CYP3A5 genotypes in various ethnic groups, future studies should account for both isoenzyme polymorphism and ethnicity in optimizing dosing requirements. Trial registration Clinical trials.gov identifier: NCT01884480
Collapse
|
8
|
Sanghavi K, Brundage RC, Miller MB, Schladt DP, Israni AK, Guan W, Oetting WS, Mannon RB, Remmel RP, Matas AJ, Jacobson PA. Genotype-guided tacrolimus dosing in African-American kidney transplant recipients. THE PHARMACOGENOMICS JOURNAL 2015; 17:61-68. [PMID: 26667830 PMCID: PMC4909584 DOI: 10.1038/tpj.2015.87] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 10/07/2015] [Accepted: 11/02/2015] [Indexed: 12/11/2022]
Abstract
Tacrolimus is dependent on CYP3A5 enzyme for metabolism. Expression of the CYP3A5 enzyme is controlled by several alleles including CYP3A5*1, CYP3A5*3, CYP3A5*6 and CYP3A5*7. African Americans (AAs) have on average higher tacrolimus dose requirements than Caucasians; however, some have requirements similar to Caucasians. Studies in AAs have primarily evaluated the CYP3A5*3 variant; however, there are other common nonfunctional variants in AAs (CYP3A5*6 and CYP3A5*7) that do not occur in Caucasians. These variants are associated with lower dose requirements and may explain why some AAs are metabolically similar to Caucasians. We created a tacrolimus clearance model in 354 AAs using a development and validation cohort. Time after transplant, steroid and antiviral use, age and CYP3A5*1, *3, *6 and *7 alleles were significant toward clearance. This study is the first to develop an AA-specific genotype-guided tacrolimus dosing model to personalize therapy.
Collapse
Affiliation(s)
- K Sanghavi
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - R C Brundage
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - M B Miller
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - D P Schladt
- Department of Nephrology and Chronic Disease Research Group, Minneapolis Medical Research Foundation, Hennepin County Medical Center, Minneapolis, MN, USA
| | - A K Israni
- Department of Surgery, University of Minnesota, Minneapolis, MN, USA
| | - W Guan
- Department of Biostatistics, University of Minnesota, Minneapolis, MN, USA
| | - W S Oetting
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - R B Mannon
- Department of Nephrology, University of Alabama, Birmingham, AL, USA
| | - R P Remmel
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - A J Matas
- Department of Surgery, University of Minnesota, Minneapolis, MN, USA
| | - P A Jacobson
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
9
|
Aouam K, Kolsi A, Kerkeni E, Ben Fredj N, Chaabane A, Monastiri K, Boughattas N. Influence of combined CYP3A4 and CYP3A5 single-nucleotide polymorphisms on tacrolimus exposure in kidney transplant recipients: a study according to the post-transplant phase. Pharmacogenomics 2015; 16:2045-54. [PMID: 26615671 DOI: 10.2217/pgs.15.138] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
AIM The present study investigated in Tunisian renal transplant patients, genetic polymorphisms of CYP3A4 -392A>G and CYP3A5 6986A>G and their influence on tacrolimus (Tac) pharmacokinetics during early and late post-transplant (PT) phases and established customized ranges of Tac doses matching the C0 target levels according to CYP3A4 and CYP3A5 genotype combination and the PT phase. PATIENTS & METHODS We included adult Tunisian patients having received Tac for de novo kidney grafts and undergone a therapeutic drug monitoring of Tac by morning C0 monitoring during early (1 to 90 days) and late (over 90 days) PT phases. The genomic DNA was extracted from peripheral blood mononuclear cells using a salting-out procedure. CYP3A4 promoter (rs2740574; -392A>G) and CYP3A5 (rs776746; 6986A>G) SNP genotyping was analyzed using PCR-RFLP. RESULTS Fifty-two patients were enrolled in the study. During the early PT phase, the CYP3A5 polymorphism but not that of CYP3A4, correlates significantly with Tac dose-normalized C0 (C0/D ratio). During the late PT phase, the effect of CYP3A4 polymorphism becomes significant and that of CYP3A5 becomes nonsignificant on Tac C0/D Tac. The mean daily doses (mg/kg) matching therapeutic C0, regardless of the CYP3A genotypes, were 0.16 ± 0.05 and 0.10 ± 0.05 during early and late PT phase, respectively. Carriers of the CYP3A4*1B allele require higher doses to maintain the C0 in the therapeutic range during the two PT phases. However, patients carrying the CYP3A5*1 require significant higher Tac doses, only during the early phase. CONCLUSION Our data support a critical role of the CYP3A5 6986A>G and CYP3A4 -392A>G polymorphisms on the variation of Tac exposure during the early and the late PT phase, respectively. The establishment of customized Tac doses, according to CYP3A4/CYP3A5 genotype combination and the PT time, may allow preventing graft rejection and improving the safety profile of this drug. Further studies are needed to investigate this issue.
