1
|
Seo YH, Hwang SH, Kim YN, Kim HJ, Bae EB, Huh JB. Bone Reconstruction Using Two-Layer Porcine-Derived Bone Scaffold Composed of Cortical and Cancellous Bones in a Rabbit Calvarial Defect Model. Int J Mol Sci 2022; 23:ijms23052647. [PMID: 35269791 PMCID: PMC8910567 DOI: 10.3390/ijms23052647] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/12/2022] [Accepted: 02/21/2022] [Indexed: 12/04/2022] Open
Abstract
In this study, we aimed to investigate the bone regeneration efficiency of two-layer porcine-derived bone scaffolds composed of cancellous and cortical bones in a rabbit calvarial defect model. Four circular calvaria defects were formed on cranium of rabbit and were filled with block bone scaffolds of each group: cortical bone block (Cortical group), cancellous bone block (Cancellous group), and two-layer bone block (2layer group). After 8 weeks, new bones were primarily observed in cancellous parts of the Cancellous and 2layer groups, while the Cortical group exhibited few new bones. In the results of new bone volume and area analyses, the Cancellous group showed the highest value, followed by the 2layer group, and were significantly higher than the Cortical group. Within the limitations of this study, the cancellous and two-layer porcine-derived bone scaffolds showed satisfactory bone regeneration efficiency; further studies on regulating the ratio of cortical and cancellous bones in two-layer bones are needed.
Collapse
Affiliation(s)
- Yong-Ho Seo
- Department of Prosthodontics, Dental and Life Sciences Institute, Education and Research Team for Life Science on Dentistry, School of Dentistry, Pusan National University, Yangsan 50612, Korea; (Y.-H.S.); (S.-H.H.)
| | - Su-Hyun Hwang
- Department of Prosthodontics, Dental and Life Sciences Institute, Education and Research Team for Life Science on Dentistry, School of Dentistry, Pusan National University, Yangsan 50612, Korea; (Y.-H.S.); (S.-H.H.)
| | - Yu-Na Kim
- Department of Oral Physiology, Periodontal Diseases Signaling Network Research Center, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan 50612, Korea; (Y.-N.K.); (H.-J.K.)
| | - Hyung-Joon Kim
- Department of Oral Physiology, Periodontal Diseases Signaling Network Research Center, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan 50612, Korea; (Y.-N.K.); (H.-J.K.)
| | - Eun-Bin Bae
- Department of Prosthodontics, Dental and Life Sciences Institute, Education and Research Team for Life Science on Dentistry, School of Dentistry, Pusan National University, Yangsan 50612, Korea; (Y.-H.S.); (S.-H.H.)
- Section of Restorative Dentistry, University of California, Los Angeles, CA 90095, USA
- Correspondence: (E.-B.B.); (J.-B.H.); Tel.: +82-10-2355-6550 (E.-B.B.); +82-10-8007-9099 (J.-B.H.); Fax: +82-55-360-5134 (J.-B.H.)
| | - Jung-Bo Huh
- Department of Prosthodontics, Dental and Life Sciences Institute, Education and Research Team for Life Science on Dentistry, School of Dentistry, Pusan National University, Yangsan 50612, Korea; (Y.-H.S.); (S.-H.H.)
- Correspondence: (E.-B.B.); (J.-B.H.); Tel.: +82-10-2355-6550 (E.-B.B.); +82-10-8007-9099 (J.-B.H.); Fax: +82-55-360-5134 (J.-B.H.)
