1
|
Lee J, Lee J, Baek H, Lim DJ, Lee SB, Lee JM, Jang SA, Kang MI, Yang SW, Kim MH. In Vitro Investigation of HIF-1α as a Therapeutic Target for Thyroid-Associated Ophthalmopathy. Endocrinol Metab (Seoul) 2024; 39:767-776. [PMID: 39410849 PMCID: PMC11525702 DOI: 10.3803/enm.2024.1952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 07/02/2024] [Accepted: 07/22/2024] [Indexed: 11/01/2024] Open
Abstract
BACKGRUOUND Thyroid-associated ophthalmopathy (TAO) involves tissue expansion and inflammation, potentially causing a hypoxic microenvironment. Hypoxia-inducible factor (HIF)-1α is crucial in fibrosis and adipogenesis, which are observed in TAO progression. We investigated the effects of hypoxia on orbital fibroblasts (OFs) in TAO, focusing on the role of HIF-1α in TAO progression. METHODS OFs were isolated from TAO and non-TAO patients (as controls). In addition to HIF-1α, adipogenic differentiation markers including peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer binding protein (CEBP) were measured by Western blot, and phenotype changes were evaluated by Oil Red O staining under both normoxia and hypoxia. To elucidate the effect of HIF-1α inhibition, protein expression changes after HIF-1α inhibitor treatment were evaluated under normoxia and hypoxia. RESULTS TAO OFs exhibited significantly higher HIF-1α expression than non-TAO OFs, and the difference was more distinct under hypoxia than under normoxia. Oil Red O staining showed that adipogenic differentiation of TAO OFs was prominent under hypoxia. Hypoxic conditions increased the expression of adipogenic markers, namely PPARγ and CEBP, as well as HIF-1α in TAO OFs. Interleukin 6 levels also increased in response to hypoxia. The effect of hypoxia on adipogenesis was reduced at the protein level after HIF-1α inhibitor treatment, and this inhibitory effect was sustained even with IGF-1 stimulation in addition to hypoxia. CONCLUSION Hypoxia induces tissue remodeling in TAO by stimulating adipogenesis through HIF-1α activation. These data could provide insights into new treatment strategies and the mechanisms of adipose tissue remodeling in TAO.
Collapse
Affiliation(s)
- Jeongmin Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jinsoo Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hansang Baek
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Uijeongbu St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Uijeongbu, Korea
| | - Dong-Jun Lim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Seong-Beom Lee
- Department of Pathology, Institute of Hansen’s Disease, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jung-Min Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sang-Ah Jang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Moo Il Kang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Cheongju St. Mary’s Hospital, Cheongju, Korea
| | - Suk-Woo Yang
- Department of Ophthalmology and Visual Science, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Min-Hee Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
2
|
Koyuncu S, Sipahioğlu H, Karakukcu C, Zararsız G, İçaçan G, Biçer NS, Kocyigit I. The relationship between changes in peritoneal permeability with CA-125 and HIF-1α. Ther Apher Dial 2024. [PMID: 39233434 DOI: 10.1111/1744-9987.14206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/20/2024] [Accepted: 08/26/2024] [Indexed: 09/06/2024]
Abstract
BACKGROUND Peritoneal fibrosis (PF) is a major, persistent complication of prolonged peritoneal dialysis that eventually leads to peritoneal ultrafiltration failure and termination of peritoneal dialysis. Prolonged exposure to high glucose concentrations, degradation products, uremic toxins, and episodes of peritonitis can cause some changes in the peritoneal membrane, resulting in intraperitoneal inflammation and PF, leading to failure of ultrafiltration and dialysis. CA-125 can be used as a biomarker of peritoneal mesothelial cell count in the peritoneal dialysate and for monitoring cell count in PD patients. Hypoxia-inducible factor 1-alpha (HIF-1α) has been reported to cause PF, but has not been reported to be associated with changes in peritoneal structure. We hypothesized that peritoneal adequacy can be followed using HIF-1α and CA-125 values. In the present study, therefore, we investigated the relationship between HIF-1α and CA-125 levels and parietal membrane permeability changes in PD patients. METHODS Forty-five patients were included in the study. Peritoneal permeability was constant in 20 of these, while peritoneal permeability increased in 11 and decreased in 14. The HIF-1α value from the blood samples of the patients and the CA-125 measurement from the peritoneal fluids were measured. The relationship between peritoneal variability and CA-125 and HIF levels after follow-up was investigated. RESULTS We compared serum HIF-1α and peritoneal fluid CA-125 levels in the three groups receiving peritoneal dialysis treatment. HIF-1α levels increased with peritoneal permeability changes, while CA-125 levels decreased. In patients with high to low permeability changes, HIF-1α levels were higher compared to those with stable or low to high changes, which was statistically significant. Conversely, CA-125 levels significantly decreased in patients whose peritoneal permeability changed from high to low, compared to the other two groups. CONCLUSION Changes in peritoneal structure can be followed with biomarkers. It has been shown that CA-125 and HIF-1α levels can guide the changes in the peritoneal membrane. This can be useful in the monitoring of peritoneal dialysis.