Collapse
Affiliation(s)
- Karim Aouam
- Laboratory of Pharmacology, Faculty of Medicine, University of Monastir, Tunisia
| | - Abdessalem Kolsi
- Laboratory of Pharmacology, Faculty of Medicine, University of Monastir, Tunisia
| | - Emna Kerkeni
- Laboratory of Genetics, Faculty of Medicine, University of Monastir, Tunisia
| | - Nadia Ben Fredj
- Laboratory of Pharmacology, Faculty of Medicine, University of Monastir, Tunisia
| | - Amel Chaabane
- Laboratory of Pharmacology, Faculty of Medicine, University of Monastir, Tunisia
| | - Kamel Monastiri
- Laboratory of Genetics, Faculty of Medicine, University of Monastir, Tunisia
| | - Naceur Boughattas
- Laboratory of Pharmacology, Faculty of Medicine, University of Monastir, Tunisia
| |
Collapse
|
10
|
Andrews LM, Riva N, de Winter BC, Hesselink DA, de Wildt SN, Cransberg K, van Gelder T. Dosing algorithms for initiation of immunosuppressive drugs in solid organ transplant recipients. Expert Opin Drug Metab Toxicol 2015; 11:921-36. [DOI: 10.1517/17425255.2015.1033397] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
11
|
Li CJ, Li L. Tacrolimus in preventing transplant rejection in Chinese patients--optimizing use. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:473-85. [PMID: 25609922 PMCID: PMC4298305 DOI: 10.2147/dddt.s41349] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Tacrolimus is a product of fermentation of Streptomyces, and belongs to the family of calcineurin inhibitors. It is a widely used immunosuppressive drug for preventing solid-organ transplant rejection. Compared to cyclosporine, tacrolimus has greater immunosuppressive potency and a lower incidence of side effects. It has been accepted as first-line treatment after liver and kidney transplantation. Tacrolimus has specific features in Chinese transplant patients; its in vivo pharmacokinetics, treatment regimen, dose and administration, and adverse-effect profile are influenced by multiple factors, such as genetics and the spectrum of primary diseases in the Chinese population. We reviewed the clinical experience of tacrolimus use in Chinese liver- and kidney-transplant patients, including the pharmacology of tacrolimus, the immunosuppressive effects of tacrolimus versus cyclosporine, effects of different factors on tacrolimus metabolism on Chinese patients, personalized medicine, clinical safety profile, and patient satisfaction and adherence. This article provides guidance for the rational and efficient use of tacrolimus in Chinese organ-transplant patients.
Collapse
Affiliation(s)
- Chuan-Jiang Li
- Department of Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Liang Li
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
12
|
Rojas L, Neumann I, Herrero MJ, Bosó V, Reig J, Poveda JL, Megías J, Bea S, Aliño SF. Effect of CYP3A5*3 on kidney transplant recipients treated with tacrolimus: a systematic review and meta-analysis of observational studies. THE PHARMACOGENOMICS JOURNAL 2014; 15:38-48. [PMID: 25201288 DOI: 10.1038/tpj.2014.38] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 03/26/2014] [Accepted: 06/04/2014] [Indexed: 12/21/2022]
Abstract
The highly variable pharmacokinetics of tacrolimus can hamper the optimal management of kidney transplant patients. This variability has been attributed to the genetic polymorphism of CYP3A5 6986A>G, but the evidence is not clear. We conducted a meta-analysis of studies evaluating the effect of CYP3A5 polymorphism on kidney transplant recipients with tacrolimus plasma concentration divided by daily dose per body weight (C/D) and clinical outcomes. We searched in MEDLINE and EMBASE. We found evidence suggesting a significantly lower C/D among CYP3A5*1 allele carriers compared with carriers of the CYP3A5*3/*3 genotype at weeks 1 and 2, and months 1, 3, 6 and 12. We demonstrated that the expresser genotype might have higher risk of acute rejection and chronic nephrotoxicity. In conclusion, CYP3A5 6986A>G polymorphism can affect tacrolimus pharmacokinetics and the incidence of acute rejection and chronic nephrotoxicity on kidney transplant recipients. Patients at high risk of developing tacrolimus-related complications could be detected even before their kidney transplant.