| |
Collapse
|
2
|
Gee TW, Richards JM, Mahmut A, Butcher JT. Valve endothelial-interstitial interactions drive emergent complex calcific lesion formation in vitro. Biomaterials 2021; 269:120669. [PMID: 33482604 DOI: 10.1016/j.biomaterials.2021.120669] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 12/24/2020] [Accepted: 01/05/2021] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Calcific aortic valve disease (CAVD) is an actively regulated degenerative disease process. Clinical lesions exhibit marked 3D complexity not represented in current in vitro systems. We here present a unique mechanically stressed 3D culture system that recapitulates valve interstitial cell (VIC) induced matrix calcification through myofibroblastic activation and osteoblastic differentiation. We test the hypothesis that valve endothelial (VEC) - interstitial collaborative interactions modulate the risk and complexity of calcific pathogenesis within mechanically stressed and pro-inflammatory environments. APPROACH AND RESULTS Porcine aortic valve endothelial and interstitial cells (VEC and VIC) were seeded in a mechanically constrained collagen hydrogels alone or in co-culture configurations. Raised 3D VIC-filled lesions formed within 7 days when cultured in osteogenic media (OGM), and surprisingly exacerbated by endothelial coculture. We identified a spatially coordinated pro-endochondral vs. pro-osteogenic signaling program within the lesion. VEC underwent Endothelial-to-Mesenchymal Transformation (EndMT) and populated the lesion center. The spatial complexity of molecular and cellular signatures of this 3D in vitro CAVD system were consistent with human diseased aortic valve histology. SNAI1 was highly expressed in the VEC and subendothelial direct VIC corroborates with human CAVD lesions. Spatial distribution of Sox9 vs. Runx2 expression within the developed lesions (Sox9 peri-lesion vs. Runx2 predominantly within lesions) mirrored their expression in heavily calcified human aortic valves. Finally, we demonstrate the applicability of this platform for screening potential pharmacologic therapies through blocking the canonical NFκB pathway via BAY 11-7082. CONCLUSIONS Our results establish that VEC actively induce VIC pathological remodeling and calcification via EndMT and paracrine signaling. This mechanically constrained culture platform enables the interrogation of accelerated cell-mediated matrix remodeling behavior underpinned by this cellular feedback circuit. The high fidelity of this complex 3D model system to human CAVD mechanisms supports its use to test mechanisms of intercellular communication in valves and their pharmacological control.
Collapse
Affiliation(s)
- Terence W Gee
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA.
| | - Jennifer M Richards
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA.
| | - Ablajan Mahmut
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA.
| | - Jonathan T Butcher
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
3
|
Rao JS, Burlak C. Xenotransplantation literature update for September - October 2020. Xenotransplantation 2020; 28:e12665. [PMID: 33314409 DOI: 10.1111/xen.12665] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 11/20/2020] [Indexed: 12/27/2022]
Affiliation(s)
- Joseph Sushil Rao
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota, Minneapolis, MN, USA.,Solid Organ Transplantation, Department of Surgery, University of Minnesota, Minneapolis, MN, USA
| | - Christopher Burlak
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
4
|
Bracey DN, Cignetti NE, Jinnah AH, Stone AV, Gyr BM, Whitlock PW, Scott AT. Bone xenotransplantation: A review of the history, orthopedic clinical literature, and a single‐center case series. Xenotransplantation 2020; 27:e12600. [DOI: 10.1111/xen.12600] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 02/22/2020] [Accepted: 04/07/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Daniel N. Bracey
- Department of Orthopaedic Surgery Wake Forest School of Medicine Winston‐Salem NC USA
| | - Natalie E. Cignetti
- Department of Orthopaedic Surgery Wake Forest School of Medicine Winston‐Salem NC USA
| | - Alexander H. Jinnah
- Department of Orthopaedic Surgery Wake Forest School of Medicine Winston‐Salem NC USA
| | - Austin V. Stone
- Department of Orthopaedic Surgery and Sports Medicine University of Kentucky Lexington KY USA
| | - Bettina M. Gyr
- Department of Orthopedic Surgery and Sports Medicine Children’s Hospital of the King’s Daughters Norfolk VA USA
| | - Patrick W. Whitlock
- Division of Orthopaedic Surgery Cincinnati Children’s Hospital Medical Center Cincinnati OH USA
| | - Aaron T. Scott
- Department of Orthopaedic Surgery Wake Forest School of Medicine Winston‐Salem NC USA
| |
Collapse
|
5
|
Bae EB, Kim HJ, Ahn JJ, Bae HY, Kim HJ, Huh JB. Comparison of Bone Regeneration between Porcine-Derived and Bovine-Derived Xenografts in Rat Calvarial Defects: A Non-Inferiority Study. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E3412. [PMID: 31635277 PMCID: PMC6829332 DOI: 10.3390/ma12203412] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/15/2019] [Accepted: 10/16/2019] [Indexed: 11/16/2022]