Collapse
Affiliation(s)
- Sumeyra Koyuncu
- Department of Nephrology, Kayseri Education and Research Hospital, Kayseri, Turkey
| | - Hilal Sipahioğlu
- Department of İntensive Care Unit, Kayseri Education and Research Hospital, Kayseri, Turkey
| | - Cigdem Karakukcu
- Department of Biochemistry, Erciyes Medical Faculty, Kayseri, Turkey
| | - Gökmen Zararsız
- Department of Biostatistics, Erciyes Medical Faculty, Kayseri, Turkey
| | - Gamze İçaçan
- Department of Nephrology, Izmir City Hospital, Izmir, Turkey
| | | | - Ismail Kocyigit
- Department of Nephrology, Erciyes Medical Faculty, Kayseri, Turkey
| |
Collapse
|
3
|
Han S, Jin R, Huo L, Teng Y, Zhao L, Zhang K, Li R, Su D, Liang X. HIF-1α participates in the regulation of S100A16-HRD1-GSK3β/CK1α pathway in renal hypoxia injury. Cell Death Dis 2024; 15:316. [PMID: 38710691 PMCID: PMC11074340 DOI: 10.1038/s41419-024-06696-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 05/08/2024]
Abstract
S100 calcium-binding protein 16 (S100A16) is implicated in both chronic kidney disease (CKD) and acute kidney injury (AKI). Previous research has shown that S100A16 contributes to AKI by facilitating the ubiquitylation and degradation of glycogen synthase kinase 3β (GSK3β) and casein kinase 1α (CK1α) through the activation of HMG-CoA reductase degradation protein 1 (HRD1). However, the mechanisms governing S100A16-induced HRD1 activation and the upregulation of S100A16 expression in renal injury are not fully understood. In this study, we observed elevated expression of Hypoxia-inducible Factor 1-alpha (HIF-1α) in the kidneys of mice subjected to ischemia-reperfusion injury (IRI). S100A16 deletion attenuated the increased HIF-1α expression induced by IRI. Using a S100A16 knockout rat renal tubular epithelial cell line (NRK-52E cells), we found that S100A16 knockout effectively mitigated apoptosis during hypoxic reoxygenation (H/R) and cell injury induced by TGF-β1. Our results revealed that H/R injuries increased both protein and mRNA levels of HIF-1α and HRD1 in renal tubular cells. S100A16 knockout reversed the expressions of HIF-1α and HRD1 under H/R conditions. Conversely, S100A16 overexpression in NRK-52E cells elevated HIF-1α and HRD1 levels. HIF-1α overexpression increased HRD1 and β-catenin while decreasing GSK-3β. HIF-1α inhibition restored HRD1 and β-catenin upregulation and GSK-3β downregulation by cellular H/R injury. Notably, Chromatin immunoprecipitation (ChIP) and luciferase reporter assays demonstrated HIF-1α binding signals on the HRD1 promoter, and luciferase reporter gene assays confirmed HIF-1α's transcriptional regulation of HRD1. Additionally, we identified Transcription Factor AP-2 Beta (TFAP2B) as the upregulator of S100A16. ChIP and luciferase reporter assays confirmed TFAP2B as a transcription factor for S100A16. In summary, this study identifies TFAP2B as the transcription factor for S100A16 and demonstrates HIF-1α regulation of HRD1 transcription within the S100A16-HRD1-GSK3β/CK1α pathway during renal hypoxia injury. These findings provide crucial insights into the molecular mechanisms of kidney injury, offering potential avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Shuying Han
- Department of Pathophysiology, Nanjing Medical University, Nanjing, 211166, China
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Runbing Jin
- Department of Pathophysiology, Nanjing Medical University, Nanjing, 211166, China
| | - Lei Huo
- Department of Pathophysiology, Nanjing Medical University, Nanjing, 211166, China
| | - Yunfei Teng
- Department of Pathology, Nanjing Medical University, Nanjing, 211166, China
| | - Lihua Zhao
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, 211166, China
| | - Kaini Zhang
- Department of Pathophysiology, Nanjing Medical University, Nanjing, 211166, China
| | - Rongfeng Li
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, 211166, China
| | - Dongming Su
- Department of Pathology, Nanjing Medical University, Nanjing, 211166, China.
| | - Xiubin Liang
- Department of Pathophysiology, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
4
|
Liao C, Liu Y, Lin Y, Wang J, Zhou T, Weng W. Mesenchymal Stem Cell-conditioned Medium Protecting Renal Tubular Epithelial Cells by Inhibiting Hypoxia-inducible Factor-1α and Nuclear Receptor Coactivator-1. Curr Stem Cell Res Ther 2024; 19:1369-1381. [PMID: 37817516 DOI: 10.2174/011574888x247652230928064627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 08/09/2023] [Accepted: 08/24/2023] [Indexed: 10/12/2023]
Abstract
BACKGROUND Acute kidney injury (AKI) is characterized by inflammatory infiltration and damage and death of renal tubular epithelial cells (RTECs), in which hypoxia plays an important role. Deferoxamine (DFO) is a well-accepted chemical hypoxia-mimetic agent. Mesenchymal stem cell-conditioned medium (MSC-CM) can reduce local inflammation and repair tissue. In this study, we explored the effect and molecular mechanism of MSC-CM-mediated protection of RTECs under DFO-induced hypoxia. METHODS Rat renal proximal tubule NRK-52E cells were treated with different concentrations of DFO for 24 hours, followed by evaluation of RTEC injury, using a Cell Counting Kit-8 (CCK-8) to detect cell viability and western blotting to evaluate the expression of transforming growth factor- beta 1 (TGF-β1), α-smooth muscle actin (α-SMA), and hypoxia-inducible factor-1 alpha (HIF-1α) in NRK-52E cells. Then, three groups of NRK-52E cells were used in experiments, including normal control (NC), 25 μM DFO, and 25 μM DFO + MSC-CM. MSC-CM was obtained from the human umbilical cord. MSC-CM was used to culture cells for 12 hours before DFO treatment, then fresh MSC-CM and 25 μM DFO were added, and cells were cultured for another 24 hours before analysis. RESULTS Western blotting and cellular immunofluorescence staining showed culture of NRK-52E cells in 25 μM DFO for 24 hours induced HIF-1α and nuclear receptor coactivator-1 (NCoA-1), simulating hypoxia. MSC-CM could inhibit the DFO-induced up-regulation of α-SMA, TGF-β1, HIF-1α and NCoA-1. CONCLUSION Our results suggest that MSC-CM has a protective effect on RTECs by down-regulating HIF-1α and NCoA-1, which may be the harmful factors in renal injury.
Collapse
Affiliation(s)
- Chunling Liao
- Department of Nephrology, the Second Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Yiping Liu
- Department of Nephrology, the Second Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Yongda Lin
- Department of Nephrology, the Second Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Jiali Wang
- Department of Nephrology, the Second Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Tianbiao Zhou
- Department of Nephrology, the Second Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Wenjuan Weng
- Department of Nephrology, the Second Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| |
Collapse
|
5
|
Zhao Y, Xiong W, Li C, Zhao R, Lu H, Song S, Zhou Y, Hu Y, Shi B, Ge J. Hypoxia-induced signaling in the cardiovascular system: pathogenesis and therapeutic targets. Signal Transduct Target Ther 2023; 8:431. [PMID: 37981648 PMCID: PMC10658171 DOI: 10.1038/s41392-023-01652-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/10/2023] [Accepted: 09/13/2023] [Indexed: 11/21/2023] Open
Abstract
Hypoxia, characterized by reduced oxygen concentration, is a significant stressor that affects the survival of aerobic species and plays a prominent role in cardiovascular diseases. From the research history and milestone events related to hypoxia in cardiovascular development and diseases, The "hypoxia-inducible factors (HIFs) switch" can be observed from both temporal and spatial perspectives, encompassing the occurrence and progression of hypoxia (gradual decline in oxygen concentration), the acute and chronic manifestations of hypoxia, and the geographical characteristics of hypoxia (natural selection at high altitudes). Furthermore, hypoxia signaling pathways are associated with natural rhythms, such as diurnal and hibernation processes. In addition to innate factors and natural selection, it has been found that epigenetics, as a postnatal factor, profoundly influences the hypoxic response and progression within the cardiovascular system. Within this intricate process, interactions between different tissues and organs within the cardiovascular system and other systems in the context of hypoxia signaling pathways have been established. Thus, it is the time to summarize and to construct a multi-level regulatory framework of hypoxia signaling and mechanisms in cardiovascular diseases for developing more therapeutic targets and make reasonable advancements in clinical research, including FDA-approved drugs and ongoing clinical trials, to guide future clinical practice in the field of hypoxia signaling in cardiovascular diseases.
Collapse
Affiliation(s)
- Yongchao Zhao
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
| | - Weidong Xiong
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, 200032, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, 200032, China
| | - Chaofu Li
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
| | - Ranzun Zhao
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Hao Lu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Shuai Song
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - You Zhou
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Yiqing Hu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China.
| | - Bei Shi
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China.
| | - Junbo Ge
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China.