Collapse
Affiliation(s)
- L Rojas
- 1] Department of Internal Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile [2] Pharmacogenetic Unit, Drug Clinical Area, Hospital Universitari i Politècnic, La Fe and Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - I Neumann
- 1] Department of Internal Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile [2] Department of Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, Ontario, Canada
| | - M José Herrero
- Pharmacogenetic Unit, Drug Clinical Area, Hospital Universitari i Politècnic, La Fe and Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - V Bosó
- Pharmacogenetic Unit, Drug Clinical Area, Hospital Universitari i Politècnic, La Fe and Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - J Reig
- Pharmacogenetic Unit, Drug Clinical Area, Hospital Universitari i Politècnic, La Fe and Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - J Luis Poveda
- Pharmacogenetic Unit, Drug Clinical Area, Hospital Universitari i Politècnic, La Fe and Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - J Megías
- Pharmacogenetic Unit, Drug Clinical Area, Hospital Universitari i Politècnic, La Fe and Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - S Bea
- Nephrology Department, Kidney transplant Unit, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | - S F Aliño
- 1] Pharmacogenetic Unit, Drug Clinical Area, Hospital Universitari i Politècnic, La Fe and Instituto de Investigación Sanitaria La Fe, Valencia, Spain [2] Clinical Pharmacology Unit, Drug Clinical Area, Hospital Universitari i Politècnic La Fe, Valencia, Spain [3] Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
| |
Collapse
|
13
|
Helldén A, Madadi P. Pregnancy and pharmacogenomics in the context of drug metabolism and response. Pharmacogenomics 2014; 14:1779-91. [PMID: 24192125 DOI: 10.2217/pgs.13.176] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
It is well-known that profound physiological and biochemical changes occur throughout the course of pregnancy. At the same time, the role of pharmacogenomics in modulating the metabolism and response profile to numerous medications has been elucidated. Yet, the clinical impact of pharmacogenomics during pregnancy is less well understood. We present an overview of factors modulating the pharmacokinetics and pharmacodynamics of medications throughout the time span of pregnancy while providing insights on how pharmacogenomics may contribute to interindividual variability in drug metabolism and response amongst pregnant women.
Collapse
Affiliation(s)
- Anders Helldén
- Division of Clinical Pharmacology & Toxicology, Department of Pediatrics, Hospital for Sick Children, Toronto, Ontario, M5G 1X8, Canada
| | | |
Collapse
|
14
|
Hakooz N, Alzubiedi S, Yousef AM, Arafat T, Dajani R, Ababneh N, Ismail S. UDP-glucuronosyltransferase 1A4 (UGT1A4) polymorphisms in a Jordanian population. Mol Biol Rep 2012; 39:7763-8. [PMID: 22367373 DOI: 10.1007/s11033-012-1615-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 02/15/2012] [Indexed: 10/28/2022]
Abstract
Glucuronidation is one of the most important phase II metabolic pathways. It is catalyzed by a family of UDP-glucuronosyltransferase enzymes (UGTs). One of the subfamilies is UGT1A. Allele frequencies in UGT1A4 differ among ethnic groups. The aim of this study was to determine the allelic frequency of two most common defective alleles: UGT1A4*2 and UGT1A4*3 in a Jordanian population. A total of 216 healthy Jordanian Volunteers (165 males and 51 females) were included in this study. Genotyping for UGT1A4*1, UGT1A4*2 and UGT1A4*3 was done using a well established polymerase chain reaction-restriction fragment length polymorphism test. Among 216 random individuals studied for UGT1A4*2 mutation there were 26 individuals who were heterozygous, giving a prevalence of 12% and an allele frequency of 6.5%. Only one individual was homozygous for UGT1A4*2. The UGT1A4*3 mutation was detected as heterozygous in 9 of 216 individuals indicating a prevalence of 4.2% and allele frequency of 3.5%. Three individuals were homozygous for the UGT1A4*3 indicating a prevalence of 1.4%. The prevalence of UGT1A4*2 is similar to the Caucasians but different from other populations whilst the UGT1A4*3 prevalence in the Jordanian population is distinct from other populations. Our results provide useful information for the Jordanian population and for future genotyping of Arab populations in general.
Collapse
Affiliation(s)
- Nancy Hakooz
- Faculty of Pharmacy, University of Jordan, Amman 11942, Jordan.
| | | | | | | | | | | | | |
Collapse
|