Abstract
The present study aimed to compare the bone-regeneration capacity of porcine-derived xenografts to bovine-derived xenografts in the rat calvarial defect model. The observation of surface morphology and in vitro cell studies were conducted prior to the animal study. Defects with a diameter of 8 mm were created in calvaria of 20 rats. The rats were randomly treated with porcine-derived (Bone-XP group) or bovine-derived xenografts (Bio-Oss group) and sacrificed at 4 and 8 weeks after surgery. The new bone regeneration was evaluated by micro-computed tomography (μCT) and histomorphometric analyses. In the cell study, the extracts of Bone-XP and Bio-Oss showed a positive effect on the regulation of osteogenic differentiation of human mesenchymal stem cells (hMSCs) without cytotoxicity. The new bone volume of Bone-XP (17.52 ± 3.78% at 4 weeks and 32.09 ± 3.51% at 8 weeks) was similar to that of Bio-Oss (11.6 ± 3.88% at 4 weeks and 25.89 ± 7.43% at 8 weeks) (p > 0.05). In the results of new bone area, there was no significant difference between Bone-XP (9.08 ± 5.47% at 4 weeks and 25.22 ± 13.56% at 8 weeks) and Bio-Oss groups (5.83 ± 2.56% at 4 weeks and 21.68 ± 11.11% at 8 weeks) (p > 0.05). It can be concluded that the porcine-derived bone substitute may offer a favorable cell response and bone regeneration similar to those of commercial bovine bone mineral.
Collapse
Affiliation(s)
- Eun-Bin Bae
- Department of Prosthodontics, Dental Research Institute, Dental and Life Science Institute, BK21 PLUS Project, School of Dentistry, Pusan National University, Yangsan 50612, Korea.
| | - Ha-Jin Kim
- Department of Oral Physiology, Dental Research Institute, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan 50612, Korea.
| | - Jong-Ju Ahn
- Department of Prosthodontics, Dental Research Institute, Dental and Life Science Institute, BK21 PLUS Project, School of Dentistry, Pusan National University, Yangsan 50612, Korea.
| | - Hyun-Young Bae
- Department of Prosthodontics, Dental Research Institute, Dental and Life Science Institute, BK21 PLUS Project, School of Dentistry, Pusan National University, Yangsan 50612, Korea.
| | - Hyung-Joon Kim
- Department of Oral Physiology, Dental Research Institute, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan 50612, Korea.
| | - Jung-Bo Huh
- Department of Prosthodontics, Dental Research Institute, Dental and Life Science Institute, BK21 PLUS Project, School of Dentistry, Pusan National University, Yangsan 50612, Korea.
| |
Collapse
|
6
|
Bracey DN, Seyler TM, Jinnah AH, Smith TL, Ornelles DA, Deora R, Parks GD, Van Dyke ME, Whitlock PW. A porcine xenograft-derived bone scaffold is a biocompatible bone graft substitute: An assessment of cytocompatibility and the alpha-Gal epitope. Xenotransplantation 2019; 26:e12534. [PMID: 31342586 DOI: 10.1111/xen.12534] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/20/2019] [Accepted: 05/08/2019] [Indexed: 11/29/2022]
Abstract
BACKGROUND Xenografts are an attractive alternative to traditional bone grafts because of the large supply from donors with predictable morphology and biology as well as minimal risk of human disease transmission. Clinical series involving xenograft bone transplantation, most commonly from bovine sources, have reported poor results with frequent graft rejection and failure to integrate with host tissue. Failures have been attributed to residual alpha-Gal epitope in the xenograft which humans produce natural antibody against. To the authors' knowledge, there is currently no xenograft-derived bone graft substitute that has been adopted by orthopedic surgeons for routine clinical use. METHODS In the current study, a bone scaffold intended to serve as a bone graft substitute was derived from porcine cancellous bone using a tissue decellularization and chemical oxidation protocol. In vitro cytocompatibility, pathogen clearance, and alpha-Gal quantification tests were used to assess the safety of the bone scaffold intended for human use. RESULTS In vitro studies showed the scaffold was free of processing chemicals and biocompatible with mouse and human cell lines. When bacterial and viral pathogens were purposefully added to porcine donor tissue, processing successfully removed these pathogens to comply with sterility assurance levels established by allograft tissue providers. Critically, 98.5% of the alpha-Gal epitope was removed from donor tissue after decellularization as shown by ELISA inhibition assay and immunohistochemical staining. CONCLUSIONS The current investigation supports the biologic safety of bone scaffolds derived from porcine donors using a decellularization protocol that meets current sterility assurance standards. The majority of the highly immunogenic xenograft carbohydrate was removed from donor tissue, and these findings support further in vivo investigation of xenograft-derived bone tissue for orthopedic clinical application.