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China.
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, 200032, China.
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, 200032, China.
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China.
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, 200032, China.
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
6
|
Mu J, Lei L, Zheng Y, Liu J, Li J, Li D, Wang G, Liu Y. Oxidative Stress Induced by Selenium Deficiency Contributes to Inflammation, Apoptosis and Necroptosis in the Lungs of Calves. Antioxidants (Basel) 2023; 12:antiox12040796. [PMID: 37107171 PMCID: PMC10135166 DOI: 10.3390/antiox12040796] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/19/2023] [Accepted: 03/22/2023] [Indexed: 04/29/2023] Open
Abstract
Selenium is an essential trace element for health that can only be obtained through food. However, the pathological processes of selenium deficiency in cattle have received little attention. This study investigated the effects of selenium deficiency on oxidative stress, apoptosis, inflammation, and necroptosis in the lungs of weaning calves compared with healthy calves as controls. The lung selenium content and the expression of 11 selenoproteins mRNA in selenium-deficient calves were substantially reduced compared with the controls. Pathological results showed engorged alveolar capillaries, thickened alveolar septa, and diffuse interstitial inflammation throughout the alveolar septa. The levels of GSH and T-AOC, as well as the CAT, SOD, and TrxR activities, were significantly decreased compared with healthy calves. MDA and H2O2 were significantly elevated. Meanwhile, the apoptosis activation in the Se-D group was validated. Next, in the Se-D group, several pro-inflammatory cytokines showed higher expression. Further research revealed that the lungs in the Se-D group experienced inflammation via hyperactive NF-κB and MAPK pathways. The high level of expression of c-FLIP, MLKL, RIPK1, and RIPK3 indicated that necroptosis also causes lung damage during selenium deficiency.
Collapse
Affiliation(s)
- Jing Mu
- Key Laboratory of Comparative Medicine, Department of Veterinary Surgery, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Lei Lei
- Key Laboratory of Comparative Medicine, Department of Veterinary Surgery, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yingce Zheng
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Jia Liu
- Veterinary Medical Teaching Hospital, Northeast Agricultural University, Harbin 150038, China
| | - Jie Li
- Key Laboratory of Comparative Medicine, Department of Veterinary Surgery, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Ding Li
- Key Laboratory of Comparative Medicine, Department of Veterinary Surgery, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Guanbo Wang
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast BT7 1NN, UK
| | - Yun Liu
- Key Laboratory of Comparative Medicine, Department of Veterinary Surgery, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
7
|
Selenium Deficiency-Induced Oxidative Stress Causes Myocardial Injury in Calves by Activating Inflammation, Apoptosis, and Necroptosis. Antioxidants (Basel) 2023; 12:antiox12020229. [PMID: 36829789 PMCID: PMC9951920 DOI: 10.3390/antiox12020229] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/07/2023] [Accepted: 01/10/2023] [Indexed: 01/21/2023] Open
Abstract
Selenium (Se) is essential for human and animal health, but there have been few studies on the mechanisms of injury in dairy cows with Se deficiency. This study aimed to evaluate the effects of Se deficiency on myocardial injury in weaned calves. The Se-D group had significantly lower myocardial Se concentrations than the Se-C group. Histological analysis indicated that Se deficiency induced a large area of necrosis in the myocardium, accompanied by inflammatory changes. Se deficiency significantly decreased the expression of 10 of the 21 selenoprotein genes and increased the expression of SEPHS2. Furthermore, we found that oxidative stress occurred in the Se-D group by detection of redox-related indicators. Additionally, TUNEL staining showed that Se deficiency causes severe apoptosis in the myocardium, which was characterized by activating the exogenous apoptotic pathway and the mitochondrial apoptotic pathway. Se deficiency also induced necroptosis in the myocardium by upregulating MLKL, RIPK1, and RIPK3. Moreover, Se-deficient calves have severe inflammation in the myocardium. Se deficiency significantly reduced anti-inflammatory factor levels while increasing pro-inflammatory factor levels. We also found that the NF-κB pathway and MAPK pathway were activated in Se-deficient conditions. Our findings suggest that Se deficiency causes myocardial injury in weaned calves by regulating oxidative stress, inflammation, apoptosis, and necroptosis.
Collapse
|
8
|
Iacobini C, Vitale M, Haxhi J, Pesce C, Pugliese G, Menini S. Mutual Regulation between Redox and Hypoxia-Inducible Factors in Cardiovascular and Renal Complications of Diabetes. Antioxidants (Basel) 2022; 11:2183. [PMID: 36358555 PMCID: PMC9686572 DOI: 10.3390/antiox11112183] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 08/30/2023] Open
Abstract
Oxidative stress and hypoxia-inducible factors (HIFs) have been implicated in the pathogenesis of diabetic cardiovascular and renal diseases. Reactive oxygen species (ROS) mediate physiological and pathophysiological processes, being involved in the modulation of cell signaling, differentiation, and survival, but also in cyto- and genotoxic damage. As master regulators of glycolytic metabolism and oxygen homeostasis, HIFs have been largely studied for their role in cell survival in hypoxic conditions. However, in addition to hypoxia, other stimuli can regulate HIFs stability and transcriptional activity, even in normoxic conditions. Among these, a regulatory role of ROS and their byproducts on HIFs, particularly the HIF-1α isoform, has received growing attention in recent years. On the other hand, HIF-1α and HIF-2α exert mutually antagonistic effects on oxidative damage. In diabetes, redox-mediated HIF-1α deregulation contributes to the onset and progression of cardiovascular and renal complications, and recent findings suggest that deranged HIF signaling induced by hyperglycemia and other cellular stressors associated with metabolic disorders may cause mitochondrial dysfunction, oxidative stress, and inflammation. Understanding the mechanisms of mutual regulation between HIFs and redox factors and the specific contribution of the two main isoforms of HIF-α is fundamental to identify new therapeutic targets for vascular complications of diabetes.
Collapse
Affiliation(s)
- Carla Iacobini
- Department of Clinical and Molecular Medicine, “La Sapienza” University, 00189 Rome, Italy
| | - Martina Vitale
- Department of Clinical and Molecular Medicine, “La Sapienza” University, 00189 Rome, Italy
| | - Jonida Haxhi
- Department of Clinical and Molecular Medicine, “La Sapienza” University, 00189 Rome, Italy
| | - Carlo Pesce
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal Infantile Sciences (DINOGMI), Department of Excellence of MIUR, University of Genoa Medical School, 16132 Genoa, Italy
| | - Giuseppe Pugliese
- Department of Clinical and Molecular Medicine, “La Sapienza” University, 00189 Rome, Italy
| | - Stefano Menini
- Department of Clinical and Molecular Medicine, “La Sapienza” University, 00189 Rome, Italy
| |
Collapse
|
9
|
Mechanism of Cornus Officinalis in Treating Diabetic Kidney Disease Based on Network Pharmacology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1799106. [PMID: 35855831 PMCID: PMC9288281 DOI: 10.1155/2022/1799106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 04/24/2022] [Accepted: 05/05/2022] [Indexed: 11/28/2022]
Abstract
Diabetic kidney disease (DKD), one of the most important diabetic complications, is a great clinical challenge. It still lacks proper therapeutic strategies without side effects due to the complex pathological mechanisms. Cornus officinalis (CO) is a common traditional Chinese medicine, which has been used in the treatment of DKD and takes beneficial effects in therapy. However, the mechanism of CO in treating DKD is not clear yet. In this study, network pharmacology was applied to illustrate the potential mechanism of CO and the interaction between targets of CO and targets of disease. First, the active ingredients of CO and related targets were screened from the online database. Second, the intersection network between CO and disease was constructed, and protein–protein interaction analysis was done. Third, GO and KEGG analysis were employed to figure out the key targets of CO. Finally, molecular docking was carried out in the software SYBYL to verify the effectiveness of the ingredients and targets selected. According to GO and KEGG analysis, drug metabolism-cytochrome P450, sphingolipid signaling pathway, HIF-1 signaling pathway, TGF-beta signaling pathway, cGMP-PKG signaling pathway, estrogen signaling pathway, and TNF signaling pathway were most closely related to the pathogenesis of DKD. Moreover, NOS3, TNF, ROCK1, PPARG, KDR, and HIF1A were identified as key targets in regulating the occurrence and development of the disease. This study provides evidence to elucidate the mechanism of CO comprehensively and systematically and lays the foundation for further research on CO.
Collapse
|
10
|
Tsai JL, Chen CH, Wu MJ, Tsai SF. New Approaches to Diabetic Nephropathy from Bed to Bench. Biomedicines 2022; 10:biomedicines10040876. [PMID: 35453626 PMCID: PMC9031931 DOI: 10.3390/biomedicines10040876] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 03/30/2022] [Accepted: 04/03/2022] [Indexed: 02/01/2023] Open
Abstract
Diabetic nephropathy (DN) is the main cause of end-stage kidney disease (ESKD). DN-related ESKD has the worst prognosis for survival compared with other causes. Due to the complex mechanisms of DN and the heterogeneous presentations, unmet needs exist for the renal outcome of diabetes mellitus. Clinical evidence for treating DN is rather solid. For example, the first Kidney Disease: Improving Global Outcomes (KDIGO) guideline was published in October 2020: KDIGO Clinical Practice Guideline for Diabetes Management in Chronic Kidney Disease. In December of 2020, the International Society of Nephrology published 60 (+1) breakthrough discoveries in nephrology. Among these breakthroughs, four important ones after 1980 were recognized, including glomerular hyperfiltration theory, renal protection by renin-angiotensin system inhibition, hypoxia-inducible factor, and sodium-glucose cotransporter 2 inhibitors. Here, we present a review on the pivotal and new mechanisms of DN from the implications of clinical studies and medications.
Collapse
Affiliation(s)
- Jun-Li Tsai
- Division of Family Medicine, Cheng Ching General Hospital, Taichung 407, Taiwan;
- Division of Family Medicine, Cheng Ching Rehabilitation Hospital, Taichung 407, Taiwan
| | - Cheng-Hsu Chen
- Division of Nephrology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung 407, Taiwan; (C.-H.C.); (M.-J.W.)
- Department of Life Science, Tunghai University, Taichung 407, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 402, Taiwan
| | - Ming-Ju Wu
- Division of Nephrology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung 407, Taiwan; (C.-H.C.); (M.-J.W.)
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 402, Taiwan
| | - Shang-Feng Tsai
- Division of Nephrology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung 407, Taiwan; (C.-H.C.); (M.-J.W.)
- Department of Life Science, Tunghai University, Taichung 407, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 402, Taiwan
- School of Medicine, National Yang-Ming University, Taipei 112, Taiwan
- Correspondence:
| |
Collapse
|
11
|
Li W, Duan A, Xing Y, Xu L, Yang J. Transcription-Based Multidimensional Regulation of Fatty Acid Metabolism by HIF1α in Renal Tubules. Front Cell Dev Biol 2021; 9:690079. [PMID: 34277635 PMCID: PMC8283824 DOI: 10.3389/fcell.2021.690079] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/26/2021] [Indexed: 12/12/2022] Open
Abstract
Lipid metabolism plays a basic role in renal physiology, especially in tubules. Hypoxia and hypoxia-induced factor (HIF) activation are common in renal diseases; however, the relationship between HIF and tubular lipid metabolism is poorly understood. Using prolyl hydroxylase inhibitor roxadustat (FG-4592), we verified and further explored the relationship between sustained HIF1α activation and lipid accumulation in cultured tubular cells. A transcriptome and chromatin immunoprecipitation sequencing analysis revealed that HIF1α directly regulates the expression of a number of genes possibly affecting lipid metabolism, including those associated with mitochondrial function. HIF1α activation suppressed fatty acid (FA) mobilization from lipid droplets (LDs) and extracellular FA uptake. Moreover, HIF1α decreased FA oxidation and ATP production. A lipidomics analysis showed that FG-4592 caused strong triglyceride (TG) accumulation and increased some types of phospholipids with polyunsaturated fatty acyl (PUFA) chains, as well as several proinflammatory lipids. Nevertheless, the overall FA level was maintained. Thus, our study indicated that HIF1α reduced the FA supply and utilization and reconstructed the composition of lipids in tubules, which is likely a part of hypoxic adaptation but could also be involved in pathological processes in the kidney.
Collapse
Affiliation(s)
- Wenju Li
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Aiping Duan
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yuexian Xing
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Li Xu
- Department of Otorhinolaryngology-Head and Neck Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jingping Yang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Medical School of Nanjing University, Nanjing, China.,Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
12
|
Yang X, Bao M, Fang Y, Yu X, Ji J, Ding X. STAT3/HIF-1α signaling activation mediates peritoneal fibrosis induced by high glucose. J Transl Med 2021; 19:283. [PMID: 34193173 PMCID: PMC8246671 DOI: 10.1186/s12967-021-02946-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/17/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Epithelial-mesenchymal transition (EMT) of mesothelial cells is a key step in the peritoneal fibrosis (PF). Recent evidence indicates that signal transducer and activator of transcription 3 (STAT3) might mediate the process of renal fibrosis, which could induce the expression of hypoxia-inducible factor-1α (HIF-1α). Here, we investigated the effect of STAT3 activation on HIF-1α expression and the EMT of mesothelial cells, furthermore the role of pharmacological blockade of STAT3 in the process of PF during peritoneal dialysis (PD) treatment. METHODS Firstly, we investigated the STAT3 signaling in human peritoneal mesothelial cells (HPMCs) from drained PD effluent. Secondly, we explored the effect of STAT3 signaling activation on the EMT and the expression of HIF-1α in human mesothelial cells (Met-5A) induced by high glucose. Finally, peritoneal fibrosis was induced by daily intraperitoneal injection with peritoneal dialysis fluid (PDF) so as to explore the role of pharmacological blockade of STAT3 in this process. RESULTS Compared with the new PD patient, the level of phosphorylated STAT3 was up-regulated in peritoneal mesothelial cells from long-term PD patients. High glucose (60 mmol/L) induced over-expression of Collagen I, Fibronectin, α-SMA and reduced the expression of E-cadherin in Met-5A cells, which could be abrogated by STAT3 inhibitor S3I-201 pretreatment as well as by siRNA for STAT3. Furthermore, high glucose-mediated STAT3 activation in mesothelial cells induced the expression of HIF-1α and the profibrotic effect of STAT3 signaling was alleviated by siRNA for HIF-1α. Daily intraperitoneal injection of high-glucose based dialysis fluid (HG-PDF) induced peritoneal fibrosis in the mice, accompanied by the phosphorylation of STAT3. Immunostaining showed that phosphorylated STAT3 was expressed mostly in α-SMA positive cells in the peritoneal membrane induced by HG-PDF. Administration of S3I-201 prevented the progression of peritoneal fibrosis, angiogenesis, macrophage infiltration as well as the expression of HIF-1α in the peritoneal membrane induced by high glucose. CONCLUSIONS Taken together, these findings identified a novel mechanism linking STAT3/HIF-1α signaling to peritoneal fibrosis during long-term PD treatment. It provided the first evidence that pharmacological inhibition of STAT3 signaling attenuated high glucose-mediated mesothelial cells EMT as well as peritoneal fibrosis.