Collapse
Affiliation(s)
- Daniel N Bracey
- Department of Orthopaedic Surgery, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Thorsten M Seyler
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, North Carolina
| | - Alexander H Jinnah
- Department of Orthopaedic Surgery, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Thomas L Smith
- Department of Orthopaedic Surgery, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - David A Ornelles
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Rajendar Deora
- Department of Microbial Infection and Immunity, Department of Microbiology, The Ohio State University College of Medicine, Columbus, Ohio
| | - Griffith D Parks
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, Florida
| | - Mark E Van Dyke
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - Patrick W Whitlock
- Division of Orthopaedic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| |
Collapse
|
7
|
Migration and differentiation of osteoclast precursors under gradient fluid shear stress. Biomech Model Mechanobiol 2019; 18:1731-1744. [PMID: 31115727 DOI: 10.1007/s10237-019-01171-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 05/12/2019] [Indexed: 10/26/2022]
Abstract
The skeleton can adapt to mechanical loading through bone remodeling, and osteoclasts close to microdamages are believed to initiate bone resorption. However, whether local mechanical loading, such as fluid flow, regulates recruitment and differentiation of osteoclast precursors at the site of bone resorption has yet to be investigated. In the present study, finite element analysis first revealed the existence of a low-fluid shear stress (FSS) field inside microdamage. Based on a custom-made device of cone-and-plate fluid chamber, finite element analysis and particle image velocimetry measurement were performed to verify the formation of gradient FSS flow field. Furthermore, the effects of gradient FSS on the migration, aggregation, and fusion of osteoclast precursors were observed. Osteoclast precursor RAW264.7 cells migrated along a radial direction toward the region with decreased FSS during exposure to gradient FSS stimulation for 40 min, thereby deviating from the direction of actual fluid flow indicated by fluorescent particles. When calcium signaling pathway was inhibited by gadolinium and thapsigargin, cell migration toward a low-FSS region was significantly reduced. For the other cell lines MC3T3-E1, PDLF, rat mesenchymal stem cells, and Madin-Darby canine kidney epithelial cells, gradient FSS stimulation did not lead to low-FSS inclined migration. After being cultured under gradient FSS stimulation for 6 days, RAW264.7 cells showed significantly higher density and ratio of TRAP-positive multinucleated osteoclasts in the low-FSS region to those in the high-FSS region. Therefore, osteoclast precursor cells may exhibit the special ability to sense FSS gradient and tend to actively migrate toward low-FSS regions, which are regulated by calcium signaling pathway.
Collapse
|
8
|
Zhang N, Zhao D, Liu N, Wu Y, Yang J, Wang Y, Xie H, Ji Y, Zhou C, Zhuang J, Wang Y, Yan J. Assessment of the degradation rates and effectiveness of different coated Mg-Zn-Ca alloy scaffolds for in vivo repair of critical-size bone defects. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2018; 29:138. [PMID: 30120628 PMCID: PMC6105203 DOI: 10.1007/s10856-018-6145-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 08/01/2018] [Indexed: 05/24/2023]
Abstract
Surgical repair of bone defects remains challenging, and the search for alternative procedures is ongoing. Devices made of Mg for bone repair have received much attention owing to their good biocompatibility and mechanical properties. We developed a new type of scaffold made of a Mg-Zn-Ca alloy with a shape that mimics cortical bone and can be filled with morselized bone. We evaluated its durability and efficacy in a rabbit ulna-defect model. Three types of scaffold-surface coating were evaluated: group A, no coating; group B, a 10-μm microarc oxidation coating; group C, a hydrothermal duplex composite coating; and group D, an empty-defect control. X-ray and micro-computed tomography(micro-CT) images were acquired over 12 weeks to assess ulnar repair. A mechanical stress test indicated that bone repair within each group improved significantly over time (P < 0.01). The degradation behavior of the different scaffolds was assessed by micro-CT and quantified according to the amount of hydrogen gas generated; these measurements indicated that the group C scaffold better resisted corrosion than did the other scaffold types (P < 0.05). Calcein fluorescence and histology revealed that greater mineral densities and better bone responses were achieved for groups B and C than for group A, with group C providing the best response. In conclusion, our Mg-Zn-Ca-alloy scaffold effectively aided bone repair. The group C scaffold exhibited the best corrosion resistance and osteogenesis properties, making it a candidate scaffold for repair of bone defects.
Collapse
Affiliation(s)
- Nan Zhang
- The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
- The Second Affiliated Hospital of Qiqihar Medical College, Qiqihar, Heilongjiang, People's Republic of China
| | - Dewei Zhao
- The Affiliated Zhongshan hospital of Dalian University, Dalian, Liaoning, People's Republic of China
| | - Na Liu
- The Second Affiliated Hospital of Qiqihar Medical College, Qiqihar, Heilongjiang, People's Republic of China
| | - Yunfeng Wu
- Harbin Institute of Technology, Harbin, Heilongjiang, People's Republic of China
| | - Jiahui Yang
- The Affiliated Zhongshan hospital of Dalian University, Dalian, Liaoning, People's Republic of China
| | - Yuefei Wang
- Qiqihar Medical College, Qiqihar, Heilongjiang, People's Republic of China
| | - Huanxin Xie
- The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Ye Ji
- The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Changlong Zhou
- The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Jinpeng Zhuang
- The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Yaming Wang
- Harbin Institute of Technology, Harbin, Heilongjiang, People's Republic of China
| | - Jinglong Yan
- The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China.
| |
Collapse
|
9
|
Bracey DN, Seyler TM, Jinnah AH, Lively MO, Willey JS, Smith TL, Van Dyke ME, Whitlock PW. A Decellularized Porcine Xenograft-Derived Bone Scaffold for Clinical Use as a Bone Graft Substitute: A Critical Evaluation of Processing and Structure. J Funct Biomater 2018; 9:jfb9030045. [PMID: 30002336 PMCID: PMC6164666 DOI: 10.3390/jfb9030045] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/06/2018] [Accepted: 07/09/2018] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Bone grafts are used in approximately one half of all musculoskeletal surgeries. Autograft bone is the historic gold standard but is limited in supply and its harvest imparts significant morbidity to the patient. Alternative sources of bone graft include allografts, synthetics and, less commonly, xenografts which are taken from animal species. Xenografts are available in unlimited supply from healthy animal donors with controlled biology, avoiding the risk of human disease transmission, and may satisfy current demand for bone graft products. METHODS In the current study, cancellous bone was harvested from porcine femurs and subjected to a novel decellularization protocol to derive a bone scaffold. RESULTS The scaffold was devoid of donor cellular material on histology and DNA sampling (p < 0.01). Microarchitectural properties important for osteoconductive potential were preserved after decellularization as shown by high resolution imaging modalities. Proteomics data demonstrated similar profiles when comparing the porcine bone scaffold against commercially available human demineralized bone matrix approved for clinical use. CONCLUSION We are unaware of any porcine-derived bone graft products currently used in orthopaedic surgery practice. Results from the current study suggest that porcine-derived bone scaffolds warrant further consideration to serve as a potential bone graft substitute.
Collapse
Affiliation(s)
- Daniel N Bracey
- Department of Orthopaedic Surgery, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| | - Thorsten M Seyler
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC 27710, USA.
| | - Alexander H Jinnah
- Department of Orthopaedic Surgery, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| | - Mark O Lively
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| | - Jeffrey S Willey
- Department of Radiation Oncology, Wake Forest School of Medicine Comprehensive Cancer Center, Winston-Salem, NC 27157, USA.
| | - Thomas L Smith
- Department of Orthopaedic Surgery, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| | - Mark E Van Dyke
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA.