Collapse
Affiliation(s)
- Xiaoxiao Yang
- Department of Nephrology, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Xuhui District, Shanghai, 200032, People's Republic of China.,Shanghai Medical Center of Kidney, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China.,Hemodialysis Quality Control Center of Shanghai, Shanghai, China
| | - Manchen Bao
- Department of Nephrology, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Xuhui District, Shanghai, 200032, People's Republic of China.,Shanghai Medical Center of Kidney, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China.,Hemodialysis Quality Control Center of Shanghai, Shanghai, China
| | - Yi Fang
- Department of Nephrology, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Xuhui District, Shanghai, 200032, People's Republic of China.,Shanghai Medical Center of Kidney, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China.,Hemodialysis Quality Control Center of Shanghai, Shanghai, China
| | - Xiaofang Yu
- Department of Nephrology, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Xuhui District, Shanghai, 200032, People's Republic of China.,Shanghai Medical Center of Kidney, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China.,Hemodialysis Quality Control Center of Shanghai, Shanghai, China
| | - Jun Ji
- Department of Nephrology, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Xuhui District, Shanghai, 200032, People's Republic of China. .,Shanghai Medical Center of Kidney, Shanghai, China. .,Shanghai Institute of Kidney and Dialysis, Shanghai, China. .,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China. .,Hemodialysis Quality Control Center of Shanghai, Shanghai, China.
| | - Xiaoqiang Ding
- Department of Nephrology, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Xuhui District, Shanghai, 200032, People's Republic of China. .,Shanghai Medical Center of Kidney, Shanghai, China. .,Shanghai Institute of Kidney and Dialysis, Shanghai, China. .,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China. .,Hemodialysis Quality Control Center of Shanghai, Shanghai, China.
| |
Collapse
|
13
|
Packer M. Mutual Antagonism of Hypoxia-Inducible Factor Isoforms in Cardiac, Vascular, and Renal Disorders. ACTA ACUST UNITED AC 2020; 5:961-968. [PMID: 33015417 PMCID: PMC7524787 DOI: 10.1016/j.jacbts.2020.05.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/07/2020] [Accepted: 05/07/2020] [Indexed: 02/06/2023]
Abstract
Hypoxia-inducible factor (HIF)-1α and HIF-2α promote cellular adaptation to acute hypoxia, but during prolonged activation, these isoforms exert mutually antagonistic effects on the redox state and on proinflammatory pathways. Sustained HIF-1α signaling can increase oxidative stress, inflammation, and fibrosis, actions that are opposed by HIF-2α. Imbalances in the interplay between HIF-1α and HIF-2α may contribute to the progression of chronic heart failure, atherosclerotic and hypertensive vascular disorders, and chronic kidney disease. These disorders are characterized by activation of HIF-1α and suppression of HIF-2α, which are potentially related to mitochondrial and peroxisomal dysfunction and suppression of the redox sensor, sirtuin-1. Hypoxia mimetics can potentiate HIF-1α and/or HIF-2α; ideally, such agents should act preferentially to promote HIF-2α while exerting little effect on or acting to suppress HIF-1α. Selective activation of HIF-2α can be achieved with drugs that: 1) inhibit isoform-selective prolyl hydroxylases (e.g., cobalt chloride and roxadustat); or 2) promote the actions of the redox sensor, sirtuin-1 (e.g., sodium-glucose cotransporter 2 inhibitors). Selective HIF-2α signaling through sirtuin-1 activation may explain the effect of sodium-glucose cotransporter 2 inhibitors to simultaneously promote erythrocytosis and ameliorate the development of cardiomyopathy and nephropathy.
Collapse
Affiliation(s)
- Milton Packer
- Baylor Heart and Vascular Institute, Baylor University Medical Center, Dallas, Texas.,Imperial College, London, United Kingdom
| |
Collapse
|
14
|
Bessho R, Takiyama Y, Takiyama T, Kitsunai H, Takeda Y, Sakagami H, Ota T. Hypoxia-inducible factor-1α is the therapeutic target of the SGLT2 inhibitor for diabetic nephropathy. Sci Rep 2019; 9:14754. [PMID: 31611596 PMCID: PMC6791873 DOI: 10.1038/s41598-019-51343-1] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 09/23/2019] [Indexed: 01/06/2023] Open
Abstract
Previous studies have demonstrated intrarenal hypoxia in patients with diabetes. Hypoxia-inducible factor (HIF)-1 plays an important role in hypoxia-induced tubulointerstitial fibrosis. Recent clinical trials have confirmed the renoprotective action of SGLT2 inhibitors in diabetic nephropathy. We explored the effects of an SGLT2 inhibitor, luseogliflozin on HIF-1α expression in human renal proximal tubular epithelial cells (HRPTECs). Luseogliflozin significantly inhibited hypoxia-induced HIF-1α protein expression in HRPTECs. In addition, luseogliflozin inhibited hypoxia-induced the expression of the HIF-1α target genes PAI-1, VEGF, GLUT1, HK2 and PKM. Although luseogliflozin increased phosphorylated-AMP-activated protein kinase α (p-AMPKα) levels, the AMPK activator AICAR did not changed hypoxia-induced HIF-1α expression. Luseogliflozin suppressed the oxygen consumption rate in HRPTECs, and subsequently decreased hypoxia-sensitive dye, pimonidazole staining under hypoxia, suggesting that luseogliflozin promoted the degradation of HIF-1α protein by redistribution of intracellular oxygen. To confirm the inhibitory effect of luseogliflozin on hypoxia-induced HIF-1α protein in vivo, we treated male diabetic db/db mice with luseogliflozin for 8 to 16 weeks. Luseogliflozin attenuated cortical tubular HIF-1α expression, tubular injury and interstitial fibronectin in db/db mice. Together, luseogliflozin inhibits hypoxia-induced HIF-1α accumulation by suppressing mitochondrial oxygen consumption. The SGLT2 inhibitors may protect diabetic kidneys by therapeutically targeting HIF-1α protein.