| | - Patrick W Whitlock
- Division of Orthopaedic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| |
Collapse
|
10
|
Feng W, Li D, Zang J, Fu L. Biomechanical comparison of xenogeneic bone material treated with different methods. Xenotransplantation 2017; 24. [PMID: 28944517 DOI: 10.1111/xen.12343] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 07/30/2017] [Accepted: 08/14/2017] [Indexed: 12/26/2022]
Affiliation(s)
- Wei Feng
- Department of Bone and Joint; The First Hospital; Jilin University; Changchun China
| | - Dongsong Li
- Department of Bone and Joint; The First Hospital; Jilin University; Changchun China
| | - Junting Zang
- Department of Bone and Joint; The First Hospital; Jilin University; Changchun China
| | - Li Fu
- Department of Gynaecology; The Second Hospital; Jilin University; Changchun China
| |
Collapse
|
11
|
Rashmi, Pathak R, Amarpal, Aithal HP, Kinjavdekar P, Pawde AM, Tiwari AK, Sangeetha P, Tamilmahan P, Manzoor AB. Evaluation of tissue-engineered bone constructs using rabbit fetal osteoblasts on acellular bovine cancellous bone matrix. Vet World 2017; 10:163-169. [PMID: 28344398 PMCID: PMC5352840 DOI: 10.14202/vetworld.2017.163-169] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 01/04/2017] [Indexed: 11/29/2022] Open
Abstract
Aim: The aim of this study was to generate composite bone graft and investigate the rabbit fetal osteoblasts adhesion, proliferation and penetration on acellular matrices of cancellous bone. Materials and Methods: Acellular cancellous bone was prepared and developed as in the previous study with little modification. These matrices were decellularized by rapid freeze and thaw cycle. To remove the cell debris, they were then treated with hydrogen peroxide (3%) and ethanol to remove antigenic cellular and nuclear materials from the scaffold. Primary osteoblast cells were harvested from 20 to 22 days old rabbit fetal long and calvarial bone. These cells were cultured and characterized using a specific marker. The third passaged fetal osteoblast cells were then seeded on the scaffold and incubated for 14 days. The growth pattern of the cells was observed. Scanning electron microscope and hematoxylin and eosin staining were used to investigate cells proliferation. Results: The cells were found to be growing well on the surface of the scaffold and were also present in good numbers with the matrix filopodial extensions upto inside of the core of the tissue. Conclusion: Thus, a viable composite scaffold of bone could be developed which has a great potential in the field of bone tissue engineering.
Collapse
Affiliation(s)
- Rashmi
- Division of Veterinary Surgery, Indian Veterinary Research Institute, Izatnagar, Bareilly - 243 122, Uttar Pradesh, India
| | - Rekha Pathak
- Division of Veterinary Surgery, Indian Veterinary Research Institute, Izatnagar, Bareilly - 243 122, Uttar Pradesh, India
| | - Amarpal
- Division of Veterinary Surgery, Indian Veterinary Research Institute, Izatnagar, Bareilly - 243 122, Uttar Pradesh, India
| | - H P Aithal
- Division of Veterinary Surgery, Indian Veterinary Research Institute, Izatnagar, Bareilly - 243 122, Uttar Pradesh, India
| | - P Kinjavdekar
- Division of Veterinary Surgery, Indian Veterinary Research Institute, Izatnagar, Bareilly - 243 122, Uttar Pradesh, India
| | - A M Pawde
- Division of Veterinary Surgery, Indian Veterinary Research Institute, Izatnagar, Bareilly - 243 122, Uttar Pradesh, India
| | - A K Tiwari
- Division of Standardization, Indian Veterinary Research Institute, Izatnagar, Bareilly - 243 122, Uttar Pradesh, India
| | - P Sangeetha
- Division of Veterinary Surgery, Indian Veterinary Research Institute, Izatnagar, Bareilly - 243 122, Uttar Pradesh, India
| | - P Tamilmahan
- Division of Veterinary Surgery, Indian Veterinary Research Institute, Izatnagar, Bareilly - 243 122, Uttar Pradesh, India
| | - A B Manzoor
- Division of Veterinary Surgery, Indian Veterinary Research Institute, Izatnagar, Bareilly - 243 122, Uttar Pradesh, India
| |
Collapse
|