Collapse
Affiliation(s)
- Ryoichi Bessho
- Division of Metabolism and Biosystemic Science, Department of Internal Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka Higashi, Asahikawa, 078-8510, Japan
| | - Yumi Takiyama
- Division of Metabolism and Biosystemic Science, Department of Internal Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka Higashi, Asahikawa, 078-8510, Japan.
| | - Takao Takiyama
- Division of Metabolism and Biosystemic Science, Department of Internal Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka Higashi, Asahikawa, 078-8510, Japan
| | - Hiroya Kitsunai
- Division of Metabolism and Biosystemic Science, Department of Internal Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka Higashi, Asahikawa, 078-8510, Japan
| | - Yasutaka Takeda
- Division of Metabolism and Biosystemic Science, Department of Internal Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka Higashi, Asahikawa, 078-8510, Japan
| | - Hidemitsu Sakagami
- Division of Metabolism and Biosystemic Science, Department of Internal Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka Higashi, Asahikawa, 078-8510, Japan
| | - Tsuguhito Ota
- Division of Metabolism and Biosystemic Science, Department of Internal Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka Higashi, Asahikawa, 078-8510, Japan.
| |
Collapse
|
15
|
Ischemia-reperfusion injury in renal transplantation: 3 key signaling pathways in tubular epithelial cells. Kidney Int 2019; 95:50-56. [PMID: 30606429 DOI: 10.1016/j.kint.2018.10.009] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 09/25/2018] [Accepted: 10/02/2018] [Indexed: 01/09/2023]
Abstract
Renal ischemia-reperfusion injury (IRI) is a significant clinical challenge faced by clinicians perioperatively in kidney transplantation. Recent work has demonstrated the key importance of transmembrane receptors in the injured tubular epithelial cell, most notably Toll-like receptors, activated by exogenous and endogenous ligands in response to external and internal stresses. Through sequential protein-protein interactions, the signal is relayed deep into the core physiological machinery of the cell, having numerous effects from upregulation of pro-inflammatory gene products through to modulating mitochondrial respiration. Inter-pathway cross talk facilitates a co-ordinated response at an individual cellular level, as well as modulating the surrounding tissue's microenvironment through close interactions with the endothelium and circulating leukocytes. Defining the underlying cellular cascades involved in IRI will assist the identification of novel interventional targets to attenuate IRI with the potential to improve transplantation outcomes. We present a focused review of 3 key cellular signalling pathways in the injured tubular epithelial cell that have been the focus of much research over the past 2 decades: toll-like receptors, sphingosine-1-phosphate receptors and hypoxia inducible factors. We provide a unique perspective on the potential clinical translations of this recent work in the transplant setting. This is particularly timely with the recent completion of phase I and ongoing phase 2 clinical trials of inhibitors targeting specific components of these signaling cascades.
Collapse
|
16
|
Hypoxia and Hypoxia-Inducible Factors in Kidney Injury and Repair. Cells 2019; 8:cells8030207. [PMID: 30823476 PMCID: PMC6468851 DOI: 10.3390/cells8030207] [Citation(s) in RCA: 162] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 02/21/2019] [Accepted: 02/25/2019] [Indexed: 02/07/2023] Open
Abstract
Acute kidney injury (AKI) is a major kidney disease characterized by an abrupt loss of renal function. Accumulating evidence indicates that incomplete or maladaptive repair after AKI can result in kidney fibrosis and the development and progression of chronic kidney disease (CKD). Hypoxia, a condition of insufficient supply of oxygen to cells and tissues, occurs in both acute and chronic kidney diseases under a variety of clinical and experimental conditions. Hypoxia-inducible factors (HIFs) are the "master" transcription factors responsible for gene expression in hypoxia. Recent researches demonstrate that HIFs play an important role in kidney injury and repair by regulating HIF target genes, including microRNAs. However, there are controversies regarding the pathological roles of HIFs in kidney injury and repair. In this review, we describe the regulation, expression, and functions of HIFs, and their target genes and related functions. We also discuss the involvement of HIFs in AKI and kidney repair, presenting HIFs as effective therapeutic targets.
Collapse
|
17
|
Hypoxia, HIF, and Associated Signaling Networks in Chronic Kidney Disease. Int J Mol Sci 2017; 18:ijms18050950. [PMID: 28468297 PMCID: PMC5454863 DOI: 10.3390/ijms18050950] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 04/21/2017] [Accepted: 04/24/2017] [Indexed: 12/30/2022] Open
Abstract
The pathogenesis of chronic kidney disease (CKD) is complex and apparently multifactorial. Hypoxia or decrease in oxygen supply in kidney tissues has been implicated in CKD. Hypoxia inducible factors (HIF) are a small family of transcription factors that are mainly responsive to hypoxia and mediate hypoxic response. HIF plays a critical role in renal fibrosis during CKD through the modulation of gene transcription, crosstalk with multiple signaling pathways, epithelial-mesenchymal transition, and epigenetic regulation. Moreover, HIF also contributes to the development of various pathological conditions associated with CKD, such as anemia, inflammation, aberrant angiogenesis, and vascular calcification. Treatments targeting HIF and related signaling pathways for CKD therapy are being developed with promising clinical benefits, especially for anemia. This review presents an updated analysis of hypoxia response, HIF, and their associated signaling network involved in the pathogenesis of CKD.
Collapse
|
18
|
Wu Y, Wang L, Deng D, Zhang Q, Liu W. Renalase Protects against Renal Fibrosis by Inhibiting the Activation of the ERK Signaling Pathways. Int J Mol Sci 2017; 18:ijms18050855. [PMID: 28448446 PMCID: PMC5454808 DOI: 10.3390/ijms18050855] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 03/30/2017] [Accepted: 04/04/2017] [Indexed: 01/11/2023] Open
Abstract
Renal interstitial fibrosis is a common pathway for the progression of chronic kidney disease (CKD) to end-stage renal disease. Renalase, acting as a signaling molecule, has been reported to have cardiovascular and renal protective effects. However, its role in renal fibrosis remains unknown. In this study, we evaluated the therapeutic efficacy of renalase in rats with complete unilateral ureteral obstruction (UUO) and examined the inhibitory effects of renalase on transforming growth factor-β1 (TGF-β1)-induced epithelial-mesenchymal transition (EMT) in human proximal renal tubular epithelial (HK-2) cells. We found that in the UUO model, the expression of renalase was markedly downregulated and adenoviral-mediated expression of renalase significantly attenuated renal interstitial fibrosis, as evidenced by the maintenance of E-cadherin expression and suppressed expression of α-smooth muscle actin (α-SMA), fibronectin and collagen-I. In vitro, renalase inhibited TGF-β1-mediated upregulation of α-SMA and downregulation of E-cadherin. Increased levels of Phospho-extracellular regulated protein kinases (p-ERK1/2) in TGF-β1-stimulated cells were reversed by renalase cotreatment. When ERK1 was overexpressed, the inhibition of TGF-β1-induced EMT and fibrosis mediated by renalase was attenuated. Our study provides the first evidence that renalase can ameliorate renal interstitial fibrosis by suppression of tubular EMT through inhibition of the ERK pathway. These results suggest that renalase has potential renoprotective effects in renal interstitial fibrosis and may be an effective agent for slowing CKD progression.
Collapse
Affiliation(s)
- Yiru Wu
- Department of Nephrology, Affiliated Beijing Friendship Hospital, Faculty of Kidney Diseases, Capital Medical University, No. 95 Yong An Road, Xi Cheng District, Beijing 100050, China.
| | - Liyan Wang
- Department of Nephrology, Affiliated Beijing Friendship Hospital, Faculty of Kidney Diseases, Capital Medical University, No. 95 Yong An Road, Xi Cheng District, Beijing 100050, China.
| | - Dai Deng
- Department of Nephrology, Affiliated Beijing Friendship Hospital, Faculty of Kidney Diseases, Capital Medical University, No. 95 Yong An Road, Xi Cheng District, Beijing 100050, China.
| | - Qidong Zhang
- Department of Nephrology, Affiliated Beijing Friendship Hospital, Faculty of Kidney Diseases, Capital Medical University, No. 95 Yong An Road, Xi Cheng District, Beijing 100050, China.
| | - Wenhu Liu
- Department of Nephrology, Affiliated Beijing Friendship Hospital, Faculty of Kidney Diseases, Capital Medical University, No. 95 Yong An Road, Xi Cheng District, Beijing 100050, China.
| |
Collapse
|
19
|
Slit2 ameliorates renal inflammation and fibrosis after hypoxia-and lipopolysaccharide-induced epithelial cells injury in vitro. Exp Cell Res 2017; 352:123-129. [PMID: 28163057 DOI: 10.1016/j.yexcr.2017.02.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 01/24/2017] [Accepted: 02/02/2017] [Indexed: 12/20/2022]
Abstract
Hypoxic acute kidney injury (AKI) is often incompletely repaired and leads to chronic kidney disease (CKD), which is characterized by tubulointerstitial inflammation and fibrosis. The Slit2 family of secreted glycoproteins is expressed in the kidney, it has been shown to exert an anti-inflammatory activity and prevent ischemic renal injury in vivo. However, whether Slit2 reduces renal fibrosis and inflammation after hypoxic and inflammatory epithelial cells injury in vitro remains unknown. In this study, we aimed to evaluate whether Slit2 ameliorated fibrosis and inflammation in two renal epithelial cells line challenged with hypoxia and lipopolysaccharide (LPS). Renal epithelial cells were treated with hypoxia and LPS to induce cell injury. Hoechst staining and Western blot analysis was conducted to examine epithelial cells injury. Immunofluorescence staining and Western blot analysis was performed to evaluate tubulointerstitial fibrosis. Real-time polymerase chain reaction (PCR) tested the inflammatory factor interleukin (IL)-1β and tumor necrosis factor (TNF)-α, and Western blot analysis determined the hypoxia-inducible factor (HIF)-1α, Toll-like receptor 4 (TLR4) and nuclear factor (NF)-κB. Results revealed that hypoxia induced epithelial cells apoptosis, inflammatory factor IL-1β and TNF-α release and tubulointerstitial fibrosis. LPS could exacerbate hypoxia -induced epithelial cells apoptosis, IL-1β and TNF-α release and fibrosis. Slit2 reduced the expression of fibronectin, the rate of epithelial cell apoptosis, and the expression of inflammatory factor. Slit2 could also inhibit the expression of TLR4 and NF-κB, but not the expression of HIF-1α. Therefore, Slit2 attenuated inflammation and fibrosis after LPS- and hypoxia-induced epithelial cells injury via the TLR4/NF-κB signaling pathway, but not depending on the HIF-1α signaling pathway.
Collapse
|
20
|
HIF-1α induction during reperfusion avoids maladaptive repair after renal ischemia/reperfusion involving miR127-3p. Sci Rep 2017; 7:41099. [PMID: 28106131 PMCID: PMC5247697 DOI: 10.1038/srep41099] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 12/15/2016] [Indexed: 12/11/2022] Open
Abstract
Ischemia/reperfusion (I/R) leads to Acute Kidney Injury. HIF-1α is a key factor during organ response to I/R. We previously demonstrated that HIF-1α is induced during renal reperfusion, after ischemia. Here we investigate the role of HIF-1α and the HIF-1α dependent mechanisms in renal repair after ischemia. By interference of HIF-1α in a rat model of renal I/R, we observed loss of expression and mis-localization of e-cadherin and induction of α-SMA, MMP-13, TGFβ, and collagen I. Moreover, we demonstrate that HIF-1α inhibition promotes renal cell infiltrates by inducing IL-1β, TNF-α, MCP-1 and VCAM-1, through NFkB activity. In addition, HIF-1α inhibition induced proximal tubule cells proliferation but it did not induce compensatory apoptosis, both in vivo. In vitro, HIF-1α knockdown in HK2 cells subjected to hypoxia/reoxygenation (H/R) promote cell entry into S phase, correlating with in vivo data. HIF-1α interference leads to downregulation of miR-127-3p and induction of its target gene Bcl6 in vivo. Moreover, modulation of miR-127-3p in HK2 cells subjected to H/R results in EMT regulation: miR127-3p inhibition promote loss of e-cadherin and induction of α-SMA and collagen I. In conclusion, HIF-1α induction during reperfusion is a protector mechanism implicated in a normal renal tissue repair after I/R.
Collapse
|
21
|
Sosa Peña MDP, Lopez-Soler R, Melendez JA. Senescence in chronic allograft nephropathy. Am J Physiol Renal Physiol 2016; 315:F880-F889. [PMID: 27306980 DOI: 10.1152/ajprenal.00195.2016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Despite increasing numbers of patients on dialysis, the numbers of renal transplants performed yearly have remained relatively static. During the last 50 years, there have been many advances in the pharmacology of prevention of organ rejection. However, most patients will suffer from a slow but steady decline in renal function leading to graft loss. The most common cause of long-term graft loss is chronic allograft nephropathy (CAN). Therefore, elucidating and understanding the mechanisms involved in CAN is crucial for achieving better posttransplant outcomes. It is thought that the development of epithelial to mesenchymal transition (EMT) in proximal tubules is one of the first steps towards CAN, and has been shown to be a result of cellular senescence. Cells undergoing senescence acquire a senescence associated secretory phenotype (SASP) leading to the production of interleukin-1 alpha (IL-1α), which has been implicated in several degenerative and inflammatory processes including renal disease. A central mediator in SASP activation is the production of reactive oxygen species (ROS), which are produced in response to numerous physiological and pathological stimuli. This review explores the connection between SASP and the development of EMT/CAN in an effort to suggest future directions for research leading to improved long-term graft outcomes.
Collapse
Affiliation(s)
| | - Reynold Lopez-Soler
- Albany Medical Center, Department of Surgery, Division of Transplantation, Albany, New York
| | - J Andrés Melendez
- SUNY Polytechnic Institute, Colleges of Nanoscale Science and Engineering, Albany, New York
| |
Collapse
|
22
|
Morishita Y, Ookawara S, Hirahara I, Muto S, Nagata D. HIF-1α mediates Hypoxia-induced epithelial-mesenchymal transition in peritoneal mesothelial cells. Ren Fail 2015; 38:282-9. [PMID: 26707495 DOI: 10.3109/0886022x.2015.1127741] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The epithelial-to-mesenchymal transition (EMT) of peritoneal mesothelial cells plays a pivotal role in the development of peritoneal fibrosis. The pathological effects of hypoxia on mesothelial cell EMT have not been fully elucidated. In this study, we, therefore, investigated the effects of hypoxia on EMT in mesothelial cells. Human mesothelial (MeT-5A) cells and primary-cultured rat mesothelial cells were cultured under hypoxic conditions (1% O(2)) for up to 72 h. Changes in cell type were then determined by investigating changes in morphology and in expression of epithelial (E-cadherin and occludin) and mesenchymal (fibronectin-1, vimentin and α-smooth muscle actin) cell markers. In some cases, MeT-5A cells were cultured under hypoxic conditions with a HIF-1α inhibitor and then assessed for changes in morphology and for altered expression of signaling molecules, such as HIF-1α, Snail-1, vascular endothelial growth factor (VEGF), and matrix metalloproteinase-2 (MMP-2). Levels of HIF-1α, Snail-1, VEGF, and MMP-2 in Met-5A cells were increased by hypoxia. Levels of epithelial cell markers were decreased and those of mesenchymal cell markers were increased. Cell morphology also changed from a cobblestone-like monolayer to spindle-shaped fibroblast-like cells in response to hypoxia. Inhibition of HIF-1α signaling by a HIF-1α inhibitor abrogated these changes. The cell marker and morphological changes induced by hypoxia were also observed in primary-cultured rat mesothelial cells. We can conclude that hypoxia induces EMT in mesothelial cells by activating HIF-1α. This finding indicates that hypoxia has pivotal roles in the development of peritoneal fibrosis in peritoneal dialysis patients.
Collapse
Affiliation(s)
- Yoshiyuki Morishita
- a Division of Nephrology, Department of Integrated Medicine , Saitama Medical Center, Jichi Medical University , Saitama , Japan
| | - Susumu Ookawara
- a Division of Nephrology, Department of Integrated Medicine , Saitama Medical Center, Jichi Medical University , Saitama , Japan
| | - Ichiro Hirahara
- a Division of Nephrology, Department of Integrated Medicine , Saitama Medical Center, Jichi Medical University , Saitama , Japan
| | - Shigeaki Muto
- b Division of Nephrology, Department of Internal Medicine , Jichi Medical University , Tochigi , Japan
| | - Daisuke Nagata
- b Division of Nephrology, Department of Internal Medicine , Jichi Medical University , Tochigi , Japan
| |
Collapse
|
23
|
Farías JG, Herrera EA, Carrasco-Pozo C, Sotomayor-Zárate R, Cruz G, Morales P, Castillo RL. Pharmacological models and approaches for pathophysiological conditions associated with hypoxia and oxidative stress. Pharmacol Ther 2015; 158:1-23. [PMID: 26617218 DOI: 10.1016/j.pharmthera.2015.11.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hypoxia is the failure of oxygenation at the tissue level, where the reduced oxygen delivered is not enough to satisfy tissue demands. Metabolic depression is the physiological adaptation associated with reduced oxygen consumption, which evidently does not cause any harm to organs that are exposed to acute and short hypoxic insults. Oxidative stress (OS) refers to the imbalance between the generation of reactive oxygen species (ROS) and the ability of endogenous antioxidant systems to scavenge ROS, where ROS overwhelms the antioxidant capacity. Oxidative stress plays a crucial role in the pathogenesis of diseases related to hypoxia during intrauterine development and postnatal life. Thus, excessive ROS are implicated in the irreversible damage to cell membranes, DNA, and other cellular structures by oxidizing lipids, proteins, and nucleic acids. Here, we describe several pathophysiological conditions and in vivo and ex vivo models developed for the study of hypoxic and oxidative stress injury. We reviewed existing literature on the responses to hypoxia and oxidative stress of the cardiovascular, renal, reproductive, and central nervous systems, and discussed paradigms of chronic and intermittent hypobaric hypoxia. This systematic review is a critical analysis of the advantages in the application of some experimental strategies and their contributions leading to novel pharmacological therapies.
Collapse
Affiliation(s)
- Jorge G Farías
- Facultad de Ingeniería y Ciencias, Departamento de Ingeniería Química, Universidad de la Frontera, Casilla 54-D, Temuco, Chile
| | - Emilio A Herrera
- Programa de Fisiopatología, ICBM, Facultad de Medicina, Universidad de Chile, Chile; International Center for Andean Studies (INCAS), Universidad de Chile, Chile
| | | | - Ramón Sotomayor-Zárate
- Centro de Neurobiología y Plasticidad Cerebral (CNPC), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Chile
| | - Gonzalo Cruz
- Centro de Neurobiología y Plasticidad Cerebral (CNPC), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Chile
| | - Paola Morales
- Programa de Farmacología Molecular y Clínica, ICBM, Facultad de Medicina, Universidad de Chile, Chile
| | - Rodrigo L Castillo
- Programa de Fisiopatología, ICBM, Facultad de Medicina, Universidad de Chile, Chile.
| |
Collapse
|
24
|
Li X, Zhuang S. Recent advances in renal interstitial fibrosis and tubular atrophy after kidney transplantation. FIBROGENESIS & TISSUE REPAIR 2014; 7:15. [PMID: 25285155 PMCID: PMC4185272 DOI: 10.1186/1755-1536-7-15] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 08/29/2014] [Indexed: 01/05/2023]
Abstract
Although kidney transplantation has been an important means for the treatment of patients with end stage of renal disease, the long-term survival rate of the renal allograft remains a challenge. The cause of late renal allograft loss, once known as chronic allograft nephropathy, has been renamed “interstitial fibrosis and tubular atrophy” (IF/TA) to reflect the histologic pattern seen on biopsy. The mechanisms leading to IF/TA in the transplanted kidney include inflammation, activation of renal fibroblasts, and deposition of extracellular matrix proteins. Identifying the mediators and factors that trigger IF/TA may be useful in early diagnosis and development of novel therapeutic strategies for improving long-term renal allograft survival and patient outcomes. In this review, we highlight the recent advances in our understanding of IF/TA from three aspects: pathogenesis, diagnosis, and treatment.
Collapse
Affiliation(s)
- Xiaojun Li
- Department of Nephrology, Tongji University School of Medicine, Shanghai East Hospital, Shanghai, China
| | - Shougang Zhuang
- Department of Nephrology, Tongji University School of Medicine, Shanghai East Hospital, Shanghai, China ; Department of Medicine, Alpert Medical School of Brown University, Rhode Island Hospital, Middle House 301, 593 Eddy Street, Providence, RI 02903, USA
| |
Collapse
|